xref: /linux/kernel/power/snapshot.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34 
35 #include "power.h"
36 
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40 
41 /* List of PBEs needed for restoring the pages that were allocated before
42  * the suspend and included in the suspend image, but have also been
43  * allocated by the "resume" kernel, so their contents cannot be written
44  * directly to their "original" page frames.
45  */
46 struct pbe *restore_pblist;
47 
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50 
51 /**
52  *	@safe_needed - on resume, for storing the PBE list and the image,
53  *	we can only use memory pages that do not conflict with the pages
54  *	used before suspend.  The unsafe pages have PageNosaveFree set
55  *	and we count them using unsafe_pages.
56  *
57  *	Each allocated image page is marked as PageNosave and PageNosaveFree
58  *	so that swsusp_free() can release it.
59  */
60 
61 #define PG_ANY		0
62 #define PG_SAFE		1
63 #define PG_UNSAFE_CLEAR	1
64 #define PG_UNSAFE_KEEP	0
65 
66 static unsigned int allocated_unsafe_pages;
67 
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70 	void *res;
71 
72 	res = (void *)get_zeroed_page(gfp_mask);
73 	if (safe_needed)
74 		while (res && swsusp_page_is_free(virt_to_page(res))) {
75 			/* The page is unsafe, mark it for swsusp_free() */
76 			swsusp_set_page_forbidden(virt_to_page(res));
77 			allocated_unsafe_pages++;
78 			res = (void *)get_zeroed_page(gfp_mask);
79 		}
80 	if (res) {
81 		swsusp_set_page_forbidden(virt_to_page(res));
82 		swsusp_set_page_free(virt_to_page(res));
83 	}
84 	return res;
85 }
86 
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91 
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94 	struct page *page;
95 
96 	page = alloc_page(gfp_mask);
97 	if (page) {
98 		swsusp_set_page_forbidden(page);
99 		swsusp_set_page_free(page);
100 	}
101 	return page;
102 }
103 
104 /**
105  *	free_image_page - free page represented by @addr, allocated with
106  *	get_image_page (page flags set by it must be cleared)
107  */
108 
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111 	struct page *page;
112 
113 	BUG_ON(!virt_addr_valid(addr));
114 
115 	page = virt_to_page(addr);
116 
117 	swsusp_unset_page_forbidden(page);
118 	if (clear_nosave_free)
119 		swsusp_unset_page_free(page);
120 
121 	__free_page(page);
122 }
123 
124 /* struct linked_page is used to build chains of pages */
125 
126 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
127 
128 struct linked_page {
129 	struct linked_page *next;
130 	char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132 
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136 	while (list) {
137 		struct linked_page *lp = list->next;
138 
139 		free_image_page(list, clear_page_nosave);
140 		list = lp;
141 	}
142 }
143 
144 /**
145   *	struct chain_allocator is used for allocating small objects out of
146   *	a linked list of pages called 'the chain'.
147   *
148   *	The chain grows each time when there is no room for a new object in
149   *	the current page.  The allocated objects cannot be freed individually.
150   *	It is only possible to free them all at once, by freeing the entire
151   *	chain.
152   *
153   *	NOTE: The chain allocator may be inefficient if the allocated objects
154   *	are not much smaller than PAGE_SIZE.
155   */
156 
157 struct chain_allocator {
158 	struct linked_page *chain;	/* the chain */
159 	unsigned int used_space;	/* total size of objects allocated out
160 					 * of the current page
161 					 */
162 	gfp_t gfp_mask;		/* mask for allocating pages */
163 	int safe_needed;	/* if set, only "safe" pages are allocated */
164 };
165 
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169 	ca->chain = NULL;
170 	ca->used_space = LINKED_PAGE_DATA_SIZE;
171 	ca->gfp_mask = gfp_mask;
172 	ca->safe_needed = safe_needed;
173 }
174 
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177 	void *ret;
178 
179 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 		struct linked_page *lp;
181 
182 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 		if (!lp)
184 			return NULL;
185 
186 		lp->next = ca->chain;
187 		ca->chain = lp;
188 		ca->used_space = 0;
189 	}
190 	ret = ca->chain->data + ca->used_space;
191 	ca->used_space += size;
192 	return ret;
193 }
194 
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197 	free_list_of_pages(ca->chain, clear_page_nosave);
198 	memset(ca, 0, sizeof(struct chain_allocator));
199 }
200 
201 /**
202  *	Data types related to memory bitmaps.
203  *
204  *	Memory bitmap is a structure consiting of many linked lists of
205  *	objects.  The main list's elements are of type struct zone_bitmap
206  *	and each of them corresonds to one zone.  For each zone bitmap
207  *	object there is a list of objects of type struct bm_block that
208  *	represent each blocks of bit chunks in which information is
209  *	stored.
210  *
211  *	struct memory_bitmap contains a pointer to the main list of zone
212  *	bitmap objects, a struct bm_position used for browsing the bitmap,
213  *	and a pointer to the list of pages used for allocating all of the
214  *	zone bitmap objects and bitmap block objects.
215  *
216  *	NOTE: It has to be possible to lay out the bitmap in memory
217  *	using only allocations of order 0.  Additionally, the bitmap is
218  *	designed to work with arbitrary number of zones (this is over the
219  *	top for now, but let's avoid making unnecessary assumptions ;-).
220  *
221  *	struct zone_bitmap contains a pointer to a list of bitmap block
222  *	objects and a pointer to the bitmap block object that has been
223  *	most recently used for setting bits.  Additionally, it contains the
224  *	pfns that correspond to the start and end of the represented zone.
225  *
226  *	struct bm_block contains a pointer to the memory page in which
227  *	information is stored (in the form of a block of bit chunks
228  *	of type unsigned long each).  It also contains the pfns that
229  *	correspond to the start and end of the represented memory area and
230  *	the number of bit chunks in the block.
