xref: /linux/kernel/power/snapshot.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline int __must_check hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		return set_memory_ro((unsigned long)page_address, 1);
65 	return 0;
66 }
67 
68 static inline int hibernate_restore_unprotect_page(void *page_address)
69 {
70 	if (hibernate_restore_protection_active)
71 		return set_memory_rw((unsigned long)page_address, 1);
72 	return 0;
73 }
74 #else
75 static inline void hibernate_restore_protection_begin(void) {}
76 static inline void hibernate_restore_protection_end(void) {}
77 static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; }
78 static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; }
79 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
80 
81 
82 /*
83  * The calls to set_direct_map_*() should not fail because remapping a page
84  * here means that we only update protection bits in an existing PTE.
85  * It is still worth to have a warning here if something changes and this
86  * will no longer be the case.
87  */
88 static inline void hibernate_map_page(struct page *page)
89 {
90 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
91 		int ret = set_direct_map_default_noflush(page);
92 
93 		if (ret)
94 			pr_warn_once("Failed to remap page\n");
95 	} else {
96 		debug_pagealloc_map_pages(page, 1);
97 	}
98 }
99 
100 static inline void hibernate_unmap_page(struct page *page)
101 {
102 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
103 		unsigned long addr = (unsigned long)page_address(page);
104 		int ret  = set_direct_map_invalid_noflush(page);
105 
106 		if (ret)
107 			pr_warn_once("Failed to remap page\n");
108 
109 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
110 	} else {
111 		debug_pagealloc_unmap_pages(page, 1);
112 	}
113 }
114 
115 static int swsusp_page_is_free(struct page *);
116 static void swsusp_set_page_forbidden(struct page *);
117 static void swsusp_unset_page_forbidden(struct page *);
118 
119 /*
120  * Number of bytes to reserve for memory allocations made by device drivers
121  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
122  * cause image creation to fail (tunable via /sys/power/reserved_size).
123  */
124 unsigned long reserved_size;
125 
126 void __init hibernate_reserved_size_init(void)
127 {
128 	reserved_size = SPARE_PAGES * PAGE_SIZE;
129 }
130 
131 /*
132  * Preferred image size in bytes (tunable via /sys/power/image_size).
133  * When it is set to N, swsusp will do its best to ensure the image
134  * size will not exceed N bytes, but if that is impossible, it will
135  * try to create the smallest image possible.
136  */
137 unsigned long image_size;
138 
139 void __init hibernate_image_size_init(void)
140 {
141 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
142 }
143 
144 /*
145  * List of PBEs needed for restoring the pages that were allocated before
146  * the suspend and included in the suspend image, but have also been
147  * allocated by the "resume" kernel, so their contents cannot be written
148  * directly to their "original" page frames.
149  */
150 struct pbe *restore_pblist;
151 
152 /* struct linked_page is used to build chains of pages */
153 
154 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
155 
156 struct linked_page {
157 	struct linked_page *next;
158 	char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160 
161 /*
162  * List of "safe" pages (ie. pages that were not used by the image kernel
163  * before hibernation) that may be used as temporary storage for image kernel
164  * memory contents.
165  */
166 static struct linked_page *safe_pages_list;
167 
168 /* Pointer to an auxiliary buffer (1 page) */
169 static void *buffer;
170 
171 #define PG_ANY		0
172 #define PG_SAFE		1
173 #define PG_UNSAFE_CLEAR	1
174 #define PG_UNSAFE_KEEP	0
175 
176 static unsigned int allocated_unsafe_pages;
177 
178 /**
179  * get_image_page - Allocate a page for a hibernation image.
180  * @gfp_mask: GFP mask for the allocation.
181  * @safe_needed: Get pages that were not used before hibernation (restore only)
182  *
183  * During image restoration, for storing the PBE list and the image data, we can
184  * only use memory pages that do not conflict with the pages used before
185  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
186  * using allocated_unsafe_pages.
187  *
188  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
189  * swsusp_free() can release it.
