xref: /linux/kernel/power/snapshot.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/smp_lock.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/kernel.h>
22 #include <linux/pm.h>
23 #include <linux/device.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34 
35 #include "power.h"
36 
37 /* List of PBEs needed for restoring the pages that were allocated before
38  * the suspend and included in the suspend image, but have also been
39  * allocated by the "resume" kernel, so their contents cannot be written
40  * directly to their "original" page frames.
41  */
42 struct pbe *restore_pblist;
43 
44 /* Pointer to an auxiliary buffer (1 page) */
45 static void *buffer;
46 
47 /**
48  *	@safe_needed - on resume, for storing the PBE list and the image,
49  *	we can only use memory pages that do not conflict with the pages
50  *	used before suspend.  The unsafe pages have PageNosaveFree set
51  *	and we count them using unsafe_pages.
52  *
53  *	Each allocated image page is marked as PageNosave and PageNosaveFree
54  *	so that swsusp_free() can release it.
55  */
56 
57 #define PG_ANY		0
58 #define PG_SAFE		1
59 #define PG_UNSAFE_CLEAR	1
60 #define PG_UNSAFE_KEEP	0
61 
62 static unsigned int allocated_unsafe_pages;
63 
64 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
65 {
66 	void *res;
67 
68 	res = (void *)get_zeroed_page(gfp_mask);
69 	if (safe_needed)
70 		while (res && PageNosaveFree(virt_to_page(res))) {
71 			/* The page is unsafe, mark it for swsusp_free() */
72 			SetPageNosave(virt_to_page(res));
73 			allocated_unsafe_pages++;
74 			res = (void *)get_zeroed_page(gfp_mask);
75 		}
76 	if (res) {
77 		SetPageNosave(virt_to_page(res));
78 		SetPageNosaveFree(virt_to_page(res));
79 	}
80 	return res;
81 }
82 
83 unsigned long get_safe_page(gfp_t gfp_mask)
84 {
85 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
86 }
87 
88 static struct page *alloc_image_page(gfp_t gfp_mask)
89 {
90 	struct page *page;
91 
92 	page = alloc_page(gfp_mask);
93 	if (page) {
94 		SetPageNosave(page);
95 		SetPageNosaveFree(page);
96 	}
97 	return page;
98 }
99 
100 /**
101  *	free_image_page - free page represented by @addr, allocated with
102  *	get_image_page (page flags set by it must be cleared)
103  */
104 
105 static inline void free_image_page(void *addr, int clear_nosave_free)
106 {
107 	struct page *page;
108 
109 	BUG_ON(!virt_addr_valid(addr));
110 
111 	page = virt_to_page(addr);
112 
113 	ClearPageNosave(page);
114 	if (clear_nosave_free)
115 		ClearPageNosaveFree(page);
116 
117 	__free_page(page);
118 }
119 
120 /* struct linked_page is used to build chains of pages */
121 
122 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
123 
124 struct linked_page {
125 	struct linked_page *next;
126 	char data[LINKED_PAGE_DATA_SIZE];
127 } __attribute__((packed));
128 
129 static inline void
130 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
131 {
132 	while (list) {
133 		struct linked_page *lp = list->next;
134 
135 		free_image_page(list, clear_page_nosave);
136 		list = lp;
137 	}
138 }
139 
140 /**
141   *	struct chain_allocator is used for allocating small objects out of
142   *	a linked list of pages called 'the chain'.
143   *
144   *	The chain grows each time when there is no room for a new object in
145   *	the current page.  The allocated objects cannot be freed individually.
146   *	It is only possible to free them all at once, by freeing the entire
147   *	chain.
148   *
149   *	NOTE: The chain allocator may be inefficient if the allocated objects
150   *	are not much smaller than PAGE_SIZE.
151   */
152 
153 struct chain_allocator {
154 	struct linked_page *chain;	/* the chain */
155 	unsigned int used_space;	/* total size of objects allocated out
156 					 * of the current page
157 					 */
158 	gfp_t gfp_mask;		/* mask for allocating pages */
159 	int safe_needed;	/* if set, only "safe" pages are allocated */
160 };
161 
162 static void
163 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
164 {
165 	ca->chain = NULL;
166 	ca->used_space = LINKED_PAGE_DATA_SIZE;
167 	ca->gfp_mask = gfp_mask;
168 	ca->safe_needed = safe_needed;
169 }
170 
171 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
172 {
173 	void *ret;
174 
175 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
176 		struct linked_page *lp;
177 
178 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
179 		if (!lp)
180 			return NULL;
181 
182 		lp->next = ca->chain;
183 		ca->chain = lp;
184 		ca->used_space = 0;
185 	}
186 	ret = ca->chain->data + ca->used_space;
187 	ca->used_space += size;
188 	return ret;
189 }
190 
191 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
192 {
193 	free_list_of_pages(ca->chain, clear_page_nosave);
194 	memset(ca, 0, sizeof(struct chain_allocator));
195 }
196 
197 /**
198  *	Data types related to memory bitmaps.
199  *
200  *	Memory bitmap is a structure consiting of many linked lists of
201  *	objects.  The main list's elements are of type struct zone_bitmap
202  *	and each of them corresonds to one zone.  For each zone bitmap
203  *	object there is a list of objects of type struct bm_block that
204  *	represent each blocks of bit chunks in which information is
205  *	stored.
206  *
207  *	struct memory_bitmap contains a pointer to the main list of zone
208  *	bitmap objects, a struct bm_position used for browsing the bitmap,
209  *	and a pointer to the list of pages used for allocating all of the
210  *	zone bitmap objects and bitmap block objects.
211  *
212  *	NOTE: It has to be possible to lay out the bitmap in memory
213  *	using only allocations of order 0.  Additionally, the bitmap is
214  *	designed to work with arbitrary number of zones (this is over the
215  *	top for now, but let's avoid making unnecessary assumptions ;-).
216  *
217  *	struct zone_bitmap contains a pointer to a list of bitmap block
218  *	objects and a pointer to the bitmap block object that has been
219  *	most recently used for setting bits.  Additionally, it contains the
220  *	pfns that correspond to the start and end of the represented zone.
221  *
222  *	struct bm_block contains a pointer to the memory page in which
223  *	information is stored (in the form of a block of bit chunks
224  *	of type unsigned long each).  It also contains the pfns that
225  *	correspond to the start and end of the represented memory area and
226  *	the number of bit chunks in the block.
227  *
228  *	NOTE: Memory bitmaps are used for two types of operations only:
229  *	"set a bit" and "find the next bit set".  Moreover, the searching
230  *	is always carried out after all of the "set a bit" operations
231  *	on given bitmap.