231  */
232 
233 #define BM_END_OF_MAP	(~0UL)
234 
235 #define BM_CHUNKS_PER_BLOCK	(PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK	(sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)
238 
239 struct bm_block {
240 	struct bm_block *next;		/* next element of the list */
241 	unsigned long start_pfn;	/* pfn represented by the first bit */
242 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
243 	unsigned int size;	/* number of bit chunks */
244 	unsigned long *data;	/* chunks of bits representing pages */
245 };
246 
247 struct zone_bitmap {
248 	struct zone_bitmap *next;	/* next element of the list */
249 	unsigned long start_pfn;	/* minimal pfn in this zone */
250 	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
251 	struct bm_block *bm_blocks;	/* list of bitmap blocks */
252 	struct bm_block *cur_block;	/* recently used bitmap block */
253 };
254 
255 /* strcut bm_position is used for browsing memory bitmaps */
256 
257 struct bm_position {
258 	struct zone_bitmap *zone_bm;
259 	struct bm_block *block;
260 	int chunk;
261 	int bit;
262 };
263 
264 struct memory_bitmap {
265 	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
266 	struct linked_page *p_list;	/* list of pages used to store zone
267 					 * bitmap objects and bitmap block
268 					 * objects
269 					 */
270 	struct bm_position cur;	/* most recently used bit position */
271 };
272 
273 /* Functions that operate on memory bitmaps */
274 
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276 {
277 	bm->cur.chunk = 0;
278 	bm->cur.bit = -1;
279 }
280 
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
282 {
283 	struct zone_bitmap *zone_bm;
284 
285 	zone_bm = bm->zone_bm_list;
286 	bm->cur.zone_bm = zone_bm;
287 	bm->cur.block = zone_bm->bm_blocks;
288 	memory_bm_reset_chunk(bm);
289 }
290 
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292 
293 /**
294  *	create_bm_block_list - create a list of block bitmap objects
295  */
296 
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299 {
300 	struct bm_block *bblist = NULL;
301 
302 	while (nr_blocks-- > 0) {
303 		struct bm_block *bb;
304 
305 		bb = chain_alloc(ca, sizeof(struct bm_block));
306 		if (!bb)
307 			return NULL;
308 
309 		bb->next = bblist;
310 		bblist = bb;
311 	}
312 	return bblist;
313 }
314 
315 /**
316  *	create_zone_bm_list - create a list of zone bitmap objects
317  */
318 
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321 {
322 	struct zone_bitmap *zbmlist = NULL;
323 
324 	while (nr_zones-- > 0) {
325 		struct zone_bitmap *zbm;
326 
327 		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 		if (!zbm)
329 			return NULL;
330 
331 		zbm->next = zbmlist;
332 		zbmlist = zbm;
333 	}
334 	return zbmlist;
335 }
336 
337 /**
338   *	memory_bm_create - allocate memory for a memory bitmap
339   */
340 
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343 {
344 	struct chain_allocator ca;
345 	struct zone *zone;
346 	struct zone_bitmap *zone_bm;
347 	struct bm_block *bb;
348 	unsigned int nr;
349 
350 	chain_init(&ca, gfp_mask, safe_needed);
351 
352 	/* Compute the number of zones */
353 	nr = 0;
354 	for_each_zone(zone)
355 		if (populated_zone(zone))
356 			nr++;
357 
358 	/* Allocate the list of zones bitmap objects */
359 	zone_bm = create_zone_bm_list(nr, &ca);
360 	bm->zone_bm_list = zone_bm;
361 	if (!zone_bm) {
362 		chain_free(&ca, PG_UNSAFE_CLEAR);
363 		return -ENOMEM;
364 	}
365 
366 	/* Initialize the zone bitmap objects */
367 	for_each_zone(zone) {
368 		unsigned long pfn;
369 
370 		if (!populated_zone(zone))
371 			continue;
372 
373 		zone_bm->start_pfn = zone->zone_start_pfn;
374 		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 		/* Allocate the list of bitmap block objects */
376 		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 		bb = create_bm_block_list(nr, &ca);
378 		zone_bm->bm_blocks = bb;
379 		zone_bm->cur_block = bb;
380 		if (!bb)
381 			goto Free;
382 
383 		nr = zone->spanned_pages;
384 		pfn = zone->zone_start_pfn;
385 		/* Initialize the bitmap block objects */
386 		while (bb) {
387 			unsigned long *ptr;
388 
389 			ptr = get_image_page(gfp_mask, safe_needed);
390 			bb->data = ptr;
391 			if (!ptr)
392 				goto Free;
393 
394 			bb->start_pfn = pfn;
395 			if (nr >= BM_BITS_PER_BLOCK) {
396 				pfn += BM_BITS_PER_BLOCK;
397 				bb->size = BM_CHUNKS_PER_BLOCK;
398 				nr -= BM_BITS_PER_BLOCK;
399 			} else {
400 				/* This is executed only once in the loop */
401 				pfn += nr;
402 				bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403 			}
404 			bb->end_pfn = pfn;
405 			bb = bb->next;
406 		}
407 		zone_bm = zone_bm->next;
408 	}
409 	bm->p_list = ca.chain;
410 	memory_bm_position_reset(bm);
411 	return 0;
412 
413  Free:
414 	bm->p_list = ca.chain;
415 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 	return -ENOMEM;
417 }
418 
419 /**
420   *	memory_bm_free - free memory occupied by the memory bitmap @bm
421   */
422 
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424 {
425 	struct zone_bitmap *zone_bm;
426 
427 	/* Free the list of bit blocks for each zone_bitmap object */
428 	zone_bm = bm->zone_bm_list;
429 	while (zone_bm) {
430 		struct bm_block *bb;
431 
432 		bb = zone_bm->bm_blocks;
433 		while (bb) {
434 			if (bb->data)
435 				free_image_page(bb->data, clear_nosave_free);
436 			bb = bb->next;
437 		}
438 		zone_bm = zone_bm->next;
439 	}
440 	free_list_of_pages(bm->p_list, clear_nosave_free);
441 	bm->zone_bm_list = NULL;
442 }
443 
444 /**
445  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
447  *	of @bm->cur_zone_bm are updated.
448  */
449 
450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 				void **addr, unsigned int *bit_nr)
452 {
453 	struct zone_bitmap *zone_bm;
454 	struct bm_block *bb;
455 
456 	/* Check if the pfn is from the current zone */
457 	zone_bm = bm->cur.zone_bm;
458 	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 		zone_bm = bm->zone_bm_list;
460 		/* We don't assume that the zones are sorted by pfns */
461 		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 			zone_bm = zone_bm->next;
463 
464 			BUG_ON(!zone_bm);
465 		}
466 		bm->cur.zone_bm = zone_bm;
467 	}
468 	/* Check if the pfn corresponds to the current bitmap block */
469 	bb = zone_bm->cur_block;
470 	if (pfn < bb->start_pfn)
471 		bb = zone_bm->bm_blocks;
472 
473 	while (pfn >= bb->end_pfn) {
474 		bb = bb->next;
475 
476 		BUG_ON(!bb);
477 	}
478 	zone_bm->cur_block = bb;
479 	pfn -= bb->start_pfn;
480 	*bit_nr = pfn % BM_BITS_PER_CHUNK;
481 	*addr = bb->data + pfn / BM_BITS_PER_CHUNK;
482 }
483 
484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
485 {
486 	void *addr;
487 	unsigned int bit;
488 
489 	memory_bm_find_bit(bm, pfn, &addr, &bit);
490 	set_bit(bit, addr);
491 }
492 
493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
494 {
495 	void *addr;
496 	unsigned int bit;
497 
498 	memory_bm_find_bit(bm, pfn, &addr, &bit);
499 	clear_bit(bit, addr);
500 }
501 
502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
503 {
504 	void *addr;
505 	unsigned int bit;
506 
507 	memory_bm_find_bit(bm, pfn, &addr, &bit);
508 	return test_bit(bit, addr);
509 }
510 
511 /* Two auxiliary functions for memory_bm_next_pfn */
512 
513 /* Find the first set bit in the given chunk, if there is one */
514 
515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
516 {
517 	bit++;
518 	while (bit < BM_BITS_PER_CHUNK) {
519 		if (test_bit(bit, chunk_p))
520 			return bit;
521 
522 		bit++;
523 	}
524 	return -1;
525 }
526 
527 /* Find a chunk containing some bits set in given block of bits */
528 
529 static inline int next_chunk_in_block(int n, struct bm_block *bb)
530 {
531 	n++;
532 	while (n < bb->size) {
533 		if (bb->data[n])
534 			return n;
535 
536 		n++;
537 	}
538 	return -1;
539 }
540 
541 /**
542  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
544  *	returned.
545  *
546  *	It is required to run memory_bm_position_reset() before the first call to
547  *	this function.