190  */
191 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
192 {
193 	void *res;
194 
195 	res = (void *)get_zeroed_page(gfp_mask);
196 	if (safe_needed)
197 		while (res && swsusp_page_is_free(virt_to_page(res))) {
198 			/* The page is unsafe, mark it for swsusp_free() */
199 			swsusp_set_page_forbidden(virt_to_page(res));
200 			allocated_unsafe_pages++;
201 			res = (void *)get_zeroed_page(gfp_mask);
202 		}
203 	if (res) {
204 		swsusp_set_page_forbidden(virt_to_page(res));
205 		swsusp_set_page_free(virt_to_page(res));
206 	}
207 	return res;
208 }
209 
210 static void *__get_safe_page(gfp_t gfp_mask)
211 {
212 	if (safe_pages_list) {
213 		void *ret = safe_pages_list;
214 
215 		safe_pages_list = safe_pages_list->next;
216 		memset(ret, 0, PAGE_SIZE);
217 		return ret;
218 	}
219 	return get_image_page(gfp_mask, PG_SAFE);
220 }
221 
222 unsigned long get_safe_page(gfp_t gfp_mask)
223 {
224 	return (unsigned long)__get_safe_page(gfp_mask);
225 }
226 
227 static struct page *alloc_image_page(gfp_t gfp_mask)
228 {
229 	struct page *page;
230 
231 	page = alloc_page(gfp_mask);
232 	if (page) {
233 		swsusp_set_page_forbidden(page);
234 		swsusp_set_page_free(page);
235 	}
236 	return page;
237 }
238 
239 static void recycle_safe_page(void *page_address)
240 {
241 	struct linked_page *lp = page_address;
242 
243 	lp->next = safe_pages_list;
244 	safe_pages_list = lp;
245 }
246 
247 /**
248  * free_image_page - Free a page allocated for hibernation image.
249  * @addr: Address of the page to free.
250  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
251  *
252  * The page to free should have been allocated by get_image_page() (page flags
253  * set by it are affected).
254  */
255 static inline void free_image_page(void *addr, int clear_nosave_free)
256 {
257 	struct page *page;
258 
259 	BUG_ON(!virt_addr_valid(addr));
260 
261 	page = virt_to_page(addr);
262 
263 	swsusp_unset_page_forbidden(page);
264 	if (clear_nosave_free)
265 		swsusp_unset_page_free(page);
266 
267 	__free_page(page);
268 }
269 
270 static inline void free_list_of_pages(struct linked_page *list,
271 				      int clear_page_nosave)
272 {
273 	while (list) {
274 		struct linked_page *lp = list->next;
275 
276 		free_image_page(list, clear_page_nosave);
277 		list = lp;
278 	}
279 }
280 
281 /*
282  * struct chain_allocator is used for allocating small objects out of
283  * a linked list of pages called 'the chain'.
284  *
285  * The chain grows each time when there is no room for a new object in
286  * the current page.  The allocated objects cannot be freed individually.
287  * It is only possible to free them all at once, by freeing the entire
288  * chain.
289  *
290  * NOTE: The chain allocator may be inefficient if the allocated objects
291  * are not much smaller than PAGE_SIZE.
292  */
293 struct chain_allocator {
294 	struct linked_page *chain;	/* the chain */
295 	unsigned int used_space;	/* total size of objects allocated out
296 					   of the current page */
297 	gfp_t gfp_mask;		/* mask for allocating pages */
298 	int safe_needed;	/* if set, only "safe" pages are allocated */
299 };
300 
301 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
302 		       int safe_needed)
303 {
304 	ca->chain = NULL;
305 	ca->used_space = LINKED_PAGE_DATA_SIZE;
306 	ca->gfp_mask = gfp_mask;
307 	ca->safe_needed = safe_needed;
308 }
309 
310 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
311 {
312 	void *ret;
313 
314 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
315 		struct linked_page *lp;
316 
317 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
318 					get_image_page(ca->gfp_mask, PG_ANY);
319 		if (!lp)
320 			return NULL;
321 
322 		lp->next = ca->chain;
323 		ca->chain = lp;
324 		ca->used_space = 0;
325 	}
326 	ret = ca->chain->data + ca->used_space;
327 	ca->used_space += size;
328 	return ret;
329 }
330 
331 /*
332  * Data types related to memory bitmaps.
333  *
334  * Memory bitmap is a structure consisting of many linked lists of
335  * objects.  The main list's elements are of type struct zone_bitmap
336  * and each of them corresponds to one zone.  For each zone bitmap
337  * object there is a list of objects of type struct bm_block that
338  * represent each blocks of bitmap in which information is stored.
