1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/smp_lock.h> 18 #include <linux/delay.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/kernel.h> 22 #include <linux/pm.h> 23 #include <linux/device.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/mmu_context.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <asm/io.h> 34 35 #include "power.h" 36 37 /* List of PBEs needed for restoring the pages that were allocated before 38 * the suspend and included in the suspend image, but have also been 39 * allocated by the "resume" kernel, so their contents cannot be written 40 * directly to their "original" page frames. 41 */ 42 struct pbe *restore_pblist; 43 44 /* Pointer to an auxiliary buffer (1 page) */ 45 static void *buffer; 46 47 /** 48 * @safe_needed - on resume, for storing the PBE list and the image, 49 * we can only use memory pages that do not conflict with the pages 50 * used before suspend. The unsafe pages have PageNosaveFree set 51 * and we count them using unsafe_pages. 52 * 53 * Each allocated image page is marked as PageNosave and PageNosaveFree 54 * so that swsusp_free() can release it. 55 */ 56 57 #define PG_ANY 0 58 #define PG_SAFE 1 59 #define PG_UNSAFE_CLEAR 1 60 #define PG_UNSAFE_KEEP 0 61 62 static unsigned int allocated_unsafe_pages; 63 64 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 65 { 66 void *res; 67 68 res = (void *)get_zeroed_page(gfp_mask); 69 if (safe_needed) 70 while (res && PageNosaveFree(virt_to_page(res))) { 71 /* The page is unsafe, mark it for swsusp_free() */ 72 SetPageNosave(virt_to_page(res)); 73 allocated_unsafe_pages++; 74 res = (void *)get_zeroed_page(gfp_mask); 75 } 76 if (res) { 77 SetPageNosave(virt_to_page(res)); 78 SetPageNosaveFree(virt_to_page(res)); 79 } 80 return res; 81 } 82 83 unsigned long get_safe_page(gfp_t gfp_mask) 84 { 85 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 86 } 87 88 static struct page *alloc_image_page(gfp_t gfp_mask) 89 { 90 struct page *page; 91 92 page = alloc_page(gfp_mask); 93 if (page) { 94 SetPageNosave(page); 95 SetPageNosaveFree(page); 96 } 97 return page; 98 } 99 100 /** 101 * free_image_page - free page represented by @addr, allocated with 102 * get_image_page (page flags set by it must be cleared) 103 */ 104 105 static inline void free_image_page(void *addr, int clear_nosave_free) 106 { 107 struct page *page; 108 109 BUG_ON(!virt_addr_valid(addr)); 110 111 page = virt_to_page(addr); 112 113 ClearPageNosave(page); 114 if (clear_nosave_free) 115 ClearPageNosaveFree(page); 116 117 __free_page(page); 118 } 119 120 /* struct linked_page is used to build chains of pages */ 121 122 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 123 124 struct linked_page { 125 struct linked_page *next; 126 char data[LINKED_PAGE_DATA_SIZE]; 127 } __attribute__((packed)); 128 129 static inline void 130 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 131 { 132 while (list) { 133 struct linked_page *lp = list->next; 134 135 free_image_page(list, clear_page_nosave); 136 list = lp; 137 } 138 } 139 140 /** 141 * struct chain_allocator is used for allocating small objects out of 142 * a linked list of pages called 'the chain'. 143 * 144 * The chain grows each time when there is no room for a new object in 145 * the current page. The allocated objects cannot be freed individually. 146 * It is only possible to free them all at once, by freeing the entire 147 * chain. 148 * 149 * NOTE: The chain allocator may be inefficient if the allocated objects 150 * are not much smaller than PAGE_SIZE. 151 */ 152 153 struct chain_allocator { 154 struct linked_page *chain; /* the chain */ 155 unsigned int used_space; /* total size of objects allocated out 156 * of the current page 157 */ 158 gfp_t gfp_mask; /* mask for allocating pages */ 159 int safe_needed; /* if set, only "safe" pages are allocated */ 160 }; 161 162 static void 163 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 164 { 165 ca->chain = NULL; 166 ca->used_space = LINKED_PAGE_DATA_SIZE; 167 ca->gfp_mask = gfp_mask; 168 ca->safe_needed = safe_needed; 169 } 170 171 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 172 { 173 void *ret; 174 175 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 176 struct linked_page *lp; 177 178 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 179 if (!lp) 180 return NULL; 181 182 lp->next = ca->chain; 183 ca->chain = lp; 184 ca->used_space = 0; 185 } 186 ret = ca->chain->data + ca->used_space; 187 ca->used_space += size; 188 return ret; 189 } 190 191 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 192 { 193 free_list_of_pages(ca->chain, clear_page_nosave); 194 memset(ca, 0, sizeof(struct chain_allocator)); 195 } 196 197 /** 198 * Data types related to memory bitmaps. 199 * 200 * Memory bitmap is a structure consiting of many linked lists of 201 * objects. The main list's elements are of type struct zone_bitmap 202 * and each of them corresonds to one zone. For each zone bitmap 203 * object there is a list of objects of type struct bm_block that 204 * represent each blocks of bit chunks in which information is 205 * stored. 206 * 207 * struct memory_bitmap contains a pointer to the main list of zone 208 * bitmap objects, a struct bm_position used for browsing the bitmap, 209 * and a pointer to the list of pages used for allocating all of the 210 * zone bitmap objects and bitmap block objects. 211 * 212 * NOTE: It has to be possible to lay out the bitmap in memory 213 * using only allocations of order 0. Additionally, the bitmap is 214 * designed to work with arbitrary number of zones (this is over the 215 * top for now, but let's avoid making unnecessary assumptions ;-). 216 * 217 * struct zone_bitmap contains a pointer to a list of bitmap block 218 * objects and a pointer to the bitmap block object that has been 219 * most recently used for setting bits. Additionally, it contains the 220 * pfns that correspond to the start and end of the represented zone. 221 * 222 * struct bm_block contains a pointer to the memory page in which 223 * information is stored (in the form of a block of bit chunks 224 * of type unsigned long each). It also contains the pfns that 225 * correspond to the start and end of the represented memory area and 226 * the number of bit chunks in the block. 