548  */
549 
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
551 {
552 	struct zone_bitmap *zone_bm;
553 	struct bm_block *bb;
554 	int chunk;
555 	int bit;
556 
557 	do {
558 		bb = bm->cur.block;
559 		do {
560 			chunk = bm->cur.chunk;
561 			bit = bm->cur.bit;
562 			do {
563 				bit = next_bit_in_chunk(bit, bb->data + chunk);
564 				if (bit >= 0)
565 					goto Return_pfn;
566 
567 				chunk = next_chunk_in_block(chunk, bb);
568 				bit = -1;
569 			} while (chunk >= 0);
570 			bb = bb->next;
571 			bm->cur.block = bb;
572 			memory_bm_reset_chunk(bm);
573 		} while (bb);
574 		zone_bm = bm->cur.zone_bm->next;
575 		if (zone_bm) {
576 			bm->cur.zone_bm = zone_bm;
577 			bm->cur.block = zone_bm->bm_blocks;
578 			memory_bm_reset_chunk(bm);
579 		}
580 	} while (zone_bm);
581 	memory_bm_position_reset(bm);
582 	return BM_END_OF_MAP;
583 
584  Return_pfn:
585 	bm->cur.chunk = chunk;
586 	bm->cur.bit = bit;
587 	return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
588 }
589 
590 /**
591  *	This structure represents a range of page frames the contents of which
592  *	should not be saved during the suspend.
593  */
594 
595 struct nosave_region {
596 	struct list_head list;
597 	unsigned long start_pfn;
598 	unsigned long end_pfn;
599 };
600 
601 static LIST_HEAD(nosave_regions);
602 
603 /**
604  *	register_nosave_region - register a range of page frames the contents
605  *	of which should not be saved during the suspend (to be used in the early
606  *	initialization code)
607  */
608 
609 void __init
610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
611 			 int use_kmalloc)
612 {
613 	struct nosave_region *region;
614 
615 	if (start_pfn >= end_pfn)
616 		return;
617 
618 	if (!list_empty(&nosave_regions)) {
619 		/* Try to extend the previous region (they should be sorted) */
620 		region = list_entry(nosave_regions.prev,
621 					struct nosave_region, list);
622 		if (region->end_pfn == start_pfn) {
623 			region->end_pfn = end_pfn;
624 			goto Report;
625 		}
626 	}
627 	if (use_kmalloc) {
628 		/* during init, this shouldn't fail */
629 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
630 		BUG_ON(!region);
631 	} else
632 		/* This allocation cannot fail */
633 		region = alloc_bootmem_low(sizeof(struct nosave_region));
634 	region->start_pfn = start_pfn;
635 	region->end_pfn = end_pfn;
636 	list_add_tail(&region->list, &nosave_regions);
637  Report:
638 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
639 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
640 }
641 
642 /*
643  * Set bits in this map correspond to the page frames the contents of which
644  * should not be saved during the suspend.
645  */
646 static struct memory_bitmap *forbidden_pages_map;
647 
648 /* Set bits in this map correspond to free page frames. */
649 static struct memory_bitmap *free_pages_map;
650 
651 /*
652  * Each page frame allocated for creating the image is marked by setting the
653  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
654  */
655 
656 void swsusp_set_page_free(struct page *page)
657 {
658 	if (free_pages_map)
659 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
660 }
661 
662 static int swsusp_page_is_free(struct page *page)
663 {
664 	return free_pages_map ?
665 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
666 }
667 
668 void swsusp_unset_page_free(struct page *page)
669 {
670 	if (free_pages_map)
671 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
672 }
673 
674 static void swsusp_set_page_forbidden(struct page *page)
675 {
676 	if (forbidden_pages_map)
677 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
678 }
679 
680 int swsusp_page_is_forbidden(struct page *page)
681 {
682 	return forbidden_pages_map ?
683 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
684 }
685 
686 static void swsusp_unset_page_forbidden(struct page *page)
687 {
688 	if (forbidden_pages_map)
689 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
690 }
691 
692 /**
693  *	mark_nosave_pages - set bits corresponding to the page frames the
694  *	contents of which should not be saved in a given bitmap.
695  */
696 
697 static void mark_nosave_pages(struct memory_bitmap *bm)
698 {
699 	struct nosave_region *region;
700 
701 	if (list_empty(&nosave_regions))
702 		return;
703 
704 	list_for_each_entry(region, &nosave_regions, list) {
705 		unsigned long pfn;
706 
707 		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
708 				region->start_pfn << PAGE_SHIFT,
709 				region->end_pfn << PAGE_SHIFT);
710 
711 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
712 			if (pfn_valid(pfn))
713 				memory_bm_set_bit(bm, pfn);
714 	}
715 }
716 
717 /**
718  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
719  *	frames that should not be saved and free page frames.  The pointers
720  *	forbidden_pages_map and free_pages_map are only modified if everything
721  *	goes well, because we don't want the bits to be used before both bitmaps
722  *	are set up.
723  */
724 
725 int create_basic_memory_bitmaps(void)
726 {
727 	struct memory_bitmap *bm1, *bm2;
728 	int error = 0;
729 
730 	BUG_ON(forbidden_pages_map || free_pages_map);
731 
732 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
733 	if (!bm1)
734 		return -ENOMEM;
735 
736 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
737 	if (error)
738 		goto Free_first_object;
739 
740 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
741 	if (!bm2)
742 		goto Free_first_bitmap;
743 
744 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
745 	if (error)
746 		goto Free_second_object;
747 
748 	forbidden_pages_map = bm1;
749 	free_pages_map = bm2;
750 	mark_nosave_pages(forbidden_pages_map);
751 
752 	pr_debug("PM: Basic memory bitmaps created\n");
753 
754 	return 0;
755 
756  Free_second_object:
757 	kfree(bm2);
758  Free_first_bitmap:
759  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
760  Free_first_object:
761 	kfree(bm1);
762 	return -ENOMEM;
763 }
764 
765 /**
766  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
767  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
768  *	so that the bitmaps themselves are not referred to while they are being
769  *	freed.
770  */
771 
772 void free_basic_memory_bitmaps(void)
773 {
774 	struct memory_bitmap *bm1, *bm2;
775 
776 	BUG_ON(!(forbidden_pages_map && free_pages_map));
777 
778 	bm1 = forbidden_pages_map;
779 	bm2 = free_pages_map;
780 	forbidden_pages_map = NULL;
781 	free_pages_map = NULL;
782 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
783 	kfree(bm1);
784 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
785 	kfree(bm2);
786 
787 	pr_debug("PM: Basic memory bitmaps freed\n");
788 }
789 
790 /**
791  *	snapshot_additional_pages - estimate the number of additional pages
792  *	be needed for setting up the suspend image data structures for given
793  *	zone (usually the returned value is greater than the exact number)
794  */
795 
796 unsigned int snapshot_additional_pages(struct zone *zone)
797 {
798 	unsigned int res;
799 
800 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
801 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
802 	return 2 * res;
803 }
804 
805 #ifdef CONFIG_HIGHMEM
806 /**
807  *	count_free_highmem_pages - compute the total number of free highmem
808  *	pages, system-wide.