339  *
340  * struct memory_bitmap contains a pointer to the main list of zone
341  * bitmap objects, a struct bm_position used for browsing the bitmap,
342  * and a pointer to the list of pages used for allocating all of the
343  * zone bitmap objects and bitmap block objects.
344  *
345  * NOTE: It has to be possible to lay out the bitmap in memory
346  * using only allocations of order 0.  Additionally, the bitmap is
347  * designed to work with arbitrary number of zones (this is over the
348  * top for now, but let's avoid making unnecessary assumptions ;-).
349  *
350  * struct zone_bitmap contains a pointer to a list of bitmap block
351  * objects and a pointer to the bitmap block object that has been
352  * most recently used for setting bits.  Additionally, it contains the
353  * PFNs that correspond to the start and end of the represented zone.
354  *
355  * struct bm_block contains a pointer to the memory page in which
356  * information is stored (in the form of a block of bitmap)
357  * It also contains the pfns that correspond to the start and end of
358  * the represented memory area.
359  *
360  * The memory bitmap is organized as a radix tree to guarantee fast random
361  * access to the bits. There is one radix tree for each zone (as returned
362  * from create_mem_extents).
363  *
364  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
365  * two linked lists for the nodes of the tree, one for the inner nodes and
366  * one for the leave nodes. The linked leave nodes are used for fast linear
367  * access of the memory bitmap.
368  *
369  * The struct rtree_node represents one node of the radix tree.
370  */
371 
372 #define BM_END_OF_MAP	(~0UL)
373 
374 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
375 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
376 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
377 
378 /*
379  * struct rtree_node is a wrapper struct to link the nodes
380  * of the rtree together for easy linear iteration over
381  * bits and easy freeing
382  */
383 struct rtree_node {
384 	struct list_head list;
385 	unsigned long *data;
386 };
387 
388 /*
389  * struct mem_zone_bm_rtree represents a bitmap used for one
390  * populated memory zone.
391  */
392 struct mem_zone_bm_rtree {
393 	struct list_head list;		/* Link Zones together         */
394 	struct list_head nodes;		/* Radix Tree inner nodes      */
395 	struct list_head leaves;	/* Radix Tree leaves           */
396 	unsigned long start_pfn;	/* Zone start page frame       */
397 	unsigned long end_pfn;		/* Zone end page frame + 1     */
398 	struct rtree_node *rtree;	/* Radix Tree Root             */
399 	int levels;			/* Number of Radix Tree Levels */
400 	unsigned int blocks;		/* Number of Bitmap Blocks     */
401 };
402 
403 /* struct bm_position is used for browsing memory bitmaps */
404 
405 struct bm_position {
406 	struct mem_zone_bm_rtree *zone;
407 	struct rtree_node *node;
408 	unsigned long node_pfn;
409 	unsigned long cur_pfn;
410 	int node_bit;
411 };
412 
413 struct memory_bitmap {
414 	struct list_head zones;
415 	struct linked_page *p_list;	/* list of pages used to store zone
416 					   bitmap objects and bitmap block
417 					   objects */
418 	struct bm_position cur;	/* most recently used bit position */
419 };
420 
421 /* Functions that operate on memory bitmaps */
422 
423 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
424 #if BITS_PER_LONG == 32
425 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
426 #else
427 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
428 #endif
429 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
430 
431 /**
432  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
433  * @gfp_mask: GFP mask for the allocation.
434  * @safe_needed: Get pages not used before hibernation (restore only)
435  * @ca: Pointer to a linked list of pages ("a chain") to allocate from
436  * @list: Radix Tree node to add.
437  *
438  * This function is used to allocate inner nodes as well as the
439  * leave nodes of the radix tree. It also adds the node to the
440  * corresponding linked list passed in by the *list parameter.
441  */
442 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
443 					   struct chain_allocator *ca,
444 					   struct list_head *list)
445 {
446 	struct rtree_node *node;
447 
448 	node = chain_alloc(ca, sizeof(struct rtree_node));
449 	if (!node)
450 		return NULL;
451 
452 	node->data = get_image_page(gfp_mask, safe_needed);
453 	if (!node->data)
454 		return NULL;
455 
456 	list_add_tail(&node->list, list);
457 
458 	return node;
459 }
460 
461 /**
462  * add_rtree_block - Add a new leave node to the radix tree.