227 * 228 * NOTE: Memory bitmaps are used for two types of operations only: 229 * "set a bit" and "find the next bit set". Moreover, the searching 230 * is always carried out after all of the "set a bit" operations 231 * on given bitmap. 232 */ 233 234 #define BM_END_OF_MAP (~0UL) 235 236 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long)) 237 #define BM_BITS_PER_CHUNK (sizeof(long) << 3) 238 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 239 240 struct bm_block { 241 struct bm_block *next; /* next element of the list */ 242 unsigned long start_pfn; /* pfn represented by the first bit */ 243 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 244 unsigned int size; /* number of bit chunks */ 245 unsigned long *data; /* chunks of bits representing pages */ 246 }; 247 248 struct zone_bitmap { 249 struct zone_bitmap *next; /* next element of the list */ 250 unsigned long start_pfn; /* minimal pfn in this zone */ 251 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 252 struct bm_block *bm_blocks; /* list of bitmap blocks */ 253 struct bm_block *cur_block; /* recently used bitmap block */ 254 }; 255 256 /* strcut bm_position is used for browsing memory bitmaps */ 257 258 struct bm_position { 259 struct zone_bitmap *zone_bm; 260 struct bm_block *block; 261 int chunk; 262 int bit; 263 }; 264 265 struct memory_bitmap { 266 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 267 struct linked_page *p_list; /* list of pages used to store zone 268 * bitmap objects and bitmap block 269 * objects 270 */ 271 struct bm_position cur; /* most recently used bit position */ 272 }; 273 274 /* Functions that operate on memory bitmaps */ 275 276 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm) 277 { 278 bm->cur.chunk = 0; 279 bm->cur.bit = -1; 280 } 281 282 static void memory_bm_position_reset(struct memory_bitmap *bm) 283 { 284 struct zone_bitmap *zone_bm; 285 286 zone_bm = bm->zone_bm_list; 287 bm->cur.zone_bm = zone_bm; 288 bm->cur.block = zone_bm->bm_blocks; 289 memory_bm_reset_chunk(bm); 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 */ 297 298 static inline struct bm_block * 299 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 300 { 301 struct bm_block *bblist = NULL; 302 303 while (nr_blocks-- > 0) { 304 struct bm_block *bb; 305 306 bb = chain_alloc(ca, sizeof(struct bm_block)); 307 if (!bb) 308 return NULL; 309 310 bb->next = bblist; 311 bblist = bb; 312 } 313 return bblist; 314 } 315 316 /** 317 * create_zone_bm_list - create a list of zone bitmap objects 318 */ 319 320 static inline struct zone_bitmap * 321 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 322 { 323 struct zone_bitmap *zbmlist = NULL; 324 325 while (nr_zones-- > 0) { 326 struct zone_bitmap *zbm; 327 328 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 329 if (!zbm) 330 return NULL; 331 332 zbm->next = zbmlist; 333 zbmlist = zbm; 334 } 335 return zbmlist; 336 } 337 338 /** 339 * memory_bm_create - allocate memory for a memory bitmap 340 */ 341 342 static int 343 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 344 { 345 struct chain_allocator ca; 346 struct zone *zone; 347 struct zone_bitmap *zone_bm; 348 struct bm_block *bb; 349 unsigned int nr; 350 351 chain_init(&ca, gfp_mask, safe_needed); 352 353 /* Compute the number of zones */ 354 nr = 0; 355 for_each_zone(zone) 356 if (populated_zone(zone)) 357 nr++; 358 359 /* Allocate the list of zones bitmap objects */ 360 zone_bm = create_zone_bm_list(nr, &ca); 361 bm->zone_bm_list = zone_bm; 362 if (!zone_bm) { 363 chain_free(&ca, PG_UNSAFE_CLEAR); 364 return -ENOMEM; 365 } 366 367 /* Initialize the zone bitmap objects */ 368 for_each_zone(zone) { 369 unsigned long pfn; 370 371 if (!populated_zone(zone)) 372 continue; 373 374 zone_bm->start_pfn = zone->zone_start_pfn; 375 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 376 /* Allocate the list of bitmap block objects */ 377 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 378 bb = create_bm_block_list(nr, &ca); 379 zone_bm->bm_blocks = bb; 380 zone_bm->cur_block = bb; 381 if (!bb) 382 goto Free; 383 384 nr = zone->spanned_pages; 385 pfn = zone->zone_start_pfn; 386 /* Initialize the bitmap block objects */ 387 while (bb) { 388 unsigned long *ptr; 389 390 ptr = get_image_page(gfp_mask, safe_needed); 391 bb->data = ptr; 392 if (!ptr) 393 goto Free; 394 395 bb->start_pfn = pfn; 396 if (nr >= BM_BITS_PER_BLOCK) { 397 pfn += BM_BITS_PER_BLOCK; 398 bb->size = BM_CHUNKS_PER_BLOCK; 399 nr -= BM_BITS_PER_BLOCK; 400 } else { 401 /* This is executed only once in the loop */ 402 pfn += nr; 403 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK); 404 } 405 bb->end_pfn = pfn; 406 bb = bb->next; 407 } 408 zone_bm = zone_bm->next; 409 } 410 bm->p_list = ca.chain; 411 memory_bm_position_reset(bm); 412 return 0; 413 414 Free: 415 bm->p_list = ca.chain; 416 memory_bm_free(bm, PG_UNSAFE_CLEAR); 417 return -ENOMEM; 418 } 419 420 /** 421 * memory_bm_free - free memory occupied by the memory bitmap @bm 422 */ 423 424 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 425 { 426 struct zone_bitmap *zone_bm; 427 428 /* Free the list of bit blocks for each zone_bitmap object */ 429 zone_bm = bm->zone_bm_list; 430 while (zone_bm) { 431 struct bm_block *bb; 432 433 bb = zone_bm->bm_blocks; 434 while (bb) { 435 if (bb->data) 436 free_image_page(bb->data, clear_nosave_free); 437 bb = bb->next; 438 } 439 zone_bm = zone_bm->next; 440 } 441 free_list_of_pages(bm->p_list, clear_nosave_free); 442 bm->zone_bm_list = NULL; 443 } 444 445 /** 446 * memory_bm_set_bit - set the bit in the bitmap @bm that corresponds 447 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 448 * of @bm->cur_zone_bm are updated. 449 * 450 * If the bit cannot be set, the function returns -EINVAL . 