232  */
233 
234 #define BM_END_OF_MAP	(~0UL)
235 
236 #define BM_CHUNKS_PER_BLOCK	(PAGE_SIZE / sizeof(long))
237 #define BM_BITS_PER_CHUNK	(sizeof(long) << 3)
238 #define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)
239 
240 struct bm_block {
241 	struct bm_block *next;		/* next element of the list */
242 	unsigned long start_pfn;	/* pfn represented by the first bit */
243 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
244 	unsigned int size;	/* number of bit chunks */
245 	unsigned long *data;	/* chunks of bits representing pages */
246 };
247 
248 struct zone_bitmap {
249 	struct zone_bitmap *next;	/* next element of the list */
250 	unsigned long start_pfn;	/* minimal pfn in this zone */
251 	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
252 	struct bm_block *bm_blocks;	/* list of bitmap blocks */
253 	struct bm_block *cur_block;	/* recently used bitmap block */
254 };
255 
256 /* strcut bm_position is used for browsing memory bitmaps */
257 
258 struct bm_position {
259 	struct zone_bitmap *zone_bm;
260 	struct bm_block *block;
261 	int chunk;
262 	int bit;
263 };
264 
265 struct memory_bitmap {
266 	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
267 	struct linked_page *p_list;	/* list of pages used to store zone
268 					 * bitmap objects and bitmap block
269 					 * objects
270 					 */
271 	struct bm_position cur;	/* most recently used bit position */
272 };
273 
274 /* Functions that operate on memory bitmaps */
275 
276 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
277 {
278 	bm->cur.chunk = 0;
279 	bm->cur.bit = -1;
280 }
281 
282 static void memory_bm_position_reset(struct memory_bitmap *bm)
283 {
284 	struct zone_bitmap *zone_bm;
285 
286 	zone_bm = bm->zone_bm_list;
287 	bm->cur.zone_bm = zone_bm;
288 	bm->cur.block = zone_bm->bm_blocks;
289 	memory_bm_reset_chunk(bm);
290 }
291 
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293 
294 /**
295  *	create_bm_block_list - create a list of block bitmap objects
296  */
297 
298 static inline struct bm_block *
299 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
300 {
301 	struct bm_block *bblist = NULL;
302 
303 	while (nr_blocks-- > 0) {
304 		struct bm_block *bb;
305 
306 		bb = chain_alloc(ca, sizeof(struct bm_block));
307 		if (!bb)
308 			return NULL;
309 
310 		bb->next = bblist;
311 		bblist = bb;
312 	}
313 	return bblist;
314 }
315 
316 /**
317  *	create_zone_bm_list - create a list of zone bitmap objects
318  */
319 
320 static inline struct zone_bitmap *
321 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
322 {
323 	struct zone_bitmap *zbmlist = NULL;
324 
325 	while (nr_zones-- > 0) {
326 		struct zone_bitmap *zbm;
327 
328 		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
329 		if (!zbm)
330 			return NULL;
331 
332 		zbm->next = zbmlist;
333 		zbmlist = zbm;
334 	}
335 	return zbmlist;
336 }
337 
338 /**
339   *	memory_bm_create - allocate memory for a memory bitmap
340   */
341 
342 static int
343 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
344 {
345 	struct chain_allocator ca;
346 	struct zone *zone;
347 	struct zone_bitmap *zone_bm;
348 	struct bm_block *bb;
349 	unsigned int nr;
350 
351 	chain_init(&ca, gfp_mask, safe_needed);
352 
353 	/* Compute the number of zones */
354 	nr = 0;
355 	for_each_zone(zone)
356 		if (populated_zone(zone))
357 			nr++;
358 
359 	/* Allocate the list of zones bitmap objects */
360 	zone_bm = create_zone_bm_list(nr, &ca);
361 	bm->zone_bm_list = zone_bm;
362 	if (!zone_bm) {
363 		chain_free(&ca, PG_UNSAFE_CLEAR);
364 		return -ENOMEM;
365 	}
366 
367 	/* Initialize the zone bitmap objects */
368 	for_each_zone(zone) {
369 		unsigned long pfn;
370 
371 		if (!populated_zone(zone))
372 			continue;
373 
374 		zone_bm->start_pfn = zone->zone_start_pfn;
375 		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
376 		/* Allocate the list of bitmap block objects */
377 		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
378 		bb = create_bm_block_list(nr, &ca);
379 		zone_bm->bm_blocks = bb;
380 		zone_bm->cur_block = bb;
381 		if (!bb)
382 			goto Free;
383 
384 		nr = zone->spanned_pages;
385 		pfn = zone->zone_start_pfn;
386 		/* Initialize the bitmap block objects */
387 		while (bb) {
388 			unsigned long *ptr;
389 
390 			ptr = get_image_page(gfp_mask, safe_needed);
391 			bb->data = ptr;
392 			if (!ptr)
393 				goto Free;
394 
395 			bb->start_pfn = pfn;
396 			if (nr >= BM_BITS_PER_BLOCK) {
397 				pfn += BM_BITS_PER_BLOCK;
398 				bb->size = BM_CHUNKS_PER_BLOCK;
399 				nr -= BM_BITS_PER_BLOCK;
400 			} else {
401 				/* This is executed only once in the loop */
402 				pfn += nr;
403 				bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
404 			}
405 			bb->end_pfn = pfn;
406 			bb = bb->next;
407 		}
408 		zone_bm = zone_bm->next;
409 	}
410 	bm->p_list = ca.chain;
411 	memory_bm_position_reset(bm);
412 	return 0;
413 
414  Free:
415 	bm->p_list = ca.chain;
416 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
417 	return -ENOMEM;
418 }
419 
420 /**
421   *	memory_bm_free - free memory occupied by the memory bitmap @bm
422   */
423 
424 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
425 {
426 	struct zone_bitmap *zone_bm;
427 
428 	/* Free the list of bit blocks for each zone_bitmap object */
429 	zone_bm = bm->zone_bm_list;
430 	while (zone_bm) {
431 		struct bm_block *bb;
432 
433 		bb = zone_bm->bm_blocks;
434 		while (bb) {
435 			if (bb->data)
436 				free_image_page(bb->data, clear_nosave_free);
437 			bb = bb->next;
438 		}
439 		zone_bm = zone_bm->next;
440 	}
441 	free_list_of_pages(bm->p_list, clear_nosave_free);
442 	bm->zone_bm_list = NULL;
443 }
444 
445 /**
446  *	memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
447  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
448  *	of @bm->cur_zone_bm are updated.
449  *
450  *	If the bit cannot be set, the function returns -EINVAL .