463  *
464  * The leave nodes need to be allocated in order to keep the leaves
465  * linked list in order. This is guaranteed by the zone->blocks
466  * counter.
467  */
468 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
469 			   int safe_needed, struct chain_allocator *ca)
470 {
471 	struct rtree_node *node, *block, **dst;
472 	unsigned int levels_needed, block_nr;
473 	int i;
474 
475 	block_nr = zone->blocks;
476 	levels_needed = 0;
477 
478 	/* How many levels do we need for this block nr? */
479 	while (block_nr) {
480 		levels_needed += 1;
481 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
482 	}
483 
484 	/* Make sure the rtree has enough levels */
485 	for (i = zone->levels; i < levels_needed; i++) {
486 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
487 					&zone->nodes);
488 		if (!node)
489 			return -ENOMEM;
490 
491 		node->data[0] = (unsigned long)zone->rtree;
492 		zone->rtree = node;
493 		zone->levels += 1;
494 	}
495 
496 	/* Allocate new block */
497 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
498 	if (!block)
499 		return -ENOMEM;
500 
501 	/* Now walk the rtree to insert the block */
502 	node = zone->rtree;
503 	dst = &zone->rtree;
504 	block_nr = zone->blocks;
505 	for (i = zone->levels; i > 0; i--) {
506 		int index;
507 
508 		if (!node) {
509 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
510 						&zone->nodes);
511 			if (!node)
512 				return -ENOMEM;
513 			*dst = node;
514 		}
515 
516 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
517 		index &= BM_RTREE_LEVEL_MASK;
518 		dst = (struct rtree_node **)&((*dst)->data[index]);
519 		node = *dst;
520 	}
521 
522 	zone->blocks += 1;
523 	*dst = block;
524 
525 	return 0;
526 }
527 
528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
529 			       int clear_nosave_free);
530 
531 /**
532  * create_zone_bm_rtree - Create a radix tree for one zone.
533  *
534  * Allocated the mem_zone_bm_rtree structure and initializes it.
535  * This function also allocated and builds the radix tree for the
536  * zone.
537  */
538 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
539 						      int safe_needed,
540 						      struct chain_allocator *ca,
541 						      unsigned long start,
542 						      unsigned long end)
543 {
544 	struct mem_zone_bm_rtree *zone;
545 	unsigned int i, nr_blocks;
546 	unsigned long pages;
547 
548 	pages = end - start;
549 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
550 	if (!zone)
551 		return NULL;
552 
553 	INIT_LIST_HEAD(&zone->nodes);
554 	INIT_LIST_HEAD(&zone->leaves);
555 	zone->start_pfn = start;
556 	zone->end_pfn = end;
557 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
558 
559 	for (i = 0; i < nr_blocks; i++) {
560 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
561 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
562 			return NULL;
563 		}
564 	}
565 
566 	return zone;
567 }
568 
569 /**
570  * free_zone_bm_rtree - Free the memory of the radix tree.
571  *
572  * Free all node pages of the radix tree. The mem_zone_bm_rtree
573  * structure itself is not freed here nor are the rtree_node
574  * structs.
575  */
576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
577 			       int clear_nosave_free)
578 {
579 	struct rtree_node *node;
580 
581 	list_for_each_entry(node, &zone->nodes, list)
582 		free_image_page(node->data, clear_nosave_free);
583 
584 	list_for_each_entry(node, &zone->leaves, list)
585 		free_image_page(node->data, clear_nosave_free);
586 }
587 
588 static void memory_bm_position_reset(struct memory_bitmap *bm)
589 {
590 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
591 				  list);
592 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
593 				  struct rtree_node, list);
594 	bm->cur.node_pfn = 0;
595 	bm->cur.cur_pfn = BM_END_OF_MAP;
596 	bm->cur.node_bit = 0;
597 }
598 
599 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
600 
601 struct mem_extent {
602 	struct list_head hook;
603 	unsigned long start;
604 	unsigned long end;
605 };
606 
607 /**
608  * free_mem_extents - Free a list of memory extents.
609  * @list: List of extents to free.
610  */
611 static void free_mem_extents(struct list_head *list)
612 {
613 	struct mem_extent *ext, *aux;
614 
615 	list_for_each_entry_safe(ext, aux, list, hook) {
616 		list_del(&ext->hook);
617 		kfree(ext);
618 	}
619 }
620 
621 /**
622  * create_mem_extents - Create a list of memory extents.