451 */ 452 453 static int 454 memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 455 { 456 struct zone_bitmap *zone_bm; 457 struct bm_block *bb; 458 459 /* Check if the pfn is from the current zone */ 460 zone_bm = bm->cur.zone_bm; 461 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 462 zone_bm = bm->zone_bm_list; 463 /* We don't assume that the zones are sorted by pfns */ 464 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 465 zone_bm = zone_bm->next; 466 if (unlikely(!zone_bm)) 467 return -EINVAL; 468 } 469 bm->cur.zone_bm = zone_bm; 470 } 471 /* Check if the pfn corresponds to the current bitmap block */ 472 bb = zone_bm->cur_block; 473 if (pfn < bb->start_pfn) 474 bb = zone_bm->bm_blocks; 475 476 while (pfn >= bb->end_pfn) { 477 bb = bb->next; 478 if (unlikely(!bb)) 479 return -EINVAL; 480 } 481 zone_bm->cur_block = bb; 482 pfn -= bb->start_pfn; 483 set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK); 484 return 0; 485 } 486 487 /* Two auxiliary functions for memory_bm_next_pfn */ 488 489 /* Find the first set bit in the given chunk, if there is one */ 490 491 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p) 492 { 493 bit++; 494 while (bit < BM_BITS_PER_CHUNK) { 495 if (test_bit(bit, chunk_p)) 496 return bit; 497 498 bit++; 499 } 500 return -1; 501 } 502 503 /* Find a chunk containing some bits set in given block of bits */ 504 505 static inline int next_chunk_in_block(int n, struct bm_block *bb) 506 { 507 n++; 508 while (n < bb->size) { 509 if (bb->data[n]) 510 return n; 511 512 n++; 513 } 514 return -1; 515 } 516 517 /** 518 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 519 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 520 * returned. 521 * 522 * It is required to run memory_bm_position_reset() before the first call to 523 * this function. 524 */ 525 526 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 527 { 528 struct zone_bitmap *zone_bm; 529 struct bm_block *bb; 530 int chunk; 531 int bit; 532 533 do { 534 bb = bm->cur.block; 535 do { 536 chunk = bm->cur.chunk; 537 bit = bm->cur.bit; 538 do { 539 bit = next_bit_in_chunk(bit, bb->data + chunk); 540 if (bit >= 0) 541 goto Return_pfn; 542 543 chunk = next_chunk_in_block(chunk, bb); 544 bit = -1; 545 } while (chunk >= 0); 546 bb = bb->next; 547 bm->cur.block = bb; 548 memory_bm_reset_chunk(bm); 549 } while (bb); 550 zone_bm = bm->cur.zone_bm->next; 551 if (zone_bm) { 552 bm->cur.zone_bm = zone_bm; 553 bm->cur.block = zone_bm->bm_blocks; 554 memory_bm_reset_chunk(bm); 555 } 556 } while (zone_bm); 557 memory_bm_position_reset(bm); 558 return BM_END_OF_MAP; 559 560 Return_pfn: 561 bm->cur.chunk = chunk; 562 bm->cur.bit = bit; 563 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 564 } 565 566 /** 567 * snapshot_additional_pages - estimate the number of additional pages 568 * be needed for setting up the suspend image data structures for given 569 * zone (usually the returned value is greater than the exact number) 570 */ 571 572 unsigned int snapshot_additional_pages(struct zone *zone) 573 { 574 unsigned int res; 575 576 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 577 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 578 return 2 * res; 579 } 580 581 #ifdef CONFIG_HIGHMEM 582 /** 583 * count_free_highmem_pages - compute the total number of free highmem 584 * pages, system-wide. 585 */ 586 587 static unsigned int count_free_highmem_pages(void) 588 { 589 struct zone *zone; 590 unsigned int cnt = 0; 591 592 for_each_zone(zone) 593 if (populated_zone(zone) && is_highmem(zone)) 594 cnt += zone_page_state(zone, NR_FREE_PAGES); 595 596 return cnt; 597 } 598 599 /** 600 * saveable_highmem_page - Determine whether a highmem page should be 601 * included in the suspend image. 602 * 603 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 604 * and it isn't a part of a free chunk of pages. 605 */ 606 607 static struct page *saveable_highmem_page(unsigned long pfn) 608 { 609 struct page *page; 610 611 if (!pfn_valid(pfn)) 612 return NULL; 613 614 page = pfn_to_page(pfn); 615 616 BUG_ON(!PageHighMem(page)); 617 618 if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page)) 619 return NULL; 620 621 return page; 622 } 623 624 /** 625 * count_highmem_pages - compute the total number of saveable highmem 626 * pages. 627 */ 628 629 unsigned int count_highmem_pages(void) 630 { 631 struct zone *zone; 632 unsigned int n = 0; 633 634 for_each_zone(zone) { 635 unsigned long pfn, max_zone_pfn; 636 637 if (!is_highmem(zone)) 638 continue; 639 640 mark_free_pages(zone); 641 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 642 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 643 if (saveable_highmem_page(pfn)) 644 n++; 645 } 646 return n; 647 } 648 #else 649 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 650 static inline unsigned int count_highmem_pages(void) { return 0; } 651 #endif /* CONFIG_HIGHMEM */ 652 653 /** 654 * saveable - Determine whether a non-highmem page should be included in 655 * the suspend image. 656 * 657 * We should save the page if it isn't Nosave, and is not in the range 658 * of pages statically defined as 'unsaveable', and it isn't a part of 659 * a free chunk of pages. 660 */ 661 662 static struct page *saveable_page(unsigned long pfn) 663 { 664 struct page *page; 665 666 if (!pfn_valid(pfn)) 667 return NULL; 668 669 page = pfn_to_page(pfn); 670 671 BUG_ON(PageHighMem(page)); 672 673 if (PageNosave(page) || PageNosaveFree(page)) 674 return NULL; 675 676 if (PageReserved(page) && pfn_is_nosave(pfn)) 677 return NULL; 678 679 return page; 680 } 681 682 /** 683 * count_data_pages - compute the total number of saveable non-highmem 684 * pages. 685 */ 686 687 unsigned int count_data_pages(void) 688 { 689 struct zone *zone; 690 unsigned long pfn, max_zone_pfn; 691 unsigned int n = 0; 692 693 for_each_zone(zone) { 694 if (is_highmem(zone)) 695 continue; 696 697 mark_free_pages(zone); 698 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 699 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 700 if(saveable_page(pfn)) 701 n++; 702 } 703 return n; 704 } 705 706 /* This is needed, because copy_page and memcpy are not usable for copying 707 * task structs. 