451  */
452 
453 static int
454 memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
455 {
456 	struct zone_bitmap *zone_bm;
457 	struct bm_block *bb;
458 
459 	/* Check if the pfn is from the current zone */
460 	zone_bm = bm->cur.zone_bm;
461 	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 		zone_bm = bm->zone_bm_list;
463 		/* We don't assume that the zones are sorted by pfns */
464 		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
465 			zone_bm = zone_bm->next;
466 			if (unlikely(!zone_bm))
467 				return -EINVAL;
468 		}
469 		bm->cur.zone_bm = zone_bm;
470 	}
471 	/* Check if the pfn corresponds to the current bitmap block */
472 	bb = zone_bm->cur_block;
473 	if (pfn < bb->start_pfn)
474 		bb = zone_bm->bm_blocks;
475 
476 	while (pfn >= bb->end_pfn) {
477 		bb = bb->next;
478 		if (unlikely(!bb))
479 			return -EINVAL;
480 	}
481 	zone_bm->cur_block = bb;
482 	pfn -= bb->start_pfn;
483 	set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
484 	return 0;
485 }
486 
487 /* Two auxiliary functions for memory_bm_next_pfn */
488 
489 /* Find the first set bit in the given chunk, if there is one */
490 
491 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
492 {
493 	bit++;
494 	while (bit < BM_BITS_PER_CHUNK) {
495 		if (test_bit(bit, chunk_p))
496 			return bit;
497 
498 		bit++;
499 	}
500 	return -1;
501 }
502 
503 /* Find a chunk containing some bits set in given block of bits */
504 
505 static inline int next_chunk_in_block(int n, struct bm_block *bb)
506 {
507 	n++;
508 	while (n < bb->size) {
509 		if (bb->data[n])
510 			return n;
511 
512 		n++;
513 	}
514 	return -1;
515 }
516 
517 /**
518  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
519  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
520  *	returned.
521  *
522  *	It is required to run memory_bm_position_reset() before the first call to
523  *	this function.
524  */
525 
526 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
527 {
528 	struct zone_bitmap *zone_bm;
529 	struct bm_block *bb;
530 	int chunk;
531 	int bit;
532 
533 	do {
534 		bb = bm->cur.block;
535 		do {
536 			chunk = bm->cur.chunk;
537 			bit = bm->cur.bit;
538 			do {
539 				bit = next_bit_in_chunk(bit, bb->data + chunk);
540 				if (bit >= 0)
541 					goto Return_pfn;
542 
543 				chunk = next_chunk_in_block(chunk, bb);
544 				bit = -1;
545 			} while (chunk >= 0);
546 			bb = bb->next;
547 			bm->cur.block = bb;
548 			memory_bm_reset_chunk(bm);
549 		} while (bb);
550 		zone_bm = bm->cur.zone_bm->next;
551 		if (zone_bm) {
552 			bm->cur.zone_bm = zone_bm;
553 			bm->cur.block = zone_bm->bm_blocks;
554 			memory_bm_reset_chunk(bm);
555 		}
556 	} while (zone_bm);
557 	memory_bm_position_reset(bm);
558 	return BM_END_OF_MAP;
559 
560  Return_pfn:
561 	bm->cur.chunk = chunk;
562 	bm->cur.bit = bit;
563 	return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
564 }
565 
566 /**
567  *	snapshot_additional_pages - estimate the number of additional pages
568  *	be needed for setting up the suspend image data structures for given
569  *	zone (usually the returned value is greater than the exact number)
570  */
571 
572 unsigned int snapshot_additional_pages(struct zone *zone)
573 {
574 	unsigned int res;
575 
576 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
577 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
578 	return 2 * res;
579 }
580 
581 #ifdef CONFIG_HIGHMEM
582 /**
583  *	count_free_highmem_pages - compute the total number of free highmem
584  *	pages, system-wide.
585  */
586 
587 static unsigned int count_free_highmem_pages(void)
588 {
589 	struct zone *zone;
590 	unsigned int cnt = 0;
591 
592 	for_each_zone(zone)
593 		if (populated_zone(zone) && is_highmem(zone))
594 			cnt += zone_page_state(zone, NR_FREE_PAGES);
595 
596 	return cnt;
597 }
598 
599 /**
600  *	saveable_highmem_page - Determine whether a highmem page should be
601  *	included in the suspend image.
602  *
603  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
604  *	and it isn't a part of a free chunk of pages.
605  */
606 
607 static struct page *saveable_highmem_page(unsigned long pfn)
608 {
609 	struct page *page;
610 
611 	if (!pfn_valid(pfn))
612 		return NULL;
613 
614 	page = pfn_to_page(pfn);
615 
616 	BUG_ON(!PageHighMem(page));
617 
618 	if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page))
619 		return NULL;
620 
621 	return page;
622 }
623 
624 /**
625  *	count_highmem_pages - compute the total number of saveable highmem
626  *	pages.
627  */
628 
629 unsigned int count_highmem_pages(void)
630 {
631 	struct zone *zone;
632 	unsigned int n = 0;
633 
634 	for_each_zone(zone) {
635 		unsigned long pfn, max_zone_pfn;
636 
637 		if (!is_highmem(zone))
638 			continue;
639 
640 		mark_free_pages(zone);
641 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
642 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
643 			if (saveable_highmem_page(pfn))
644 				n++;
645 	}
646 	return n;
647 }
648 #else
649 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
650 static inline unsigned int count_highmem_pages(void) { return 0; }
651 #endif /* CONFIG_HIGHMEM */
652 
653 /**
654  *	saveable - Determine whether a non-highmem page should be included in
655  *	the suspend image.
656  *
657  *	We should save the page if it isn't Nosave, and is not in the range
658  *	of pages statically defined as 'unsaveable', and it isn't a part of
659  *	a free chunk of pages.
660  */
661 
662 static struct page *saveable_page(unsigned long pfn)
663 {
664 	struct page *page;
665 
666 	if (!pfn_valid(pfn))
667 		return NULL;
668 
669 	page = pfn_to_page(pfn);
670 
671 	BUG_ON(PageHighMem(page));
672 
673 	if (PageNosave(page) || PageNosaveFree(page))
674 		return NULL;
675 
676 	if (PageReserved(page) && pfn_is_nosave(pfn))
677 		return NULL;
678 
679 	return page;
680 }
681 
682 /**
683  *	count_data_pages - compute the total number of saveable non-highmem
684  *	pages.
685  */
686 
687 unsigned int count_data_pages(void)
688 {
689 	struct zone *zone;
690 	unsigned long pfn, max_zone_pfn;
691 	unsigned int n = 0;
692 
693 	for_each_zone(zone) {
694 		if (is_highmem(zone))
695 			continue;
696 
697 		mark_free_pages(zone);
698 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
699 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
700 			if(saveable_page(pfn))
701 				n++;
702 	}
703 	return n;
704 }
705 
706 /* This is needed, because copy_page and memcpy are not usable for copying
707  * task structs.