623  * @list: List to put the extents into.
624  * @gfp_mask: Mask to use for memory allocations.
625  *
626  * The extents represent contiguous ranges of PFNs.
627  */
628 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
629 {
630 	struct zone *zone;
631 
632 	INIT_LIST_HEAD(list);
633 
634 	for_each_populated_zone(zone) {
635 		unsigned long zone_start, zone_end;
636 		struct mem_extent *ext, *cur, *aux;
637 
638 		zone_start = zone->zone_start_pfn;
639 		zone_end = zone_end_pfn(zone);
640 
641 		list_for_each_entry(ext, list, hook)
642 			if (zone_start <= ext->end)
643 				break;
644 
645 		if (&ext->hook == list || zone_end < ext->start) {
646 			/* New extent is necessary */
647 			struct mem_extent *new_ext;
648 
649 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
650 			if (!new_ext) {
651 				free_mem_extents(list);
652 				return -ENOMEM;
653 			}
654 			new_ext->start = zone_start;
655 			new_ext->end = zone_end;
656 			list_add_tail(&new_ext->hook, &ext->hook);
657 			continue;
658 		}
659 
660 		/* Merge this zone's range of PFNs with the existing one */
661 		if (zone_start < ext->start)
662 			ext->start = zone_start;
663 		if (zone_end > ext->end)
664 			ext->end = zone_end;
665 
666 		/* More merging may be possible */
667 		cur = ext;
668 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
669 			if (zone_end < cur->start)
670 				break;
671 			if (zone_end < cur->end)
672 				ext->end = cur->end;
673 			list_del(&cur->hook);
674 			kfree(cur);
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 /**
682  * memory_bm_create - Allocate memory for a memory bitmap.
683  */
684 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
685 			    int safe_needed)
686 {
687 	struct chain_allocator ca;
688 	struct list_head mem_extents;
689 	struct mem_extent *ext;
690 	int error;
691 
692 	chain_init(&ca, gfp_mask, safe_needed);
693 	INIT_LIST_HEAD(&bm->zones);
694 
695 	error = create_mem_extents(&mem_extents, gfp_mask);
696 	if (error)
697 		return error;
698 
699 	list_for_each_entry(ext, &mem_extents, hook) {
700 		struct mem_zone_bm_rtree *zone;
701 
702 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
703 					    ext->start, ext->end);
704 		if (!zone) {
705 			error = -ENOMEM;
706 			goto Error;
707 		}
708 		list_add_tail(&zone->list, &bm->zones);
709 	}
710 
711 	bm->p_list = ca.chain;
712 	memory_bm_position_reset(bm);
713  Exit:
714 	free_mem_extents(&mem_extents);
715 	return error;
716 
717  Error:
718 	bm->p_list = ca.chain;
719 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
720 	goto Exit;
721 }
722 
723 /**
724  * memory_bm_free - Free memory occupied by the memory bitmap.
725  * @bm: Memory bitmap.
726  */
727 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
728 {
729 	struct mem_zone_bm_rtree *zone;
730 
731 	list_for_each_entry(zone, &bm->zones, list)
732 		free_zone_bm_rtree(zone, clear_nosave_free);
733 
734 	free_list_of_pages(bm->p_list, clear_nosave_free);
735 
736 	INIT_LIST_HEAD(&bm->zones);
737 }
738 
739 /**
740  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
741  *
742  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
743  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
744  *
745  * Walk the radix tree to find the page containing the bit that represents @pfn
746  * and return the position of the bit in @addr and @bit_nr.
747  */
748 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
749 			      void **addr, unsigned int *bit_nr)
750 {
751 	struct mem_zone_bm_rtree *curr, *zone;
752 	struct rtree_node *node;
753 	int i, block_nr;
754 
755 	zone = bm->cur.zone;
756 
757 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
758 		goto zone_found;
759 
760 	zone = NULL;
761 
762 	/* Find the right zone */
763 	list_for_each_entry(curr, &bm->zones, list) {
764 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
765 			zone = curr;
766 			break;
767 		}
768 	}
769 
770 	if (!zone)
771 		return -EFAULT;
772 
773 zone_found:
774 	/*
775 	 * We have found the zone. Now walk the radix tree to find the leaf node
776 	 * for our PFN.