809  */
810 
811 static unsigned int count_free_highmem_pages(void)
812 {
813 	struct zone *zone;
814 	unsigned int cnt = 0;
815 
816 	for_each_zone(zone)
817 		if (populated_zone(zone) && is_highmem(zone))
818 			cnt += zone_page_state(zone, NR_FREE_PAGES);
819 
820 	return cnt;
821 }
822 
823 /**
824  *	saveable_highmem_page - Determine whether a highmem page should be
825  *	included in the suspend image.
826  *
827  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
828  *	and it isn't a part of a free chunk of pages.
829  */
830 
831 static struct page *saveable_highmem_page(unsigned long pfn)
832 {
833 	struct page *page;
834 
835 	if (!pfn_valid(pfn))
836 		return NULL;
837 
838 	page = pfn_to_page(pfn);
839 
840 	BUG_ON(!PageHighMem(page));
841 
842 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
843 	    PageReserved(page))
844 		return NULL;
845 
846 	return page;
847 }
848 
849 /**
850  *	count_highmem_pages - compute the total number of saveable highmem
851  *	pages.
852  */
853 
854 unsigned int count_highmem_pages(void)
855 {
856 	struct zone *zone;
857 	unsigned int n = 0;
858 
859 	for_each_zone(zone) {
860 		unsigned long pfn, max_zone_pfn;
861 
862 		if (!is_highmem(zone))
863 			continue;
864 
865 		mark_free_pages(zone);
866 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
867 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
868 			if (saveable_highmem_page(pfn))
869 				n++;
870 	}
871 	return n;
872 }
873 #else
874 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
875 #endif /* CONFIG_HIGHMEM */
876 
877 /**
878  *	saveable - Determine whether a non-highmem page should be included in
879  *	the suspend image.
880  *
881  *	We should save the page if it isn't Nosave, and is not in the range
882  *	of pages statically defined as 'unsaveable', and it isn't a part of
883  *	a free chunk of pages.
884  */
885 
886 static struct page *saveable_page(unsigned long pfn)
887 {
888 	struct page *page;
889 
890 	if (!pfn_valid(pfn))
891 		return NULL;
892 
893 	page = pfn_to_page(pfn);
894 
895 	BUG_ON(PageHighMem(page));
896 
897 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
898 		return NULL;
899 
900 	if (PageReserved(page) && pfn_is_nosave(pfn))
901 		return NULL;
902 
903 	return page;
904 }
905 
906 /**
907  *	count_data_pages - compute the total number of saveable non-highmem
908  *	pages.
909  */
910 
911 unsigned int count_data_pages(void)
912 {
913 	struct zone *zone;
914 	unsigned long pfn, max_zone_pfn;
915 	unsigned int n = 0;
916 
917 	for_each_zone(zone) {
918 		if (is_highmem(zone))
919 			continue;
920 
921 		mark_free_pages(zone);
922 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
923 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
924 			if(saveable_page(pfn))
925 				n++;
926 	}
927 	return n;
928 }
929 
930 /* This is needed, because copy_page and memcpy are not usable for copying
931  * task structs.
932  */
933 static inline void do_copy_page(long *dst, long *src)
934 {
935 	int n;
936 
937 	for (n = PAGE_SIZE / sizeof(long); n; n--)
938 		*dst++ = *src++;
939 }
940 
941 #ifdef CONFIG_HIGHMEM
942 static inline struct page *
943 page_is_saveable(struct zone *zone, unsigned long pfn)
944 {
945 	return is_highmem(zone) ?
946 			saveable_highmem_page(pfn) : saveable_page(pfn);
947 }
948 
949 static inline void
950 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
951 {
952 	struct page *s_page, *d_page;
953 	void *src, *dst;
954 
955 	s_page = pfn_to_page(src_pfn);
956 	d_page = pfn_to_page(dst_pfn);
957 	if (PageHighMem(s_page)) {
958 		src = kmap_atomic(s_page, KM_USER0);
959 		dst = kmap_atomic(d_page, KM_USER1);
960 		do_copy_page(dst, src);
961 		kunmap_atomic(src, KM_USER0);
962 		kunmap_atomic(dst, KM_USER1);
963 	} else {
964 		src = page_address(s_page);
965 		if (PageHighMem(d_page)) {
966 			/* Page pointed to by src may contain some kernel
967 			 * data modified by kmap_atomic()
968 			 */
969 			do_copy_page(buffer, src);
970 			dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
971 			memcpy(dst, buffer, PAGE_SIZE);
972 			kunmap_atomic(dst, KM_USER0);
973 		} else {
974 			dst = page_address(d_page);
975 			do_copy_page(dst, src);
976 		}
977 	}
978 }
979 #else
980 #define page_is_saveable(zone, pfn)	saveable_page(pfn)
981 
982 static inline void
983 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
984 {
985 	do_copy_page(page_address(pfn_to_page(dst_pfn)),
986 			page_address(pfn_to_page(src_pfn)));
987 }
988 #endif /* CONFIG_HIGHMEM */
989 
990 static void
991 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
992 {
993 	struct zone *zone;
994 	unsigned long pfn;
995 
996 	for_each_zone(zone) {
997 		unsigned long max_zone_pfn;
998 
999 		mark_free_pages(zone);
1000 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1001 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1002 			if (page_is_saveable(zone, pfn))
1003 				memory_bm_set_bit(orig_bm, pfn);
1004 	}
1005 	memory_bm_position_reset(orig_bm);
1006 	memory_bm_position_reset(copy_bm);
1007 	for(;;) {
1008 		pfn = memory_bm_next_pfn(orig_bm);
1009 		if (unlikely(pfn == BM_END_OF_MAP))
1010 			break;
1011 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1012 	}
1013 }
1014 
1015 /* Total number of image pages */
1016 static unsigned int nr_copy_pages;
1017 /* Number of pages needed for saving the original pfns of the image pages */
1018 static unsigned int nr_meta_pages;
1019 
1020 /**
1021  *	swsusp_free - free pages allocated for the suspend.
1022  *
1023  *	Suspend pages are alocated before the atomic copy is made, so we
1024  *	need to release them after the resume.
1025  */
1026 
1027 void swsusp_free(void)
1028 {
1029 	struct zone *zone;
1030 	unsigned long pfn, max_zone_pfn;
1031 
1032 	for_each_zone(zone) {
1033 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1034 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1035 			if (pfn_valid(pfn)) {
1036 				struct page *page = pfn_to_page(pfn);
1037 
1038 				if (swsusp_page_is_forbidden(page) &&
1039 				    swsusp_page_is_free(page)) {
1040 					swsusp_unset_page_forbidden(page);
1041 					swsusp_unset_page_free(page);
1042 					__free_page(page);
1043 				}
1044 			}
1045 	}
1046 	nr_copy_pages = 0;
1047 	nr_meta_pages = 0;
1048 	restore_pblist = NULL;
1049 	buffer = NULL;
1050 }
1051 
1052 #ifdef CONFIG_HIGHMEM
1053 /**
1054   *	count_pages_for_highmem - compute the number of non-highmem pages
1055   *	that will be necessary for creating copies of highmem pages.
1056   */
1057 
1058 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1059 {
1060 	unsigned int free_highmem = count_free_highmem_pages();
1061 
1062 	if (free_highmem >= nr_highmem)
1063 		nr_highmem = 0;
1064 	else
1065 		nr_highmem -= free_highmem;
1066 
1067 	return nr_highmem;
1068 }
1069 #else
1070 static unsigned int
1071 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1072 #endif /* CONFIG_HIGHMEM */
1073 
1074 /**
1075  *	enough_free_mem - Make sure we have enough free memory for the
1076  *	snapshot image.