708 */ 709 static inline void do_copy_page(long *dst, long *src) 710 { 711 int n; 712 713 for (n = PAGE_SIZE / sizeof(long); n; n--) 714 *dst++ = *src++; 715 } 716 717 #ifdef CONFIG_HIGHMEM 718 static inline struct page * 719 page_is_saveable(struct zone *zone, unsigned long pfn) 720 { 721 return is_highmem(zone) ? 722 saveable_highmem_page(pfn) : saveable_page(pfn); 723 } 724 725 static inline void 726 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 727 { 728 struct page *s_page, *d_page; 729 void *src, *dst; 730 731 s_page = pfn_to_page(src_pfn); 732 d_page = pfn_to_page(dst_pfn); 733 if (PageHighMem(s_page)) { 734 src = kmap_atomic(s_page, KM_USER0); 735 dst = kmap_atomic(d_page, KM_USER1); 736 do_copy_page(dst, src); 737 kunmap_atomic(src, KM_USER0); 738 kunmap_atomic(dst, KM_USER1); 739 } else { 740 src = page_address(s_page); 741 if (PageHighMem(d_page)) { 742 /* Page pointed to by src may contain some kernel 743 * data modified by kmap_atomic() 744 */ 745 do_copy_page(buffer, src); 746 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 747 memcpy(dst, buffer, PAGE_SIZE); 748 kunmap_atomic(dst, KM_USER0); 749 } else { 750 dst = page_address(d_page); 751 do_copy_page(dst, src); 752 } 753 } 754 } 755 #else 756 #define page_is_saveable(zone, pfn) saveable_page(pfn) 757 758 static inline void 759 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 760 { 761 do_copy_page(page_address(pfn_to_page(dst_pfn)), 762 page_address(pfn_to_page(src_pfn))); 763 } 764 #endif /* CONFIG_HIGHMEM */ 765 766 static void 767 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 768 { 769 struct zone *zone; 770 unsigned long pfn; 771 772 for_each_zone(zone) { 773 unsigned long max_zone_pfn; 774 775 mark_free_pages(zone); 776 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 777 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 778 if (page_is_saveable(zone, pfn)) 779 memory_bm_set_bit(orig_bm, pfn); 780 } 781 memory_bm_position_reset(orig_bm); 782 memory_bm_position_reset(copy_bm); 783 do { 784 pfn = memory_bm_next_pfn(orig_bm); 785 if (likely(pfn != BM_END_OF_MAP)) 786 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 787 } while (pfn != BM_END_OF_MAP); 788 } 789 790 /* Total number of image pages */ 791 static unsigned int nr_copy_pages; 792 /* Number of pages needed for saving the original pfns of the image pages */ 793 static unsigned int nr_meta_pages; 794 795 /** 796 * swsusp_free - free pages allocated for the suspend. 797 * 798 * Suspend pages are alocated before the atomic copy is made, so we 799 * need to release them after the resume. 800 */ 801 802 void swsusp_free(void) 803 { 804 struct zone *zone; 805 unsigned long pfn, max_zone_pfn; 806 807 for_each_zone(zone) { 808 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 809 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 810 if (pfn_valid(pfn)) { 811 struct page *page = pfn_to_page(pfn); 812 813 if (PageNosave(page) && PageNosaveFree(page)) { 814 ClearPageNosave(page); 815 ClearPageNosaveFree(page); 816 __free_page(page); 817 } 818 } 819 } 820 nr_copy_pages = 0; 821 nr_meta_pages = 0; 822 restore_pblist = NULL; 823 buffer = NULL; 824 } 825 826 #ifdef CONFIG_HIGHMEM 827 /** 828 * count_pages_for_highmem - compute the number of non-highmem pages 829 * that will be necessary for creating copies of highmem pages. 830 */ 831 832 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 833 { 834 unsigned int free_highmem = count_free_highmem_pages(); 835 836 if (free_highmem >= nr_highmem) 837 nr_highmem = 0; 838 else 839 nr_highmem -= free_highmem; 840 841 return nr_highmem; 842 } 843 #else 844 static unsigned int 845 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 846 #endif /* CONFIG_HIGHMEM */ 847 848 /** 849 * enough_free_mem - Make sure we have enough free memory for the 850 * snapshot image. 851 */ 852 853 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 854 { 855 struct zone *zone; 856 unsigned int free = 0, meta = 0; 857 858 for_each_zone(zone) { 859 meta += snapshot_additional_pages(zone); 860 if (!is_highmem(zone)) 861 free += zone_page_state(zone, NR_FREE_PAGES); 862 } 863 864 nr_pages += count_pages_for_highmem(nr_highmem); 865 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n", 866 nr_pages, PAGES_FOR_IO, meta, free); 867 868 return free > nr_pages + PAGES_FOR_IO + meta; 869 } 870 871 #ifdef CONFIG_HIGHMEM 872 /** 873 * get_highmem_buffer - if there are some highmem pages in the suspend 874 * image, we may need the buffer to copy them and/or load their data. 875 */ 876 877 static inline int get_highmem_buffer(int safe_needed) 878 { 879 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 880 return buffer ? 0 : -ENOMEM; 881 } 882 883 /** 884 * alloc_highmem_image_pages - allocate some highmem pages for the image. 885 * Try to allocate as many pages as needed, but if the number of free 886 * highmem pages is lesser than that, allocate them all. 887 */ 888 889 static inline unsigned int 890 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 891 { 892 unsigned int to_alloc = count_free_highmem_pages(); 893 894 if (to_alloc > nr_highmem) 895 to_alloc = nr_highmem; 896 897 nr_highmem -= to_alloc; 898 while (to_alloc-- > 0) { 899 struct page *page; 900 901 page = alloc_image_page(__GFP_HIGHMEM); 902 memory_bm_set_bit(bm, page_to_pfn(page)); 903 } 904 return nr_highmem; 905 } 906 #else 907 static inline int get_highmem_buffer(int safe_needed) { return 0; } 908 909 static inline unsigned int 910 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 911 #endif /* CONFIG_HIGHMEM */ 912 913 /** 914 * swsusp_alloc - allocate memory for the suspend image 915 * 916 * We first try to allocate as many highmem pages as there are 917 * saveable highmem pages in the system. If that fails, we allocate 918 * non-highmem pages for the copies of the remaining highmem ones. 919 * 920 * In this approach it is likely that the copies of highmem pages will 921 * also be located in the high memory, because of the way in which 922 * copy_data_pages() works. 