777 	 */
778 
779 	/*
780 	 * If the zone we wish to scan is the current zone and the
781 	 * pfn falls into the current node then we do not need to walk
782 	 * the tree.
783 	 */
784 	node = bm->cur.node;
785 	if (zone == bm->cur.zone &&
786 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
787 		goto node_found;
788 
789 	node      = zone->rtree;
790 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
791 
792 	for (i = zone->levels; i > 0; i--) {
793 		int index;
794 
795 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
796 		index &= BM_RTREE_LEVEL_MASK;
797 		BUG_ON(node->data[index] == 0);
798 		node = (struct rtree_node *)node->data[index];
799 	}
800 
801 node_found:
802 	/* Update last position */
803 	bm->cur.zone = zone;
804 	bm->cur.node = node;
805 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
806 	bm->cur.cur_pfn = pfn;
807 
808 	/* Set return values */
809 	*addr = node->data;
810 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
811 
812 	return 0;
813 }
814 
815 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
816 {
817 	void *addr;
818 	unsigned int bit;
819 	int error;
820 
821 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
822 	BUG_ON(error);
823 	set_bit(bit, addr);
824 }
825 
826 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
827 {
828 	void *addr;
829 	unsigned int bit;
830 	int error;
831 
832 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
833 	if (!error)
834 		set_bit(bit, addr);
835 
836 	return error;
837 }
838 
839 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
840 {
841 	void *addr;
842 	unsigned int bit;
843 	int error;
844 
845 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
846 	BUG_ON(error);
847 	clear_bit(bit, addr);
848 }
849 
850 static void memory_bm_clear_current(struct memory_bitmap *bm)
851 {
852 	int bit;
853 
854 	bit = max(bm->cur.node_bit - 1, 0);
855 	clear_bit(bit, bm->cur.node->data);
856 }
857 
858 static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
859 {
860 	return bm->cur.cur_pfn;
861 }
862 
863 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
864 {
865 	void *addr;
866 	unsigned int bit;
867 	int error;
868 
869 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
870 	BUG_ON(error);
871 	return test_bit(bit, addr);
872 }
873 
874 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
875 {
876 	void *addr;
877 	unsigned int bit;
878 
879 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
880 }
881 
882 /*
883  * rtree_next_node - Jump to the next leaf node.
884  *
885  * Set the position to the beginning of the next node in the
886  * memory bitmap. This is either the next node in the current
887  * zone's radix tree or the first node in the radix tree of the
888  * next zone.
889  *
890  * Return true if there is a next node, false otherwise.
891  */
892 static bool rtree_next_node(struct memory_bitmap *bm)
893 {
894 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
895 		bm->cur.node = list_entry(bm->cur.node->list.next,
896 					  struct rtree_node, list);
897 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
898 		bm->cur.node_bit  = 0;
899 		touch_softlockup_watchdog();
900 		return true;
901 	}
902 
903 	/* No more nodes, goto next zone */
904 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
905 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
906 				  struct mem_zone_bm_rtree, list);
907 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
908 					  struct rtree_node, list);
909 		bm->cur.node_pfn = 0;
910 		bm->cur.node_bit = 0;
911 		return true;
912 	}
913 
914 	/* No more zones */
915 	return false;
916 }
917 
918 /**
919  * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
920  * @bm: Memory bitmap.
921  *
922  * Starting from the last returned position this function searches for the next
923  * set bit in @bm and returns the PFN represented by it.  If no more bits are
924  * set, BM_END_OF_MAP is returned.
925  *
926  * It is required to run memory_bm_position_reset() before the first call to
927  * this function for the given memory bitmap.
928  */
929 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
930 {
931 	unsigned long bits, pfn, pages;
932 	int bit;
933 
934 	do {
935 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
936 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
937 		bit	  = find_next_bit(bm->cur.node->data, bits,
938 					  bm->cur.node_bit);
939 		if (bit < bits) {
940 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
941 			bm->cur.node_bit = bit + 1;
942 			bm->cur.cur_pfn = pfn;
943 			return pfn;
944 		}
945 	} while (rtree_next_node(bm));
946 
947 	bm->cur.cur_pfn = BM_END_OF_MAP;
948 	return BM_END_OF_MAP;
949 }
950 
951 /*
952  * This structure represents a range of page frames the contents of which
953  * should not be saved during hibernation.