1077  */
1078 
1079 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1080 {
1081 	struct zone *zone;
1082 	unsigned int free = 0, meta = 0;
1083 
1084 	for_each_zone(zone) {
1085 		meta += snapshot_additional_pages(zone);
1086 		if (!is_highmem(zone))
1087 			free += zone_page_state(zone, NR_FREE_PAGES);
1088 	}
1089 
1090 	nr_pages += count_pages_for_highmem(nr_highmem);
1091 	pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1092 		nr_pages, PAGES_FOR_IO, meta, free);
1093 
1094 	return free > nr_pages + PAGES_FOR_IO + meta;
1095 }
1096 
1097 #ifdef CONFIG_HIGHMEM
1098 /**
1099  *	get_highmem_buffer - if there are some highmem pages in the suspend
1100  *	image, we may need the buffer to copy them and/or load their data.
1101  */
1102 
1103 static inline int get_highmem_buffer(int safe_needed)
1104 {
1105 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1106 	return buffer ? 0 : -ENOMEM;
1107 }
1108 
1109 /**
1110  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1111  *	Try to allocate as many pages as needed, but if the number of free
1112  *	highmem pages is lesser than that, allocate them all.
1113  */
1114 
1115 static inline unsigned int
1116 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1117 {
1118 	unsigned int to_alloc = count_free_highmem_pages();
1119 
1120 	if (to_alloc > nr_highmem)
1121 		to_alloc = nr_highmem;
1122 
1123 	nr_highmem -= to_alloc;
1124 	while (to_alloc-- > 0) {
1125 		struct page *page;
1126 
1127 		page = alloc_image_page(__GFP_HIGHMEM);
1128 		memory_bm_set_bit(bm, page_to_pfn(page));
1129 	}
1130 	return nr_highmem;
1131 }
1132 #else
1133 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1134 
1135 static inline unsigned int
1136 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1137 #endif /* CONFIG_HIGHMEM */
1138 
1139 /**
1140  *	swsusp_alloc - allocate memory for the suspend image
1141  *
1142  *	We first try to allocate as many highmem pages as there are
1143  *	saveable highmem pages in the system.  If that fails, we allocate
1144  *	non-highmem pages for the copies of the remaining highmem ones.
1145  *
1146  *	In this approach it is likely that the copies of highmem pages will
1147  *	also be located in the high memory, because of the way in which
1148  *	copy_data_pages() works.
1149  */
1150 
1151 static int
1152 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1153 		unsigned int nr_pages, unsigned int nr_highmem)
1154 {
1155 	int error;
1156 
1157 	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1158 	if (error)
1159 		goto Free;
1160 
1161 	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1162 	if (error)
1163 		goto Free;
1164 
1165 	if (nr_highmem > 0) {
1166 		error = get_highmem_buffer(PG_ANY);
1167 		if (error)
1168 			goto Free;
1169 
1170 		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1171 	}
1172 	while (nr_pages-- > 0) {
1173 		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1174 
1175 		if (!page)
1176 			goto Free;
1177 
1178 		memory_bm_set_bit(copy_bm, page_to_pfn(page));
1179 	}
1180 	return 0;
1181 
1182  Free:
1183 	swsusp_free();
1184 	return -ENOMEM;
1185 }
1186 
1187 /* Memory bitmap used for marking saveable pages (during suspend) or the
1188  * suspend image pages (during resume)
1189  */
1190 static struct memory_bitmap orig_bm;
1191 /* Memory bitmap used on suspend for marking allocated pages that will contain
1192  * the copies of saveable pages.  During resume it is initially used for
1193  * marking the suspend image pages, but then its set bits are duplicated in
1194  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1195  * used for marking "safe" highmem pages, but it has to be reinitialized for
1196  * this purpose.
1197  */
1198 static struct memory_bitmap copy_bm;
1199 
1200 asmlinkage int swsusp_save(void)
1201 {
1202 	unsigned int nr_pages, nr_highmem;
1203 
1204 	printk(KERN_INFO "PM: Creating hibernation image: \n");
1205 
1206 	drain_local_pages(NULL);
1207 	nr_pages = count_data_pages();
1208 	nr_highmem = count_highmem_pages();
1209 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1210 
1211 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1212 		printk(KERN_ERR "PM: Not enough free memory\n");
1213 		return -ENOMEM;
1214 	}
1215 
1216 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1217 		printk(KERN_ERR "PM: Memory allocation failed\n");
1218 		return -ENOMEM;
1219 	}
1220 
1221 	/* During allocating of suspend pagedir, new cold pages may appear.
1222 	 * Kill them.
1223 	 */
1224 	drain_local_pages(NULL);
1225 	copy_data_pages(&copy_bm, &orig_bm);
1226 
1227 	/*
1228 	 * End of critical section. From now on, we can write to memory,
1229 	 * but we should not touch disk. This specially means we must _not_
1230 	 * touch swap space! Except we must write out our image of course.
1231 	 */
1232 
1233 	nr_pages += nr_highmem;
1234 	nr_copy_pages = nr_pages;
1235 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1236 
1237 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1238 		nr_pages);
1239 
1240 	return 0;
1241 }
1242 
1243 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1244 static int init_header_complete(struct swsusp_info *info)
1245 {
1246 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1247 	info->version_code = LINUX_VERSION_CODE;
1248 	return 0;
1249 }
1250 
1251 static char *check_image_kernel(struct swsusp_info *info)
1252 {
1253 	if (info->version_code != LINUX_VERSION_CODE)
1254 		return "kernel version";
1255 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1256 		return "system type";
1257 	if (strcmp(info->uts.release,init_utsname()->release))
1258 		return "kernel release";
1259 	if (strcmp(info->uts.version,init_utsname()->version))
1260 		return "version";
1261 	if (strcmp(info->uts.machine,init_utsname()->machine))
1262 		return "machine";
1263 	return NULL;
1264 }
1265 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1266 
1267 unsigned long snapshot_get_image_size(void)
1268 {
1269 	return nr_copy_pages + nr_meta_pages + 1;
1270 }
1271 
1272 static int init_header(struct swsusp_info *info)
1273 {
1274 	memset(info, 0, sizeof(struct swsusp_info));
1275 	info->num_physpages = num_physpages;
1276 	info->image_pages = nr_copy_pages;
1277 	info->pages = snapshot_get_image_size();
1278 	info->size = info->pages;
1279 	info->size <<= PAGE_SHIFT;
1280 	return init_header_complete(info);
1281 }
1282 
1283 /**
1284  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1285  *	are stored in the array @buf[] (1 page at a time)
1286  */
1287 
1288 static inline void
1289 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1290 {
1291 	int j;
1292 
1293 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1294 		buf[j] = memory_bm_next_pfn(bm);
1295 		if (unlikely(buf[j] == BM_END_OF_MAP))
1296 			break;
1297 	}
1298 }
1299 
1300 /**
1301  *	snapshot_read_next - used for reading the system memory snapshot.
1302  *
1303  *	On the first call to it @handle should point to a zeroed
1304  *	snapshot_handle structure.  The structure gets updated and a pointer
1305  *	to it should be passed to this function every next time.