923 */ 924 925 static int 926 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 927 unsigned int nr_pages, unsigned int nr_highmem) 928 { 929 int error; 930 931 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 932 if (error) 933 goto Free; 934 935 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 936 if (error) 937 goto Free; 938 939 if (nr_highmem > 0) { 940 error = get_highmem_buffer(PG_ANY); 941 if (error) 942 goto Free; 943 944 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 945 } 946 while (nr_pages-- > 0) { 947 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 948 949 if (!page) 950 goto Free; 951 952 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 953 } 954 return 0; 955 956 Free: 957 swsusp_free(); 958 return -ENOMEM; 959 } 960 961 /* Memory bitmap used for marking saveable pages (during suspend) or the 962 * suspend image pages (during resume) 963 */ 964 static struct memory_bitmap orig_bm; 965 /* Memory bitmap used on suspend for marking allocated pages that will contain 966 * the copies of saveable pages. During resume it is initially used for 967 * marking the suspend image pages, but then its set bits are duplicated in 968 * @orig_bm and it is released. Next, on systems with high memory, it may be 969 * used for marking "safe" highmem pages, but it has to be reinitialized for 970 * this purpose. 971 */ 972 static struct memory_bitmap copy_bm; 973 974 asmlinkage int swsusp_save(void) 975 { 976 unsigned int nr_pages, nr_highmem; 977 978 printk("swsusp: critical section: \n"); 979 980 drain_local_pages(); 981 nr_pages = count_data_pages(); 982 nr_highmem = count_highmem_pages(); 983 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem); 984 985 if (!enough_free_mem(nr_pages, nr_highmem)) { 986 printk(KERN_ERR "swsusp: Not enough free memory\n"); 987 return -ENOMEM; 988 } 989 990 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 991 printk(KERN_ERR "swsusp: Memory allocation failed\n"); 992 return -ENOMEM; 993 } 994 995 /* During allocating of suspend pagedir, new cold pages may appear. 996 * Kill them. 997 */ 998 drain_local_pages(); 999 copy_data_pages(©_bm, &orig_bm); 1000 1001 /* 1002 * End of critical section. From now on, we can write to memory, 1003 * but we should not touch disk. This specially means we must _not_ 1004 * touch swap space! Except we must write out our image of course. 1005 */ 1006 1007 nr_pages += nr_highmem; 1008 nr_copy_pages = nr_pages; 1009 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1010 1011 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages); 1012 1013 return 0; 1014 } 1015 1016 static void init_header(struct swsusp_info *info) 1017 { 1018 memset(info, 0, sizeof(struct swsusp_info)); 1019 info->version_code = LINUX_VERSION_CODE; 1020 info->num_physpages = num_physpages; 1021 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1022 info->cpus = num_online_cpus(); 1023 info->image_pages = nr_copy_pages; 1024 info->pages = nr_copy_pages + nr_meta_pages + 1; 1025 info->size = info->pages; 1026 info->size <<= PAGE_SHIFT; 1027 } 1028 1029 /** 1030 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1031 * are stored in the array @buf[] (1 page at a time) 1032 */ 1033 1034 static inline void 1035 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1036 { 1037 int j; 1038 1039 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1040 buf[j] = memory_bm_next_pfn(bm); 1041 if (unlikely(buf[j] == BM_END_OF_MAP)) 1042 break; 1043 } 1044 } 1045 1046 /** 1047 * snapshot_read_next - used for reading the system memory snapshot. 1048 * 1049 * On the first call to it @handle should point to a zeroed 1050 * snapshot_handle structure. The structure gets updated and a pointer 1051 * to it should be passed to this function every next time. 1052 * 1053 * The @count parameter should contain the number of bytes the caller 1054 * wants to read from the snapshot. It must not be zero. 1055 * 1056 * On success the function returns a positive number. Then, the caller 1057 * is allowed to read up to the returned number of bytes from the memory 1058 * location computed by the data_of() macro. The number returned 1059 * may be smaller than @count, but this only happens if the read would 1060 * cross a page boundary otherwise. 1061 * 1062 * The function returns 0 to indicate the end of data stream condition, 1063 * and a negative number is returned on error. In such cases the 1064 * structure pointed to by @handle is not updated and should not be used 1065 * any more. 1066 */ 1067 1068 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1069 { 1070 if (handle->cur > nr_meta_pages + nr_copy_pages) 1071 return 0; 1072 1073 if (!buffer) { 1074 /* This makes the buffer be freed by swsusp_free() */ 1075 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1076 if (!buffer) 1077 return -ENOMEM; 1078 } 1079 if (!handle->offset) { 1080 init_header((struct swsusp_info *)buffer); 1081 handle->buffer = buffer; 1082 memory_bm_position_reset(&orig_bm); 1083 memory_bm_position_reset(©_bm); 1084 } 1085 if (handle->prev < handle->cur) { 1086 if (handle->cur <= nr_meta_pages) { 1087 memset(buffer, 0, PAGE_SIZE); 1088 pack_pfns(buffer, &orig_bm); 1089 } else { 1090 struct page *page; 1091 1092 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1093 if (PageHighMem(page)) { 1094 /* Highmem pages are copied to the buffer, 1095 * because we can't return with a kmapped 1096 * highmem page (we may not be called again). 