708  */
709 static inline void do_copy_page(long *dst, long *src)
710 {
711 	int n;
712 
713 	for (n = PAGE_SIZE / sizeof(long); n; n--)
714 		*dst++ = *src++;
715 }
716 
717 #ifdef CONFIG_HIGHMEM
718 static inline struct page *
719 page_is_saveable(struct zone *zone, unsigned long pfn)
720 {
721 	return is_highmem(zone) ?
722 			saveable_highmem_page(pfn) : saveable_page(pfn);
723 }
724 
725 static inline void
726 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
727 {
728 	struct page *s_page, *d_page;
729 	void *src, *dst;
730 
731 	s_page = pfn_to_page(src_pfn);
732 	d_page = pfn_to_page(dst_pfn);
733 	if (PageHighMem(s_page)) {
734 		src = kmap_atomic(s_page, KM_USER0);
735 		dst = kmap_atomic(d_page, KM_USER1);
736 		do_copy_page(dst, src);
737 		kunmap_atomic(src, KM_USER0);
738 		kunmap_atomic(dst, KM_USER1);
739 	} else {
740 		src = page_address(s_page);
741 		if (PageHighMem(d_page)) {
742 			/* Page pointed to by src may contain some kernel
743 			 * data modified by kmap_atomic()
744 			 */
745 			do_copy_page(buffer, src);
746 			dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
747 			memcpy(dst, buffer, PAGE_SIZE);
748 			kunmap_atomic(dst, KM_USER0);
749 		} else {
750 			dst = page_address(d_page);
751 			do_copy_page(dst, src);
752 		}
753 	}
754 }
755 #else
756 #define page_is_saveable(zone, pfn)	saveable_page(pfn)
757 
758 static inline void
759 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
760 {
761 	do_copy_page(page_address(pfn_to_page(dst_pfn)),
762 			page_address(pfn_to_page(src_pfn)));
763 }
764 #endif /* CONFIG_HIGHMEM */
765 
766 static void
767 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
768 {
769 	struct zone *zone;
770 	unsigned long pfn;
771 
772 	for_each_zone(zone) {
773 		unsigned long max_zone_pfn;
774 
775 		mark_free_pages(zone);
776 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
777 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
778 			if (page_is_saveable(zone, pfn))
779 				memory_bm_set_bit(orig_bm, pfn);
780 	}
781 	memory_bm_position_reset(orig_bm);
782 	memory_bm_position_reset(copy_bm);
783 	do {
784 		pfn = memory_bm_next_pfn(orig_bm);
785 		if (likely(pfn != BM_END_OF_MAP))
786 			copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
787 	} while (pfn != BM_END_OF_MAP);
788 }
789 
790 /* Total number of image pages */
791 static unsigned int nr_copy_pages;
792 /* Number of pages needed for saving the original pfns of the image pages */
793 static unsigned int nr_meta_pages;
794 
795 /**
796  *	swsusp_free - free pages allocated for the suspend.
797  *
798  *	Suspend pages are alocated before the atomic copy is made, so we
799  *	need to release them after the resume.
800  */
801 
802 void swsusp_free(void)
803 {
804 	struct zone *zone;
805 	unsigned long pfn, max_zone_pfn;
806 
807 	for_each_zone(zone) {
808 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
809 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
810 			if (pfn_valid(pfn)) {
811 				struct page *page = pfn_to_page(pfn);
812 
813 				if (PageNosave(page) && PageNosaveFree(page)) {
814 					ClearPageNosave(page);
815 					ClearPageNosaveFree(page);
816 					__free_page(page);
817 				}
818 			}
819 	}
820 	nr_copy_pages = 0;
821 	nr_meta_pages = 0;
822 	restore_pblist = NULL;
823 	buffer = NULL;
824 }
825 
826 #ifdef CONFIG_HIGHMEM
827 /**
828   *	count_pages_for_highmem - compute the number of non-highmem pages
829   *	that will be necessary for creating copies of highmem pages.
830   */
831 
832 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
833 {
834 	unsigned int free_highmem = count_free_highmem_pages();
835 
836 	if (free_highmem >= nr_highmem)
837 		nr_highmem = 0;
838 	else
839 		nr_highmem -= free_highmem;
840 
841 	return nr_highmem;
842 }
843 #else
844 static unsigned int
845 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
846 #endif /* CONFIG_HIGHMEM */
847 
848 /**
849  *	enough_free_mem - Make sure we have enough free memory for the
850  *	snapshot image.
851  */
852 
853 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
854 {
855 	struct zone *zone;
856 	unsigned int free = 0, meta = 0;
857 
858 	for_each_zone(zone) {
859 		meta += snapshot_additional_pages(zone);
860 		if (!is_highmem(zone))
861 			free += zone_page_state(zone, NR_FREE_PAGES);
862 	}
863 
864 	nr_pages += count_pages_for_highmem(nr_highmem);
865 	pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
866 		nr_pages, PAGES_FOR_IO, meta, free);
867 
868 	return free > nr_pages + PAGES_FOR_IO + meta;
869 }
870 
871 #ifdef CONFIG_HIGHMEM
872 /**
873  *	get_highmem_buffer - if there are some highmem pages in the suspend
874  *	image, we may need the buffer to copy them and/or load their data.
875  */
876 
877 static inline int get_highmem_buffer(int safe_needed)
878 {
879 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
880 	return buffer ? 0 : -ENOMEM;
881 }
882 
883 /**
884  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
885  *	Try to allocate as many pages as needed, but if the number of free
886  *	highmem pages is lesser than that, allocate them all.
887  */
888 
889 static inline unsigned int
890 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
891 {
892 	unsigned int to_alloc = count_free_highmem_pages();
893 
894 	if (to_alloc > nr_highmem)
895 		to_alloc = nr_highmem;
896 
897 	nr_highmem -= to_alloc;
898 	while (to_alloc-- > 0) {
899 		struct page *page;
900 
901 		page = alloc_image_page(__GFP_HIGHMEM);
902 		memory_bm_set_bit(bm, page_to_pfn(page));
903 	}
904 	return nr_highmem;
905 }
906 #else
907 static inline int get_highmem_buffer(int safe_needed) { return 0; }
908 
909 static inline unsigned int
910 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
911 #endif /* CONFIG_HIGHMEM */
912 
913 /**
914  *	swsusp_alloc - allocate memory for the suspend image
915  *
916  *	We first try to allocate as many highmem pages as there are
917  *	saveable highmem pages in the system.  If that fails, we allocate
918  *	non-highmem pages for the copies of the remaining highmem ones.