954  */
955 struct nosave_region {
956 	struct list_head list;
957 	unsigned long start_pfn;
958 	unsigned long end_pfn;
959 };
960 
961 static LIST_HEAD(nosave_regions);
962 
963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
964 {
965 	struct rtree_node *node;
966 
967 	list_for_each_entry(node, &zone->nodes, list)
968 		recycle_safe_page(node->data);
969 
970 	list_for_each_entry(node, &zone->leaves, list)
971 		recycle_safe_page(node->data);
972 }
973 
974 static void memory_bm_recycle(struct memory_bitmap *bm)
975 {
976 	struct mem_zone_bm_rtree *zone;
977 	struct linked_page *p_list;
978 
979 	list_for_each_entry(zone, &bm->zones, list)
980 		recycle_zone_bm_rtree(zone);
981 
982 	p_list = bm->p_list;
983 	while (p_list) {
984 		struct linked_page *lp = p_list;
985 
986 		p_list = lp->next;
987 		recycle_safe_page(lp);
988 	}
989 }
990 
991 /**
992  * register_nosave_region - Register a region of unsaveable memory.
993  *
994  * Register a range of page frames the contents of which should not be saved
995  * during hibernation (to be used in the early initialization code).
996  */
997 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
998 {
999 	struct nosave_region *region;
1000 
1001 	if (start_pfn >= end_pfn)
1002 		return;
1003 
1004 	if (!list_empty(&nosave_regions)) {
1005 		/* Try to extend the previous region (they should be sorted) */
1006 		region = list_entry(nosave_regions.prev,
1007 					struct nosave_region, list);
1008 		if (region->end_pfn == start_pfn) {
1009 			region->end_pfn = end_pfn;
1010 			goto Report;
1011 		}
1012 	}
1013 	/* This allocation cannot fail */
1014 	region = memblock_alloc(sizeof(struct nosave_region),
1015 				SMP_CACHE_BYTES);
1016 	if (!region)
1017 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1018 		      sizeof(struct nosave_region));
1019 	region->start_pfn = start_pfn;
1020 	region->end_pfn = end_pfn;
1021 	list_add_tail(&region->list, &nosave_regions);
1022  Report:
1023 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1024 		(unsigned long long) start_pfn << PAGE_SHIFT,
1025 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1026 }
1027 
1028 /*
1029  * Set bits in this map correspond to the page frames the contents of which
1030  * should not be saved during the suspend.
1031  */
1032 static struct memory_bitmap *forbidden_pages_map;
1033 
1034 /* Set bits in this map correspond to free page frames. */
1035 static struct memory_bitmap *free_pages_map;
1036 
1037 /*
1038  * Each page frame allocated for creating the image is marked by setting the
1039  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1040  */
1041 
1042 void swsusp_set_page_free(struct page *page)
1043 {
1044 	if (free_pages_map)
1045 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1046 }
1047 
1048 static int swsusp_page_is_free(struct page *page)
1049 {
1050 	return free_pages_map ?
1051 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1052 }
1053 
1054 void swsusp_unset_page_free(struct page *page)
1055 {
1056 	if (free_pages_map)
1057 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1058 }
1059 
1060 static void swsusp_set_page_forbidden(struct page *page)
1061 {
1062 	if (forbidden_pages_map)
1063 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1064 }
1065 
1066 int swsusp_page_is_forbidden(struct page *page)
1067 {
1068 	return forbidden_pages_map ?
1069 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1070 }
1071 
1072 static void swsusp_unset_page_forbidden(struct page *page)
1073 {
1074 	if (forbidden_pages_map)
1075 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1076 }
1077 
1078 /**
1079  * mark_nosave_pages - Mark pages that should not be saved.
1080  * @bm: Memory bitmap.
1081  *
1082  * Set the bits in @bm that correspond to the page frames the contents of which
1083  * should not be saved.
1084  */
1085 static void mark_nosave_pages(struct memory_bitmap *bm)
1086 {
1087 	struct nosave_region *region;
1088 
1089 	if (list_empty(&nosave_regions))
1090 		return;
1091 
1092 	list_for_each_entry(region, &nosave_regions, list) {
1093 		unsigned long pfn;
1094 
1095 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1096 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1097 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1098 				- 1);
1099 
1100 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1101 			if (pfn_valid(pfn)) {
1102 				/*
1103 				 * It is safe to ignore the result of
1104 				 * mem_bm_set_bit_check() here, since we won't
1105 				 * touch the PFNs for which the error is
1106 				 * returned anyway.