1097 */ 1098 void *kaddr; 1099 1100 kaddr = kmap_atomic(page, KM_USER0); 1101 memcpy(buffer, kaddr, PAGE_SIZE); 1102 kunmap_atomic(kaddr, KM_USER0); 1103 handle->buffer = buffer; 1104 } else { 1105 handle->buffer = page_address(page); 1106 } 1107 } 1108 handle->prev = handle->cur; 1109 } 1110 handle->buf_offset = handle->cur_offset; 1111 if (handle->cur_offset + count >= PAGE_SIZE) { 1112 count = PAGE_SIZE - handle->cur_offset; 1113 handle->cur_offset = 0; 1114 handle->cur++; 1115 } else { 1116 handle->cur_offset += count; 1117 } 1118 handle->offset += count; 1119 return count; 1120 } 1121 1122 /** 1123 * mark_unsafe_pages - mark the pages that cannot be used for storing 1124 * the image during resume, because they conflict with the pages that 1125 * had been used before suspend 1126 */ 1127 1128 static int mark_unsafe_pages(struct memory_bitmap *bm) 1129 { 1130 struct zone *zone; 1131 unsigned long pfn, max_zone_pfn; 1132 1133 /* Clear page flags */ 1134 for_each_zone(zone) { 1135 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1136 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1137 if (pfn_valid(pfn)) 1138 ClearPageNosaveFree(pfn_to_page(pfn)); 1139 } 1140 1141 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1142 memory_bm_position_reset(bm); 1143 do { 1144 pfn = memory_bm_next_pfn(bm); 1145 if (likely(pfn != BM_END_OF_MAP)) { 1146 if (likely(pfn_valid(pfn))) 1147 SetPageNosaveFree(pfn_to_page(pfn)); 1148 else 1149 return -EFAULT; 1150 } 1151 } while (pfn != BM_END_OF_MAP); 1152 1153 allocated_unsafe_pages = 0; 1154 1155 return 0; 1156 } 1157 1158 static void 1159 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1160 { 1161 unsigned long pfn; 1162 1163 memory_bm_position_reset(src); 1164 pfn = memory_bm_next_pfn(src); 1165 while (pfn != BM_END_OF_MAP) { 1166 memory_bm_set_bit(dst, pfn); 1167 pfn = memory_bm_next_pfn(src); 1168 } 1169 } 1170 1171 static inline int check_header(struct swsusp_info *info) 1172 { 1173 char *reason = NULL; 1174 1175 if (info->version_code != LINUX_VERSION_CODE) 1176 reason = "kernel version"; 1177 if (info->num_physpages != num_physpages) 1178 reason = "memory size"; 1179 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1180 reason = "system type"; 1181 if (strcmp(info->uts.release,init_utsname()->release)) 1182 reason = "kernel release"; 1183 if (strcmp(info->uts.version,init_utsname()->version)) 1184 reason = "version"; 1185 if (strcmp(info->uts.machine,init_utsname()->machine)) 1186 reason = "machine"; 1187 if (reason) { 1188 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); 1189 return -EPERM; 1190 } 1191 return 0; 1192 } 1193 1194 /** 1195 * load header - check the image header and copy data from it 1196 */ 1197 1198 static int 1199 load_header(struct swsusp_info *info) 1200 { 1201 int error; 1202 1203 restore_pblist = NULL; 1204 error = check_header(info); 1205 if (!error) { 1206 nr_copy_pages = info->image_pages; 1207 nr_meta_pages = info->pages - info->image_pages - 1; 1208 } 1209 return error; 1210 } 1211 1212 /** 1213 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1214 * the corresponding bit in the memory bitmap @bm 1215 */ 1216 1217 static inline void 1218 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1219 { 1220 int j; 1221 1222 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1223 if (unlikely(buf[j] == BM_END_OF_MAP)) 1224 break; 1225 1226 memory_bm_set_bit(bm, buf[j]); 1227 } 1228 } 1229 1230 /* List of "safe" pages that may be used to store data loaded from the suspend 1231 * image 1232 */ 1233 static struct linked_page *safe_pages_list; 1234 1235 #ifdef CONFIG_HIGHMEM 1236 /* struct highmem_pbe is used for creating the list of highmem pages that 1237 * should be restored atomically during the resume from disk, because the page 1238 * frames they have occupied before the suspend are in use. 1239 */ 1240 struct highmem_pbe { 1241 struct page *copy_page; /* data is here now */ 1242 struct page *orig_page; /* data was here before the suspend */ 1243 struct highmem_pbe *next; 1244 }; 1245 1246 /* List of highmem PBEs needed for restoring the highmem pages that were 1247 * allocated before the suspend and included in the suspend image, but have 1248 * also been allocated by the "resume" kernel, so their contents cannot be 1249 * written directly to their "original" page frames. 1250 */ 1251 static struct highmem_pbe *highmem_pblist; 1252 1253 /** 1254 * count_highmem_image_pages - compute the number of highmem pages in the 1255 * suspend image. The bits in the memory bitmap @bm that correspond to the 1256 * image pages are assumed to be set. 1257 */ 1258 1259 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1260 { 1261 unsigned long pfn; 1262 unsigned int cnt = 0; 1263 1264 memory_bm_position_reset(bm); 1265 pfn = memory_bm_next_pfn(bm); 1266 while (pfn != BM_END_OF_MAP) { 1267 if (PageHighMem(pfn_to_page(pfn))) 1268 cnt++; 1269 1270 pfn = memory_bm_next_pfn(bm); 1271 } 1272 return cnt; 1273 } 1274 1275 /** 1276 * prepare_highmem_image - try to allocate as many highmem pages as 1277 * there are highmem image pages (@nr_highmem_p points to the variable 1278 * containing the number of highmem image pages). The pages that are 1279 * "safe" (ie. will not be overwritten when the suspend image is 1280 * restored) have the corresponding bits set in @bm (it must be 1281 * unitialized). 1282 * 1283 * NOTE: This function should not be called if there are no highmem 1284 * image pages. 1285 */ 1286 1287 static unsigned int safe_highmem_pages; 1288 1289 static struct memory_bitmap *safe_highmem_bm; 1290 1291 static int 1292 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1293 { 1294 unsigned int to_alloc; 1295 1296 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1297 return -ENOMEM; 1298 1299 if (get_highmem_buffer(PG_SAFE)) 1300 return -ENOMEM; 1301 1302 to_alloc = count_free_highmem_pages(); 1303 if (to_alloc > *nr_highmem_p) 1304 to_alloc = *nr_highmem_p; 1305 else 1306 *nr_highmem_p = to_alloc; 1307 1308 safe_highmem_pages = 0; 1309 while (to_alloc-- > 0) { 1310 struct page *page; 1311 1312 page = alloc_page(__GFP_HIGHMEM); 1313 if (!PageNosaveFree(page)) { 1314 /* The page is "safe", set its bit the bitmap */ 1315 memory_bm_set_bit(bm, page_to_pfn(page)); 1316 safe_highmem_pages++; 1317 } 1318 /* Mark the page as allocated */ 1319 SetPageNosave(page); 1320 SetPageNosaveFree(page); 1321 } 1322 memory_bm_position_reset(bm); 1323 safe_highmem_bm = bm; 1324 return 0; 1325 } 1326 1327 /** 1328 * get_highmem_page_buffer - for given highmem image page find the buffer 1329 * that suspend_write_next() should set for its caller to write to. 1330 * 1331 * If the page is to be saved to its "original" page frame or a copy of 1332 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1333 * the copy of the page is to be made in normal memory, so the address of 1334 * the copy is returned. 