919  *
920  *	In this approach it is likely that the copies of highmem pages will
921  *	also be located in the high memory, because of the way in which
922  *	copy_data_pages() works.
923  */
924 
925 static int
926 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
927 		unsigned int nr_pages, unsigned int nr_highmem)
928 {
929 	int error;
930 
931 	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
932 	if (error)
933 		goto Free;
934 
935 	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
936 	if (error)
937 		goto Free;
938 
939 	if (nr_highmem > 0) {
940 		error = get_highmem_buffer(PG_ANY);
941 		if (error)
942 			goto Free;
943 
944 		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
945 	}
946 	while (nr_pages-- > 0) {
947 		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
948 
949 		if (!page)
950 			goto Free;
951 
952 		memory_bm_set_bit(copy_bm, page_to_pfn(page));
953 	}
954 	return 0;
955 
956  Free:
957 	swsusp_free();
958 	return -ENOMEM;
959 }
960 
961 /* Memory bitmap used for marking saveable pages (during suspend) or the
962  * suspend image pages (during resume)
963  */
964 static struct memory_bitmap orig_bm;
965 /* Memory bitmap used on suspend for marking allocated pages that will contain
966  * the copies of saveable pages.  During resume it is initially used for
967  * marking the suspend image pages, but then its set bits are duplicated in
968  * @orig_bm and it is released.  Next, on systems with high memory, it may be
969  * used for marking "safe" highmem pages, but it has to be reinitialized for
970  * this purpose.
971  */
972 static struct memory_bitmap copy_bm;
973 
974 asmlinkage int swsusp_save(void)
975 {
976 	unsigned int nr_pages, nr_highmem;
977 
978 	printk("swsusp: critical section: \n");
979 
980 	drain_local_pages();
981 	nr_pages = count_data_pages();
982 	nr_highmem = count_highmem_pages();
983 	printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
984 
985 	if (!enough_free_mem(nr_pages, nr_highmem)) {
986 		printk(KERN_ERR "swsusp: Not enough free memory\n");
987 		return -ENOMEM;
988 	}
989 
990 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
991 		printk(KERN_ERR "swsusp: Memory allocation failed\n");
992 		return -ENOMEM;
993 	}
994 
995 	/* During allocating of suspend pagedir, new cold pages may appear.
996 	 * Kill them.
997 	 */
998 	drain_local_pages();
999 	copy_data_pages(&copy_bm, &orig_bm);
1000 
1001 	/*
1002 	 * End of critical section. From now on, we can write to memory,
1003 	 * but we should not touch disk. This specially means we must _not_
1004 	 * touch swap space! Except we must write out our image of course.
1005 	 */
1006 
1007 	nr_pages += nr_highmem;
1008 	nr_copy_pages = nr_pages;
1009 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1010 
1011 	printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
1012 
1013 	return 0;
1014 }
1015 
1016 static void init_header(struct swsusp_info *info)
1017 {
1018 	memset(info, 0, sizeof(struct swsusp_info));
1019 	info->version_code = LINUX_VERSION_CODE;
1020 	info->num_physpages = num_physpages;
1021 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1022 	info->cpus = num_online_cpus();
1023 	info->image_pages = nr_copy_pages;
1024 	info->pages = nr_copy_pages + nr_meta_pages + 1;
1025 	info->size = info->pages;
1026 	info->size <<= PAGE_SHIFT;
1027 }
1028 
1029 /**
1030  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1031  *	are stored in the array @buf[] (1 page at a time)
1032  */
1033 
1034 static inline void
1035 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1036 {
1037 	int j;
1038 
1039 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1040 		buf[j] = memory_bm_next_pfn(bm);
1041 		if (unlikely(buf[j] == BM_END_OF_MAP))
1042 			break;
1043 	}
1044 }
1045 
1046 /**
1047  *	snapshot_read_next - used for reading the system memory snapshot.
1048  *
1049  *	On the first call to it @handle should point to a zeroed
1050  *	snapshot_handle structure.  The structure gets updated and a pointer
1051  *	to it should be passed to this function every next time.
1052  *
1053  *	The @count parameter should contain the number of bytes the caller
1054  *	wants to read from the snapshot.  It must not be zero.
1055  *
1056  *	On success the function returns a positive number.  Then, the caller
1057  *	is allowed to read up to the returned number of bytes from the memory
1058  *	location computed by the data_of() macro.  The number returned
1059  *	may be smaller than @count, but this only happens if the read would
1060  *	cross a page boundary otherwise.
1061  *
1062  *	The function returns 0 to indicate the end of data stream condition,
1063  *	and a negative number is returned on error.  In such cases the
1064  *	structure pointed to by @handle is not updated and should not be used
1065  *	any more.
1066  */
1067 
1068 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1069 {
1070 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1071 		return 0;
1072 
1073 	if (!buffer) {
1074 		/* This makes the buffer be freed by swsusp_free() */
1075 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1076 		if (!buffer)
1077 			return -ENOMEM;
1078 	}
1079 	if (!handle->offset) {
1080 		init_header((struct swsusp_info *)buffer);
1081 		handle->buffer = buffer;
1082 		memory_bm_position_reset(&orig_bm);
1083 		memory_bm_position_reset(&copy_bm);
1084 	}
1085 	if (handle->prev < handle->cur) {
1086 		if (handle->cur <= nr_meta_pages) {
1087 			memset(buffer, 0, PAGE_SIZE);
1088 			pack_pfns(buffer, &orig_bm);
1089 		} else {
1090 			struct page *page;
1091 
1092 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1093 			if (PageHighMem(page)) {
1094 				/* Highmem pages are copied to the buffer,
1095 				 * because we can't return with a kmapped
1096 				 * highmem page (we may not be called again).