1306  *
1307  *	The @count parameter should contain the number of bytes the caller
1308  *	wants to read from the snapshot.  It must not be zero.
1309  *
1310  *	On success the function returns a positive number.  Then, the caller
1311  *	is allowed to read up to the returned number of bytes from the memory
1312  *	location computed by the data_of() macro.  The number returned
1313  *	may be smaller than @count, but this only happens if the read would
1314  *	cross a page boundary otherwise.
1315  *
1316  *	The function returns 0 to indicate the end of data stream condition,
1317  *	and a negative number is returned on error.  In such cases the
1318  *	structure pointed to by @handle is not updated and should not be used
1319  *	any more.
1320  */
1321 
1322 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1323 {
1324 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1325 		return 0;
1326 
1327 	if (!buffer) {
1328 		/* This makes the buffer be freed by swsusp_free() */
1329 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1330 		if (!buffer)
1331 			return -ENOMEM;
1332 	}
1333 	if (!handle->offset) {
1334 		int error;
1335 
1336 		error = init_header((struct swsusp_info *)buffer);
1337 		if (error)
1338 			return error;
1339 		handle->buffer = buffer;
1340 		memory_bm_position_reset(&orig_bm);
1341 		memory_bm_position_reset(&copy_bm);
1342 	}
1343 	if (handle->prev < handle->cur) {
1344 		if (handle->cur <= nr_meta_pages) {
1345 			memset(buffer, 0, PAGE_SIZE);
1346 			pack_pfns(buffer, &orig_bm);
1347 		} else {
1348 			struct page *page;
1349 
1350 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1351 			if (PageHighMem(page)) {
1352 				/* Highmem pages are copied to the buffer,
1353 				 * because we can't return with a kmapped
1354 				 * highmem page (we may not be called again).
1355 				 */
1356 				void *kaddr;
1357 
1358 				kaddr = kmap_atomic(page, KM_USER0);
1359 				memcpy(buffer, kaddr, PAGE_SIZE);
1360 				kunmap_atomic(kaddr, KM_USER0);
1361 				handle->buffer = buffer;
1362 			} else {
1363 				handle->buffer = page_address(page);
1364 			}
1365 		}
1366 		handle->prev = handle->cur;
1367 	}
1368 	handle->buf_offset = handle->cur_offset;
1369 	if (handle->cur_offset + count >= PAGE_SIZE) {
1370 		count = PAGE_SIZE - handle->cur_offset;
1371 		handle->cur_offset = 0;
1372 		handle->cur++;
1373 	} else {
1374 		handle->cur_offset += count;
1375 	}
1376 	handle->offset += count;
1377 	return count;
1378 }
1379 
1380 /**
1381  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1382  *	the image during resume, because they conflict with the pages that
1383  *	had been used before suspend
1384  */
1385 
1386 static int mark_unsafe_pages(struct memory_bitmap *bm)
1387 {
1388 	struct zone *zone;
1389 	unsigned long pfn, max_zone_pfn;
1390 
1391 	/* Clear page flags */
1392 	for_each_zone(zone) {
1393 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1394 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1395 			if (pfn_valid(pfn))
1396 				swsusp_unset_page_free(pfn_to_page(pfn));
1397 	}
1398 
1399 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1400 	memory_bm_position_reset(bm);
1401 	do {
1402 		pfn = memory_bm_next_pfn(bm);
1403 		if (likely(pfn != BM_END_OF_MAP)) {
1404 			if (likely(pfn_valid(pfn)))
1405 				swsusp_set_page_free(pfn_to_page(pfn));
1406 			else
1407 				return -EFAULT;
1408 		}
1409 	} while (pfn != BM_END_OF_MAP);
1410 
1411 	allocated_unsafe_pages = 0;
1412 
1413 	return 0;
1414 }
1415 
1416 static void
1417 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1418 {
1419 	unsigned long pfn;
1420 
1421 	memory_bm_position_reset(src);
1422 	pfn = memory_bm_next_pfn(src);
1423 	while (pfn != BM_END_OF_MAP) {
1424 		memory_bm_set_bit(dst, pfn);
1425 		pfn = memory_bm_next_pfn(src);
1426 	}
1427 }
1428 
1429 static int check_header(struct swsusp_info *info)
1430 {
1431 	char *reason;
1432 
1433 	reason = check_image_kernel(info);
1434 	if (!reason && info->num_physpages != num_physpages)
1435 		reason = "memory size";
1436 	if (reason) {
1437 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1438 		return -EPERM;
1439 	}
1440 	return 0;
1441 }
1442 
1443 /**
1444  *	load header - check the image header and copy data from it
1445  */
1446 
1447 static int
1448 load_header(struct swsusp_info *info)
1449 {
1450 	int error;
1451 
1452 	restore_pblist = NULL;
1453 	error = check_header(info);
1454 	if (!error) {
1455 		nr_copy_pages = info->image_pages;
1456 		nr_meta_pages = info->pages - info->image_pages - 1;
1457 	}
1458 	return error;
1459 }
1460 
1461 /**
1462  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1463  *	the corresponding bit in the memory bitmap @bm
1464  */
1465 
1466 static inline void
1467 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1468 {
1469 	int j;
1470 
1471 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1472 		if (unlikely(buf[j] == BM_END_OF_MAP))
1473 			break;
1474 
1475 		memory_bm_set_bit(bm, buf[j]);
1476 	}
1477 }
1478 
1479 /* List of "safe" pages that may be used to store data loaded from the suspend
1480  * image
1481  */
1482 static struct linked_page *safe_pages_list;
1483 
1484 #ifdef CONFIG_HIGHMEM
1485 /* struct highmem_pbe is used for creating the list of highmem pages that
1486  * should be restored atomically during the resume from disk, because the page
1487  * frames they have occupied before the suspend are in use.
1488  */
1489 struct highmem_pbe {
1490 	struct page *copy_page;	/* data is here now */
1491 	struct page *orig_page;	/* data was here before the suspend */
1492 	struct highmem_pbe *next;
1493 };
1494 
1495 /* List of highmem PBEs needed for restoring the highmem pages that were
1496  * allocated before the suspend and included in the suspend image, but have
1497  * also been allocated by the "resume" kernel, so their contents cannot be
1498  * written directly to their "original" page frames.
1499  */
1500 static struct highmem_pbe *highmem_pblist;
1501 
1502 /**
1503  *	count_highmem_image_pages - compute the number of highmem pages in the
1504  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1505  *	image pages are assumed to be set.
1506  */
1507 
1508 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1509 {
1510 	unsigned long pfn;
1511 	unsigned int cnt = 0;
1512 
1513 	memory_bm_position_reset(bm);
1514 	pfn = memory_bm_next_pfn(bm);
1515 	while (pfn != BM_END_OF_MAP) {
1516 		if (PageHighMem(pfn_to_page(pfn)))
1517 			cnt++;
1518 
1519 		pfn = memory_bm_next_pfn(bm);
1520 	}
1521 	return cnt;
1522 }
1523 
1524 /**
1525  *	prepare_highmem_image - try to allocate as many highmem pages as
1526  *	there are highmem image pages (@nr_highmem_p points to the variable
1527  *	containing the number of highmem image pages).  The pages that are
1528  *	"safe" (ie. will not be overwritten when the suspend image is
1529  *	restored) have the corresponding bits set in @bm (it must be
1530  *	unitialized).