1335 * 1336 * If @buffer is returned, the caller of suspend_write_next() will write 1337 * the page's contents to @buffer, so they will have to be copied to the 1338 * right location on the next call to suspend_write_next() and it is done 1339 * with the help of copy_last_highmem_page(). For this purpose, if 1340 * @buffer is returned, @last_highmem page is set to the page to which 1341 * the data will have to be copied from @buffer. 1342 */ 1343 1344 static struct page *last_highmem_page; 1345 1346 static void * 1347 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1348 { 1349 struct highmem_pbe *pbe; 1350 void *kaddr; 1351 1352 if (PageNosave(page) && PageNosaveFree(page)) { 1353 /* We have allocated the "original" page frame and we can 1354 * use it directly to store the loaded page. 1355 */ 1356 last_highmem_page = page; 1357 return buffer; 1358 } 1359 /* The "original" page frame has not been allocated and we have to 1360 * use a "safe" page frame to store the loaded page. 1361 */ 1362 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1363 if (!pbe) { 1364 swsusp_free(); 1365 return NULL; 1366 } 1367 pbe->orig_page = page; 1368 if (safe_highmem_pages > 0) { 1369 struct page *tmp; 1370 1371 /* Copy of the page will be stored in high memory */ 1372 kaddr = buffer; 1373 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1374 safe_highmem_pages--; 1375 last_highmem_page = tmp; 1376 pbe->copy_page = tmp; 1377 } else { 1378 /* Copy of the page will be stored in normal memory */ 1379 kaddr = safe_pages_list; 1380 safe_pages_list = safe_pages_list->next; 1381 pbe->copy_page = virt_to_page(kaddr); 1382 } 1383 pbe->next = highmem_pblist; 1384 highmem_pblist = pbe; 1385 return kaddr; 1386 } 1387 1388 /** 1389 * copy_last_highmem_page - copy the contents of a highmem image from 1390 * @buffer, where the caller of snapshot_write_next() has place them, 1391 * to the right location represented by @last_highmem_page . 1392 */ 1393 1394 static void copy_last_highmem_page(void) 1395 { 1396 if (last_highmem_page) { 1397 void *dst; 1398 1399 dst = kmap_atomic(last_highmem_page, KM_USER0); 1400 memcpy(dst, buffer, PAGE_SIZE); 1401 kunmap_atomic(dst, KM_USER0); 1402 last_highmem_page = NULL; 1403 } 1404 } 1405 1406 static inline int last_highmem_page_copied(void) 1407 { 1408 return !last_highmem_page; 1409 } 1410 1411 static inline void free_highmem_data(void) 1412 { 1413 if (safe_highmem_bm) 1414 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1415 1416 if (buffer) 1417 free_image_page(buffer, PG_UNSAFE_CLEAR); 1418 } 1419 #else 1420 static inline int get_safe_write_buffer(void) { return 0; } 1421 1422 static unsigned int 1423 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1424 1425 static inline int 1426 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1427 { 1428 return 0; 1429 } 1430 1431 static inline void * 1432 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1433 { 1434 return NULL; 1435 } 1436 1437 static inline void copy_last_highmem_page(void) {} 1438 static inline int last_highmem_page_copied(void) { return 1; } 1439 static inline void free_highmem_data(void) {} 1440 #endif /* CONFIG_HIGHMEM */ 1441 1442 /** 1443 * prepare_image - use the memory bitmap @bm to mark the pages that will 1444 * be overwritten in the process of restoring the system memory state 1445 * from the suspend image ("unsafe" pages) and allocate memory for the 1446 * image. 1447 * 1448 * The idea is to allocate a new memory bitmap first and then allocate 1449 * as many pages as needed for the image data, but not to assign these 1450 * pages to specific tasks initially. Instead, we just mark them as 1451 * allocated and create a lists of "safe" pages that will be used 1452 * later. On systems with high memory a list of "safe" highmem pages is 1453 * also created. 1454 */ 1455 1456 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1457 1458 static int 1459 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1460 { 1461 unsigned int nr_pages, nr_highmem; 1462 struct linked_page *sp_list, *lp; 1463 int error; 1464 1465 /* If there is no highmem, the buffer will not be necessary */ 1466 free_image_page(buffer, PG_UNSAFE_CLEAR); 1467 buffer = NULL; 1468 1469 nr_highmem = count_highmem_image_pages(bm); 1470 error = mark_unsafe_pages(bm); 1471 if (error) 1472 goto Free; 1473 1474 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1475 if (error) 1476 goto Free; 1477 1478 duplicate_memory_bitmap(new_bm, bm); 1479 memory_bm_free(bm, PG_UNSAFE_KEEP); 1480 if (nr_highmem > 0) { 1481 error = prepare_highmem_image(bm, &nr_highmem); 1482 if (error) 1483 goto Free; 1484 } 1485 /* Reserve some safe pages for potential later use. 1486 * 1487 * NOTE: This way we make sure there will be enough safe pages for the 1488 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1489 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1490 */ 1491 sp_list = NULL; 1492 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1493 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1494 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1495 while (nr_pages > 0) { 1496 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1497 if (!lp) { 1498 error = -ENOMEM; 1499 goto Free; 1500 } 1501 lp->next = sp_list; 1502 sp_list = lp; 1503 nr_pages--; 1504 } 1505 /* Preallocate memory for the image */ 1506 safe_pages_list = NULL; 1507 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1508 while (nr_pages > 0) { 1509 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1510 if (!lp) { 1511 error = -ENOMEM; 1512 goto Free; 1513 } 1514 if (!PageNosaveFree(virt_to_page(lp))) { 1515 /* The page is "safe", add it to the list */ 1516 lp->next = safe_pages_list; 1517 safe_pages_list = lp; 1518 } 1519 /* Mark the page as allocated */ 1520 SetPageNosave(virt_to_page(lp)); 1521 SetPageNosaveFree(virt_to_page(lp)); 1522 nr_pages--; 1523 } 1524 /* Free the reserved safe pages so that chain_alloc() can use them */ 1525 while (sp_list) { 1526 lp = sp_list->next; 1527 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1528 sp_list = lp; 1529 } 1530 return 0; 1531 1532 Free: 1533 swsusp_free(); 1534 return