1097 				 */
1098 				void *kaddr;
1099 
1100 				kaddr = kmap_atomic(page, KM_USER0);
1101 				memcpy(buffer, kaddr, PAGE_SIZE);
1102 				kunmap_atomic(kaddr, KM_USER0);
1103 				handle->buffer = buffer;
1104 			} else {
1105 				handle->buffer = page_address(page);
1106 			}
1107 		}
1108 		handle->prev = handle->cur;
1109 	}
1110 	handle->buf_offset = handle->cur_offset;
1111 	if (handle->cur_offset + count >= PAGE_SIZE) {
1112 		count = PAGE_SIZE - handle->cur_offset;
1113 		handle->cur_offset = 0;
1114 		handle->cur++;
1115 	} else {
1116 		handle->cur_offset += count;
1117 	}
1118 	handle->offset += count;
1119 	return count;
1120 }
1121 
1122 /**
1123  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1124  *	the image during resume, because they conflict with the pages that
1125  *	had been used before suspend
1126  */
1127 
1128 static int mark_unsafe_pages(struct memory_bitmap *bm)
1129 {
1130 	struct zone *zone;
1131 	unsigned long pfn, max_zone_pfn;
1132 
1133 	/* Clear page flags */
1134 	for_each_zone(zone) {
1135 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1136 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1137 			if (pfn_valid(pfn))
1138 				ClearPageNosaveFree(pfn_to_page(pfn));
1139 	}
1140 
1141 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1142 	memory_bm_position_reset(bm);
1143 	do {
1144 		pfn = memory_bm_next_pfn(bm);
1145 		if (likely(pfn != BM_END_OF_MAP)) {
1146 			if (likely(pfn_valid(pfn)))
1147 				SetPageNosaveFree(pfn_to_page(pfn));
1148 			else
1149 				return -EFAULT;
1150 		}
1151 	} while (pfn != BM_END_OF_MAP);
1152 
1153 	allocated_unsafe_pages = 0;
1154 
1155 	return 0;
1156 }
1157 
1158 static void
1159 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1160 {
1161 	unsigned long pfn;
1162 
1163 	memory_bm_position_reset(src);
1164 	pfn = memory_bm_next_pfn(src);
1165 	while (pfn != BM_END_OF_MAP) {
1166 		memory_bm_set_bit(dst, pfn);
1167 		pfn = memory_bm_next_pfn(src);
1168 	}
1169 }
1170 
1171 static inline int check_header(struct swsusp_info *info)
1172 {
1173 	char *reason = NULL;
1174 
1175 	if (info->version_code != LINUX_VERSION_CODE)
1176 		reason = "kernel version";
1177 	if (info->num_physpages != num_physpages)
1178 		reason = "memory size";
1179 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1180 		reason = "system type";
1181 	if (strcmp(info->uts.release,init_utsname()->release))
1182 		reason = "kernel release";
1183 	if (strcmp(info->uts.version,init_utsname()->version))
1184 		reason = "version";
1185 	if (strcmp(info->uts.machine,init_utsname()->machine))
1186 		reason = "machine";
1187 	if (reason) {
1188 		printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1189 		return -EPERM;
1190 	}
1191 	return 0;
1192 }
1193 
1194 /**
1195  *	load header - check the image header and copy data from it
1196  */
1197 
1198 static int
1199 load_header(struct swsusp_info *info)
1200 {
1201 	int error;
1202 
1203 	restore_pblist = NULL;
1204 	error = check_header(info);
1205 	if (!error) {
1206 		nr_copy_pages = info->image_pages;
1207 		nr_meta_pages = info->pages - info->image_pages - 1;
1208 	}
1209 	return error;
1210 }
1211 
1212 /**
1213  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1214  *	the corresponding bit in the memory bitmap @bm
1215  */
1216 
1217 static inline void
1218 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1219 {
1220 	int j;
1221 
1222 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1223 		if (unlikely(buf[j] == BM_END_OF_MAP))
1224 			break;
1225 
1226 		memory_bm_set_bit(bm, buf[j]);
1227 	}
1228 }
1229 
1230 /* List of "safe" pages that may be used to store data loaded from the suspend
1231  * image
1232  */
1233 static struct linked_page *safe_pages_list;
1234 
1235 #ifdef CONFIG_HIGHMEM
1236 /* struct highmem_pbe is used for creating the list of highmem pages that
1237  * should be restored atomically during the resume from disk, because the page
1238  * frames they have occupied before the suspend are in use.
1239  */
1240 struct highmem_pbe {
1241 	struct page *copy_page;	/* data is here now */
1242 	struct page *orig_page;	/* data was here before the suspend */
1243 	struct highmem_pbe *next;
1244 };
1245 
1246 /* List of highmem PBEs needed for restoring the highmem pages that were
1247  * allocated before the suspend and included in the suspend image, but have
1248  * also been allocated by the "resume" kernel, so their contents cannot be
1249  * written directly to their "original" page frames.
1250  */
1251 static struct highmem_pbe *highmem_pblist;
1252 
1253 /**
1254  *	count_highmem_image_pages - compute the number of highmem pages in the
1255  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1256  *	image pages are assumed to be set.
1257  */
1258 
1259 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1260 {
1261 	unsigned long pfn;
1262 	unsigned int cnt = 0;
1263 
1264 	memory_bm_position_reset(bm);
1265 	pfn = memory_bm_next_pfn(bm);
1266 	while (pfn != BM_END_OF_MAP) {
1267 		if (PageHighMem(pfn_to_page(pfn)))
1268 			cnt++;
1269 
1270 		pfn = memory_bm_next_pfn(bm);
1271 	}
1272 	return cnt;
1273 }
1274 
1275 /**
1276  *	prepare_highmem_image - try to allocate as many highmem pages as
1277  *	there are highmem image pages (@nr_highmem_p points to the variable
1278  *	containing the number of highmem image pages).  The pages that are
1279  *	"safe" (ie. will not be overwritten when the suspend image is
1280  *	restored) have the corresponding bits set in @bm (it must be
1281  *	unitialized).
1282  *
1283  *	NOTE: This function should not be called if there are no highmem
1284  *	image pages.
1285  */
1286 
1287 static unsigned int safe_highmem_pages;
1288 
1289 static struct memory_bitmap *safe_highmem_bm;
1290 
1291 static int
1292 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1293 {
1294 	unsigned int to_alloc;
1295 
1296 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1297 		return -ENOMEM;
1298 
1299 	if (get_highmem_buffer(PG_SAFE))
1300 		return -ENOMEM;
1301 
1302 	to_alloc = count_free_highmem_pages();
1303 	if (to_alloc > *nr_highmem_p)
1304 		to_alloc = *nr_highmem_p;
1305 	else
1306 		*nr_highmem_p = to_alloc;
1307 
1308 	safe_highmem_pages = 0;
1309 	while (to_alloc-- > 0) {
1310 		struct page *page;
1311 
1312 		page = alloc_page(__GFP_HIGHMEM);
1313 		if (!PageNosaveFree(page)) {
1314 			/* The page is "safe", set its bit the bitmap */
1315 			memory_bm_set_bit(bm, page_to_pfn(page));
1316 			safe_highmem_pages++;
1317 		}
1318 		/* Mark the page as allocated */
1319 		SetPageNosave(page);
1320 		SetPageNosaveFree(page);
1321 	}
1322 	memory_bm_position_reset(bm);
1323 	safe_highmem_bm = bm;
1324 	return 0;
1325 }
1326 
1327 /**
1328  *	get_highmem_page_buffer - for given highmem image page find the buffer
1329  *	that suspend_write_next() should set for its caller to write to.