1531  *
1532  *	NOTE: This function should not be called if there are no highmem
1533  *	image pages.
1534  */
1535 
1536 static unsigned int safe_highmem_pages;
1537 
1538 static struct memory_bitmap *safe_highmem_bm;
1539 
1540 static int
1541 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1542 {
1543 	unsigned int to_alloc;
1544 
1545 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1546 		return -ENOMEM;
1547 
1548 	if (get_highmem_buffer(PG_SAFE))
1549 		return -ENOMEM;
1550 
1551 	to_alloc = count_free_highmem_pages();
1552 	if (to_alloc > *nr_highmem_p)
1553 		to_alloc = *nr_highmem_p;
1554 	else
1555 		*nr_highmem_p = to_alloc;
1556 
1557 	safe_highmem_pages = 0;
1558 	while (to_alloc-- > 0) {
1559 		struct page *page;
1560 
1561 		page = alloc_page(__GFP_HIGHMEM);
1562 		if (!swsusp_page_is_free(page)) {
1563 			/* The page is "safe", set its bit the bitmap */
1564 			memory_bm_set_bit(bm, page_to_pfn(page));
1565 			safe_highmem_pages++;
1566 		}
1567 		/* Mark the page as allocated */
1568 		swsusp_set_page_forbidden(page);
1569 		swsusp_set_page_free(page);
1570 	}
1571 	memory_bm_position_reset(bm);
1572 	safe_highmem_bm = bm;
1573 	return 0;
1574 }
1575 
1576 /**
1577  *	get_highmem_page_buffer - for given highmem image page find the buffer
1578  *	that suspend_write_next() should set for its caller to write to.
1579  *
1580  *	If the page is to be saved to its "original" page frame or a copy of
1581  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1582  *	the copy of the page is to be made in normal memory, so the address of
1583  *	the copy is returned.
1584  *
1585  *	If @buffer is returned, the caller of suspend_write_next() will write
1586  *	the page's contents to @buffer, so they will have to be copied to the
1587  *	right location on the next call to suspend_write_next() and it is done
1588  *	with the help of copy_last_highmem_page().  For this purpose, if
1589  *	@buffer is returned, @last_highmem page is set to the page to which
1590  *	the data will have to be copied from @buffer.
1591  */
1592 
1593 static struct page *last_highmem_page;
1594 
1595 static void *
1596 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1597 {
1598 	struct highmem_pbe *pbe;
1599 	void *kaddr;
1600 
1601 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1602 		/* We have allocated the "original" page frame and we can
1603 		 * use it directly to store the loaded page.
1604 		 */
1605 		last_highmem_page = page;
1606 		return buffer;
1607 	}
1608 	/* The "original" page frame has not been allocated and we have to
1609 	 * use a "safe" page frame to store the loaded page.
1610 	 */
1611 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1612 	if (!pbe) {
1613 		swsusp_free();
1614 		return NULL;
1615 	}
1616 	pbe->orig_page = page;
1617 	if (safe_highmem_pages > 0) {
1618 		struct page *tmp;
1619 
1620 		/* Copy of the page will be stored in high memory */
1621 		kaddr = buffer;
1622 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1623 		safe_highmem_pages--;
1624 		last_highmem_page = tmp;
1625 		pbe->copy_page = tmp;
1626 	} else {
1627 		/* Copy of the page will be stored in normal memory */
1628 		kaddr = safe_pages_list;
1629 		safe_pages_list = safe_pages_list->next;
1630 		pbe->copy_page = virt_to_page(kaddr);
1631 	}
1632 	pbe->next = highmem_pblist;
1633 	highmem_pblist = pbe;
1634 	return kaddr;
1635 }
1636 
1637 /**
1638  *	copy_last_highmem_page - copy the contents of a highmem image from
1639  *	@buffer, where the caller of snapshot_write_next() has place them,
1640  *	to the right location represented by @last_highmem_page .
1641  */
1642 
1643 static void copy_last_highmem_page(void)
1644 {
1645 	if (last_highmem_page) {
1646 		void *dst;
1647 
1648 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1649 		memcpy(dst, buffer, PAGE_SIZE);
1650 		kunmap_atomic(dst, KM_USER0);
1651 		last_highmem_page = NULL;
1652 	}
1653 }
1654 
1655 static inline int last_highmem_page_copied(void)
1656 {
1657 	return !last_highmem_page;
1658 }
1659 
1660 static inline void free_highmem_data(void)
1661 {
1662 	if (safe_highmem_bm)
1663 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1664 
1665 	if (buffer)
1666 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1667 }
1668 #else
1669 static inline int get_safe_write_buffer(void) { return 0; }
1670 
1671 static unsigned int
1672 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1673 
1674 static inline int
1675 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1676 {
1677 	return 0;
1678 }
1679 
1680 static inline void *
1681 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1682 {
1683 	return NULL;
1684 }
1685 
1686 static inline void copy_last_highmem_page(void) {}
1687 static inline int last_highmem_page_copied(void) { return 1; }
1688 static inline void free_highmem_data(void) {}
1689 #endif /* CONFIG_HIGHMEM */
1690 
1691 /**
1692  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1693  *	be overwritten in the process of restoring the system memory state
1694  *	from the suspend image ("unsafe" pages) and allocate memory for the
1695  *	image.
1696  *
1697  *	The idea is to allocate a new memory bitmap first and then allocate
1698  *	as many pages as needed for the image data, but not to assign these
1699  *	pages to specific tasks initially.  Instead, we just mark them as
1700  *	allocated and create a lists of "safe" pages that will be used
1701  *	later.  On systems with high memory a list of "safe" highmem pages is
1702  *	also created.
1703  */
1704 
1705 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1706 
1707 static int
1708 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1709 {
1710 	unsigned int nr_pages, nr_highmem;
1711 	struct linked_page *sp_list, *lp;
1712 	int error;
1713 
1714 	/* If there is no highmem, the buffer will not be necessary */
1715 	free_image_page(buffer, PG_UNSAFE_CLEAR);
1716 	buffer = NULL;
1717 
1718 	nr_highmem = count_highmem_image_pages(bm);
1719 	error = mark_unsafe_pages(bm);
1720 	if (error)
1721 		goto Free;
1722 
1723 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1724 	if (error)
1725 		goto Free;
1726 
1727 	duplicate_memory_bitmap(new_bm, bm);
1728 	memory_bm_free(bm, PG_UNSAFE_KEEP);
1729 	if (nr_highmem > 0) {
1730 		error = prepare_highmem_image(bm, &nr_highmem);
1731 		if (error)
1732 			goto Free;
1733 	}
1734 	/* Reserve some safe pages for potential later use.