error; 1535 } 1536 1537 /** 1538 * get_buffer - compute the address that snapshot_write_next() should 1539 * set for its caller to write to. 1540 */ 1541 1542 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1543 { 1544 struct pbe *pbe; 1545 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1546 1547 if (PageHighMem(page)) 1548 return get_highmem_page_buffer(page, ca); 1549 1550 if (PageNosave(page) && PageNosaveFree(page)) 1551 /* We have allocated the "original" page frame and we can 1552 * use it directly to store the loaded page. 1553 */ 1554 return page_address(page); 1555 1556 /* The "original" page frame has not been allocated and we have to 1557 * use a "safe" page frame to store the loaded page. 1558 */ 1559 pbe = chain_alloc(ca, sizeof(struct pbe)); 1560 if (!pbe) { 1561 swsusp_free(); 1562 return NULL; 1563 } 1564 pbe->orig_address = page_address(page); 1565 pbe->address = safe_pages_list; 1566 safe_pages_list = safe_pages_list->next; 1567 pbe->next = restore_pblist; 1568 restore_pblist = pbe; 1569 return pbe->address; 1570 } 1571 1572 /** 1573 * snapshot_write_next - used for writing the system memory snapshot. 1574 * 1575 * On the first call to it @handle should point to a zeroed 1576 * snapshot_handle structure. The structure gets updated and a pointer 1577 * to it should be passed to this function every next time. 1578 * 1579 * The @count parameter should contain the number of bytes the caller 1580 * wants to write to the image. It must not be zero. 1581 * 1582 * On success the function returns a positive number. Then, the caller 1583 * is allowed to write up to the returned number of bytes to the memory 1584 * location computed by the data_of() macro. The number returned 1585 * may be smaller than @count, but this only happens if the write would 1586 * cross a page boundary otherwise. 1587 * 1588 * The function returns 0 to indicate the "end of file" condition, 1589 * and a negative number is returned on error. In such cases the 1590 * structure pointed to by @handle is not updated and should not be used 1591 * any more. 1592 */ 1593 1594 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1595 { 1596 static struct chain_allocator ca; 1597 int error = 0; 1598 1599 /* Check if we have already loaded the entire image */ 1600 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1601 return 0; 1602 1603 if (handle->offset == 0) { 1604 if (!buffer) 1605 /* This makes the buffer be freed by swsusp_free() */ 1606 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1607 1608 if (!buffer) 1609 return -ENOMEM; 1610 1611 handle->buffer = buffer; 1612 } 1613 handle->sync_read = 1; 1614 if (handle->prev < handle->cur) { 1615 if (handle->prev == 0) { 1616 error = load_header(buffer); 1617 if (error) 1618 return error; 1619 1620 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1621 if (error) 1622 return error; 1623 1624 } else if (handle->prev <= nr_meta_pages) { 1625 unpack_orig_pfns(buffer, ©_bm); 1626 if (handle->prev == nr_meta_pages) { 1627 error = prepare_image(&orig_bm, ©_bm); 1628 if (error) 1629 return error; 1630 1631 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1632 memory_bm_position_reset(&orig_bm); 1633 restore_pblist = NULL; 1634 handle->buffer = get_buffer(&orig_bm, &ca); 1635 handle->sync_read = 0; 1636 if (!handle->buffer) 1637 return -ENOMEM; 1638 } 1639 } else { 1640 copy_last_highmem_page(); 1641 handle->buffer = get_buffer(&orig_bm, &ca); 1642 if (handle->buffer != buffer) 1643 handle->sync_read = 0; 1644 } 1645 handle->prev = handle->cur; 1646 } 1647 handle->buf_offset = handle->cur_offset; 1648 if (handle->cur_offset + count >= PAGE_SIZE) { 1649 count = PAGE_SIZE - handle->cur_offset; 1650 handle->cur_offset = 0; 1651 handle->cur++; 1652 } else { 1653 handle->cur_offset += count; 1654 } 1655 handle->offset += count; 1656 return count; 1657 } 1658 1659 /** 1660 * snapshot_write_finalize - must be called after the last call to 1661 * snapshot_write_next() in case the last page in the image happens 1662 * to be a highmem page and its contents should be stored in the 1663 * highmem. Additionally, it releases the memory that will not be 1664 * used any more. 1665 */ 1666 1667 void snapshot_write_finalize(struct snapshot_handle *handle) 1668 { 1669 copy_last_highmem_page(); 1670 /* Free only if we have loaded the image entirely */ 1671 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1672 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1673 free_highmem_data(); 1674 } 1675 } 1676 1677 int snapshot_image_loaded(struct snapshot_handle *handle) 1678 { 1679 return !(!nr_copy_pages || !last_highmem_page_copied() || 1680 handle->cur <= nr_meta_pages + nr_copy_pages); 1681 } 1682 1683 #ifdef CONFIG_HIGHMEM 1684 /* Assumes that @buf is ready and points to a "safe" page */ 1685 static inline void 1686 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1687 { 1688 void *kaddr1, *kaddr2; 1689 1690 kaddr1 = kmap_atomic(p1, KM_USER0); 1691 kaddr2 = kmap_atomic(p2, KM_USER1); 1692 memcpy(buf, kaddr1, PAGE_SIZE); 1693 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1694 memcpy(kaddr2, buf, PAGE_SIZE); 1695 kunmap_atomic(kaddr1, KM_USER0); 1696 kunmap_atomic(kaddr2, KM_USER1); 1697 } 1698 1699 /** 1700 * restore_highmem - for each highmem page that was allocated before 1701 * the suspend and included in the suspend image, and also has been 1702 * allocated by the "resume" kernel swap its current (ie. "before 1703 * resume") contents with the previous (ie. "before suspend") one. 1704 * 1705 * If the resume eventually fails, we can call this function once 1706 * again and restore the "before resume" highmem state. 1707 */ 1708 1709 int restore_highmem(void) 1710 { 1711 struct highmem_pbe *pbe = highmem_pblist; 1712 void *buf; 1713 1714 if (!pbe) 1715 return 0; 1716 1717 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1718 if (!buf) 1719 return -ENOMEM; 1720 1721 while (pbe) { 1722 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1723 pbe = pbe->next; 1724 } 1725 free_image_page(buf, PG_UNSAFE_CLEAR); 1726 return 0; 1727 } 1728 #endif /* CONFIG_HIGHMEM */ 1729