1330  *
1331  *	If the page is to be saved to its "original" page frame or a copy of
1332  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1333  *	the copy of the page is to be made in normal memory, so the address of
1334  *	the copy is returned.
1335  *
1336  *	If @buffer is returned, the caller of suspend_write_next() will write
1337  *	the page's contents to @buffer, so they will have to be copied to the
1338  *	right location on the next call to suspend_write_next() and it is done
1339  *	with the help of copy_last_highmem_page().  For this purpose, if
1340  *	@buffer is returned, @last_highmem page is set to the page to which
1341  *	the data will have to be copied from @buffer.
1342  */
1343 
1344 static struct page *last_highmem_page;
1345 
1346 static void *
1347 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1348 {
1349 	struct highmem_pbe *pbe;
1350 	void *kaddr;
1351 
1352 	if (PageNosave(page) && PageNosaveFree(page)) {
1353 		/* We have allocated the "original" page frame and we can
1354 		 * use it directly to store the loaded page.
1355 		 */
1356 		last_highmem_page = page;
1357 		return buffer;
1358 	}
1359 	/* The "original" page frame has not been allocated and we have to
1360 	 * use a "safe" page frame to store the loaded page.
1361 	 */
1362 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1363 	if (!pbe) {
1364 		swsusp_free();
1365 		return NULL;
1366 	}
1367 	pbe->orig_page = page;
1368 	if (safe_highmem_pages > 0) {
1369 		struct page *tmp;
1370 
1371 		/* Copy of the page will be stored in high memory */
1372 		kaddr = buffer;
1373 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1374 		safe_highmem_pages--;
1375 		last_highmem_page = tmp;
1376 		pbe->copy_page = tmp;
1377 	} else {
1378 		/* Copy of the page will be stored in normal memory */
1379 		kaddr = safe_pages_list;
1380 		safe_pages_list = safe_pages_list->next;
1381 		pbe->copy_page = virt_to_page(kaddr);
1382 	}
1383 	pbe->next = highmem_pblist;
1384 	highmem_pblist = pbe;
1385 	return kaddr;
1386 }
1387 
1388 /**
1389  *	copy_last_highmem_page - copy the contents of a highmem image from
1390  *	@buffer, where the caller of snapshot_write_next() has place them,
1391  *	to the right location represented by @last_highmem_page .
1392  */
1393 
1394 static void copy_last_highmem_page(void)
1395 {
1396 	if (last_highmem_page) {
1397 		void *dst;
1398 
1399 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1400 		memcpy(dst, buffer, PAGE_SIZE);
1401 		kunmap_atomic(dst, KM_USER0);
1402 		last_highmem_page = NULL;
1403 	}
1404 }
1405 
1406 static inline int last_highmem_page_copied(void)
1407 {
1408 	return !last_highmem_page;
1409 }
1410 
1411 static inline void free_highmem_data(void)
1412 {
1413 	if (safe_highmem_bm)
1414 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1415 
1416 	if (buffer)
1417 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1418 }
1419 #else
1420 static inline int get_safe_write_buffer(void) { return 0; }
1421 
1422 static unsigned int
1423 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1424 
1425 static inline int
1426 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1427 {
1428 	return 0;
1429 }
1430 
1431 static inline void *
1432 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1433 {
1434 	return NULL;
1435 }
1436 
1437 static inline void copy_last_highmem_page(void) {}
1438 static inline int last_highmem_page_copied(void) { return 1; }
1439 static inline void free_highmem_data(void) {}
1440 #endif /* CONFIG_HIGHMEM */
1441 
1442 /**
1443  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1444  *	be overwritten in the process of restoring the system memory state
1445  *	from the suspend image ("unsafe" pages) and allocate memory for the
1446  *	image.
1447  *
1448  *	The idea is to allocate a new memory bitmap first and then allocate
1449  *	as many pages as needed for the image data, but not to assign these
1450  *	pages to specific tasks initially.  Instead, we just mark them as
1451  *	allocated and create a lists of "safe" pages that will be used
1452  *	later.  On systems with high memory a list of "safe" highmem pages is
1453  *	also created.
1454  */
1455 
1456 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1457 
1458 static int
1459 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1460 {
1461 	unsigned int nr_pages, nr_highmem;
1462 	struct linked_page *sp_list, *lp;
1463 	int error;
1464 
1465 	/* If there is no highmem, the buffer will not be necessary */
1466 	free_image_page(buffer, PG_UNSAFE_CLEAR);
1467 	buffer = NULL;
1468 
1469 	nr_highmem = count_highmem_image_pages(bm);
1470 	error = mark_unsafe_pages(bm);
1471 	if (error)
1472 		goto Free;
1473 
1474 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1475 	if (error)
1476 		goto Free;
1477 
1478 	duplicate_memory_bitmap(new_bm, bm);
1479 	memory_bm_free(bm, PG_UNSAFE_KEEP);
1480 	if (nr_highmem > 0) {
1481 		error = prepare_highmem_image(bm, &nr_highmem);
1482 		if (error)
1483 			goto Free;
1484 	}
1485 	/* Reserve some safe pages for potential later use.
1486 	 *
1487 	 * NOTE: This way we make sure there will be enough safe pages for the
1488 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
1489 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1490 	 */
1491 	sp_list = NULL;
1492 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1493 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1494 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1495 	while (nr_pages > 0) {
1496 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1497 		if (!lp) {
1498 			error = -ENOMEM;
1499 			goto Free;
1500 		}
1501 		lp->next = sp_list;
1502 		sp_list = lp;
1503 		nr_pages--;
1504 	}
1505 	/* Preallocate memory for the image */
1506 	safe_pages_list = NULL;
1507 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1508 	while (nr_pages > 0) {
1509 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1510 		if (!lp) {
1511 			error = -ENOMEM;
1512 			goto Free;
1513 		}
1514 		if (!PageNosaveFree(virt_to_page(lp))) {
1515 			/* The page is "safe", add it to the list */
1516 			lp->next = safe_pages_list;
1517 			safe_pages_list = lp;
1518 		}
1519 		/* Mark the page as allocated */
1520 		SetPageNosave(virt_to_page(lp));
1521 		SetPageNosaveFree(virt_to_page(lp));
1522 		nr_pages--;
1523 	}
1524 	/* Free the reserved safe pages so that chain_alloc() can use them */
1525 	while (sp_list) {
1526 		lp = sp_list->next;
1527 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
1528 		sp_list = lp;
1529 	}
1530 	return 0;
1531 
1532  Free:
1533 	swsusp_free();
1534 	return error;
1535 }
1536 
1537 /**
1538  *	get_buffer - compute the address that snapshot_write_next() should
1539  *	set for its caller to write to.