1735 	 *
1736 	 * NOTE: This way we make sure there will be enough safe pages for the
1737 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
1738 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1739 	 */
1740 	sp_list = NULL;
1741 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1742 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1743 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1744 	while (nr_pages > 0) {
1745 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1746 		if (!lp) {
1747 			error = -ENOMEM;
1748 			goto Free;
1749 		}
1750 		lp->next = sp_list;
1751 		sp_list = lp;
1752 		nr_pages--;
1753 	}
1754 	/* Preallocate memory for the image */
1755 	safe_pages_list = NULL;
1756 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1757 	while (nr_pages > 0) {
1758 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1759 		if (!lp) {
1760 			error = -ENOMEM;
1761 			goto Free;
1762 		}
1763 		if (!swsusp_page_is_free(virt_to_page(lp))) {
1764 			/* The page is "safe", add it to the list */
1765 			lp->next = safe_pages_list;
1766 			safe_pages_list = lp;
1767 		}
1768 		/* Mark the page as allocated */
1769 		swsusp_set_page_forbidden(virt_to_page(lp));
1770 		swsusp_set_page_free(virt_to_page(lp));
1771 		nr_pages--;
1772 	}
1773 	/* Free the reserved safe pages so that chain_alloc() can use them */
1774 	while (sp_list) {
1775 		lp = sp_list->next;
1776 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
1777 		sp_list = lp;
1778 	}
1779 	return 0;
1780 
1781  Free:
1782 	swsusp_free();
1783 	return error;
1784 }
1785 
1786 /**
1787  *	get_buffer - compute the address that snapshot_write_next() should
1788  *	set for its caller to write to.
1789  */
1790 
1791 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1792 {
1793 	struct pbe *pbe;
1794 	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1795 
1796 	if (PageHighMem(page))
1797 		return get_highmem_page_buffer(page, ca);
1798 
1799 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1800 		/* We have allocated the "original" page frame and we can
1801 		 * use it directly to store the loaded page.
1802 		 */
1803 		return page_address(page);
1804 
1805 	/* The "original" page frame has not been allocated and we have to
1806 	 * use a "safe" page frame to store the loaded page.
1807 	 */
1808 	pbe = chain_alloc(ca, sizeof(struct pbe));
1809 	if (!pbe) {
1810 		swsusp_free();
1811 		return NULL;
1812 	}
1813 	pbe->orig_address = page_address(page);
1814 	pbe->address = safe_pages_list;
1815 	safe_pages_list = safe_pages_list->next;
1816 	pbe->next = restore_pblist;
1817 	restore_pblist = pbe;
1818 	return pbe->address;
1819 }
1820 
1821 /**
1822  *	snapshot_write_next - used for writing the system memory snapshot.
1823  *
1824  *	On the first call to it @handle should point to a zeroed
1825  *	snapshot_handle structure.  The structure gets updated and a pointer
1826  *	to it should be passed to this function every next time.
1827  *
1828  *	The @count parameter should contain the number of bytes the caller
1829  *	wants to write to the image.  It must not be zero.
1830  *
1831  *	On success the function returns a positive number.  Then, the caller
1832  *	is allowed to write up to the returned number of bytes to the memory
1833  *	location computed by the data_of() macro.  The number returned
1834  *	may be smaller than @count, but this only happens if the write would
1835  *	cross a page boundary otherwise.
1836  *
1837  *	The function returns 0 to indicate the "end of file" condition,
1838  *	and a negative number is returned on error.  In such cases the
1839  *	structure pointed to by @handle is not updated and should not be used
1840  *	any more.
1841  */
1842 
1843 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1844 {
1845 	static struct chain_allocator ca;
1846 	int error = 0;
1847 
1848 	/* Check if we have already loaded the entire image */
1849 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1850 		return 0;
1851 
1852 	if (handle->offset == 0) {
1853 		if (!buffer)
1854 			/* This makes the buffer be freed by swsusp_free() */
1855 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1856 
1857 		if (!buffer)
1858 			return -ENOMEM;
1859 
1860 		handle->buffer = buffer;
1861 	}
1862 	handle->sync_read = 1;
1863 	if (handle->prev < handle->cur) {
1864 		if (handle->prev == 0) {
1865 			error = load_header(buffer);
1866 			if (error)
1867 				return error;
1868 
1869 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1870 			if (error)
1871 				return error;
1872 
1873 		} else if (handle->prev <= nr_meta_pages) {
1874 			unpack_orig_pfns(buffer, &copy_bm);
1875 			if (handle->prev == nr_meta_pages) {
1876 				error = prepare_image(&orig_bm, &copy_bm);
1877 				if (error)
1878 					return error;
1879 
1880 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1881 				memory_bm_position_reset(&orig_bm);
1882 				restore_pblist = NULL;
1883 				handle->buffer = get_buffer(&orig_bm, &ca);
1884 				handle->sync_read = 0;
1885 				if (!handle->buffer)
1886 					return -ENOMEM;
1887 			}
1888 		} else {
1889 			copy_last_highmem_page();
1890 			handle->buffer = get_buffer(&orig_bm, &ca);
1891 			if (handle->buffer != buffer)
1892 				handle->sync_read = 0;
1893 		}
1894 		handle->prev = handle->cur;
1895 	}
1896 	handle->buf_offset = handle->cur_offset;
1897 	if (handle->cur_offset + count >= PAGE_SIZE) {
1898 		count = PAGE_SIZE - handle->cur_offset;
1899 		handle->cur_offset = 0;
1900 		handle->cur++;
1901 	} else {
1902 		handle->cur_offset += count;
1903 	}
1904 	handle->offset += count;
1905 	return count;
1906 }
1907 
1908 /**
1909  *	snapshot_write_finalize - must be called after the last call to
1910  *	snapshot_write_next() in case the last page in the image happens
1911  *	to be a highmem page and its contents should be stored in the
1912  *	highmem.  Additionally, it releases the memory that will not be
1913  *	used any more.
1914  */
1915 
1916 void snapshot_write_finalize(struct snapshot_handle *handle)
1917 {
1918 	copy_last_highmem_page();
1919 	/* Free only if we have loaded the image entirely */
1920 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1921 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1922 		free_highmem_data();
1923 	}
1924 }
1925 
1926 int snapshot_image_loaded(struct snapshot_handle *handle)
1927 {
1928 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1929 			handle->cur <= nr_meta_pages + nr_copy_pages);
1930 }
1931 
1932 #ifdef CONFIG_HIGHMEM
1933 /* Assumes that @buf is ready and points to a "safe" page */
1934 static inline void
1935 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1936 {
1937 	void *kaddr1, *kaddr2;
1938 
1939 	kaddr1 = kmap_atomic(p1, KM_USER0);
1940 	kaddr2 = kmap_atomic(p2, KM_USER1);
1941 	memcpy(buf, kaddr1, PAGE_SIZE);
1942 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
1943 	memcpy(kaddr2, buf, PAGE_SIZE);
1944 	kunmap_atomic(kaddr1, KM_USER0);
1945 	kunmap_atomic(kaddr2, KM_USER1);
1946 }
1947 
1948 /**
1949  *	restore_highmem - for each highmem page that was allocated before
1950  *	the suspend and included in the suspend image, and also has been
1951  *	allocated by the "resume" kernel swap its current (ie. "before
1952  *	resume") contents with the previous (ie. "before suspend") one.
1953  *
1954  *	If the resume eventually fails, we can call this function once
1955  *	again and restore the "before resume" highmem state.
1956  */
1957 
1958 int restore_highmem(void)
1959 {
1960 	struct highmem_pbe *pbe = highmem_pblist;
1961 	void *buf;
1962 
1963 	if (!pbe)
1964 		return 0;
1965 
1966 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1967 	if (!buf)
1968 		return -ENOMEM;
1969 
1970 	while (pbe) {
1971 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1972 		pbe = pbe->next;
1973 	}
1974 	free_image_page(buf, PG_UNSAFE_CLEAR);
1975 	return 0;
1976 }
1977 #endif /* CONFIG_HIGHMEM */
1978