1540  */
1541 
1542 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1543 {
1544 	struct pbe *pbe;
1545 	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1546 
1547 	if (PageHighMem(page))
1548 		return get_highmem_page_buffer(page, ca);
1549 
1550 	if (PageNosave(page) && PageNosaveFree(page))
1551 		/* We have allocated the "original" page frame and we can
1552 		 * use it directly to store the loaded page.
1553 		 */
1554 		return page_address(page);
1555 
1556 	/* The "original" page frame has not been allocated and we have to
1557 	 * use a "safe" page frame to store the loaded page.
1558 	 */
1559 	pbe = chain_alloc(ca, sizeof(struct pbe));
1560 	if (!pbe) {
1561 		swsusp_free();
1562 		return NULL;
1563 	}
1564 	pbe->orig_address = page_address(page);
1565 	pbe->address = safe_pages_list;
1566 	safe_pages_list = safe_pages_list->next;
1567 	pbe->next = restore_pblist;
1568 	restore_pblist = pbe;
1569 	return pbe->address;
1570 }
1571 
1572 /**
1573  *	snapshot_write_next - used for writing the system memory snapshot.
1574  *
1575  *	On the first call to it @handle should point to a zeroed
1576  *	snapshot_handle structure.  The structure gets updated and a pointer
1577  *	to it should be passed to this function every next time.
1578  *
1579  *	The @count parameter should contain the number of bytes the caller
1580  *	wants to write to the image.  It must not be zero.
1581  *
1582  *	On success the function returns a positive number.  Then, the caller
1583  *	is allowed to write up to the returned number of bytes to the memory
1584  *	location computed by the data_of() macro.  The number returned
1585  *	may be smaller than @count, but this only happens if the write would
1586  *	cross a page boundary otherwise.
1587  *
1588  *	The function returns 0 to indicate the "end of file" condition,
1589  *	and a negative number is returned on error.  In such cases the
1590  *	structure pointed to by @handle is not updated and should not be used
1591  *	any more.
1592  */
1593 
1594 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1595 {
1596 	static struct chain_allocator ca;
1597 	int error = 0;
1598 
1599 	/* Check if we have already loaded the entire image */
1600 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1601 		return 0;
1602 
1603 	if (handle->offset == 0) {
1604 		if (!buffer)
1605 			/* This makes the buffer be freed by swsusp_free() */
1606 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1607 
1608 		if (!buffer)
1609 			return -ENOMEM;
1610 
1611 		handle->buffer = buffer;
1612 	}
1613 	handle->sync_read = 1;
1614 	if (handle->prev < handle->cur) {
1615 		if (handle->prev == 0) {
1616 			error = load_header(buffer);
1617 			if (error)
1618 				return error;
1619 
1620 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1621 			if (error)
1622 				return error;
1623 
1624 		} else if (handle->prev <= nr_meta_pages) {
1625 			unpack_orig_pfns(buffer, &copy_bm);
1626 			if (handle->prev == nr_meta_pages) {
1627 				error = prepare_image(&orig_bm, &copy_bm);
1628 				if (error)
1629 					return error;
1630 
1631 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1632 				memory_bm_position_reset(&orig_bm);
1633 				restore_pblist = NULL;
1634 				handle->buffer = get_buffer(&orig_bm, &ca);
1635 				handle->sync_read = 0;
1636 				if (!handle->buffer)
1637 					return -ENOMEM;
1638 			}
1639 		} else {
1640 			copy_last_highmem_page();
1641 			handle->buffer = get_buffer(&orig_bm, &ca);
1642 			if (handle->buffer != buffer)
1643 				handle->sync_read = 0;
1644 		}
1645 		handle->prev = handle->cur;
1646 	}
1647 	handle->buf_offset = handle->cur_offset;
1648 	if (handle->cur_offset + count >= PAGE_SIZE) {
1649 		count = PAGE_SIZE - handle->cur_offset;
1650 		handle->cur_offset = 0;
1651 		handle->cur++;
1652 	} else {
1653 		handle->cur_offset += count;
1654 	}
1655 	handle->offset += count;
1656 	return count;
1657 }
1658 
1659 /**
1660  *	snapshot_write_finalize - must be called after the last call to
1661  *	snapshot_write_next() in case the last page in the image happens
1662  *	to be a highmem page and its contents should be stored in the
1663  *	highmem.  Additionally, it releases the memory that will not be
1664  *	used any more.
1665  */
1666 
1667 void snapshot_write_finalize(struct snapshot_handle *handle)
1668 {
1669 	copy_last_highmem_page();
1670 	/* Free only if we have loaded the image entirely */
1671 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1672 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1673 		free_highmem_data();
1674 	}
1675 }
1676 
1677 int snapshot_image_loaded(struct snapshot_handle *handle)
1678 {
1679 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1680 			handle->cur <= nr_meta_pages + nr_copy_pages);
1681 }
1682 
1683 #ifdef CONFIG_HIGHMEM
1684 /* Assumes that @buf is ready and points to a "safe" page */
1685 static inline void
1686 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1687 {
1688 	void *kaddr1, *kaddr2;
1689 
1690 	kaddr1 = kmap_atomic(p1, KM_USER0);
1691 	kaddr2 = kmap_atomic(p2, KM_USER1);
1692 	memcpy(buf, kaddr1, PAGE_SIZE);
1693 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
1694 	memcpy(kaddr2, buf, PAGE_SIZE);
1695 	kunmap_atomic(kaddr1, KM_USER0);
1696 	kunmap_atomic(kaddr2, KM_USER1);
1697 }
1698 
1699 /**
1700  *	restore_highmem - for each highmem page that was allocated before
1701  *	the suspend and included in the suspend image, and also has been
1702  *	allocated by the "resume" kernel swap its current (ie. "before
1703  *	resume") contents with the previous (ie. "before suspend") one.
1704  *
1705  *	If the resume eventually fails, we can call this function once
1706  *	again and restore the "before resume" highmem state.
1707  */
1708 
1709 int restore_highmem(void)
1710 {
1711 	struct highmem_pbe *pbe = highmem_pblist;
1712 	void *buf;
1713 
1714 	if (!pbe)
1715 		return 0;
1716 
1717 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1718 	if (!buf)
1719 		return -ENOMEM;
1720 
1721 	while (pbe) {
1722 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1723 		pbe = pbe->next;
1724 	}
1725 	free_image_page(buf, PG_UNSAFE_CLEAR);
1726 	return 0;
1727 }
1728 #endif /* CONFIG_HIGHMEM */
1729