1107 				 */
1108 				mem_bm_set_bit_check(bm, pfn);
1109 			}
1110 	}
1111 }
1112 
1113 /**
1114  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1115  *
1116  * Create bitmaps needed for marking page frames that should not be saved and
1117  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1118  * only modified if everything goes well, because we don't want the bits to be
1119  * touched before both bitmaps are set up.
1120  */
1121 int create_basic_memory_bitmaps(void)
1122 {
1123 	struct memory_bitmap *bm1, *bm2;
1124 	int error;
1125 
1126 	if (forbidden_pages_map && free_pages_map)
1127 		return 0;
1128 	else
1129 		BUG_ON(forbidden_pages_map || free_pages_map);
1130 
1131 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1132 	if (!bm1)
1133 		return -ENOMEM;
1134 
1135 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1136 	if (error)
1137 		goto Free_first_object;
1138 
1139 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1140 	if (!bm2)
1141 		goto Free_first_bitmap;
1142 
1143 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1144 	if (error)
1145 		goto Free_second_object;
1146 
1147 	forbidden_pages_map = bm1;
1148 	free_pages_map = bm2;
1149 	mark_nosave_pages(forbidden_pages_map);
1150 
1151 	pr_debug("Basic memory bitmaps created\n");
1152 
1153 	return 0;
1154 
1155  Free_second_object:
1156 	kfree(bm2);
1157  Free_first_bitmap:
1158 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1159  Free_first_object:
1160 	kfree(bm1);
1161 	return -ENOMEM;
1162 }
1163 
1164 /**
1165  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1166  *
1167  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1168  * auxiliary pointers are necessary so that the bitmaps themselves are not
1169  * referred to while they are being freed.
1170  */
1171 void free_basic_memory_bitmaps(void)
1172 {
1173 	struct memory_bitmap *bm1, *bm2;
1174 
1175 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1176 		return;
1177 
1178 	bm1 = forbidden_pages_map;
1179 	bm2 = free_pages_map;
1180 	forbidden_pages_map = NULL;
1181 	free_pages_map = NULL;
1182 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1183 	kfree(bm1);
1184 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1185 	kfree(bm2);
1186 
1187 	pr_debug("Basic memory bitmaps freed\n");
1188 }
1189 
1190 static void clear_or_poison_free_page(struct page *page)
1191 {
1192 	if (page_poisoning_enabled_static())
1193 		__kernel_poison_pages(page, 1);
1194 	else if (want_init_on_free())
1195 		clear_highpage(page);
1196 }
1197 
1198 void clear_or_poison_free_pages(void)
1199 {
1200 	struct memory_bitmap *bm = free_pages_map;
1201 	unsigned long pfn;
1202 
1203 	if (WARN_ON(!(free_pages_map)))
1204 		return;
1205 
1206 	if (page_poisoning_enabled() || want_init_on_free()) {
1207 		memory_bm_position_reset(bm);
1208 		pfn = memory_bm_next_pfn(bm);
1209 		while (pfn != BM_END_OF_MAP) {
1210 			if (pfn_valid(pfn))
1211 				clear_or_poison_free_page(pfn_to_page(pfn));
1212 
1213 			pfn = memory_bm_next_pfn(bm);
1214 		}
1215 		memory_bm_position_reset(bm);
1216 		pr_info("free pages cleared after restore\n");
1217 	}
1218 }
1219 
1220 /**
1221  * snapshot_additional_pages - Estimate the number of extra pages needed.
1222  * @zone: Memory zone to carry out the computation for.
1223  *
1224  * Estimate the number of additional pages needed for setting up a hibernation
1225  * image data structures for @zone (usually, the returned value is greater than
1226  * the exact number).
1227  */
1228 unsigned int snapshot_additional_pages(struct zone *zone)
1229 {
1230 	unsigned int rtree, nodes;
1231 
1232 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1233 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1234 			      LINKED_PAGE_DATA_SIZE);
1235 	while (nodes > 1) {
1236 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1237 		rtree += nodes;
1238 	}
1239 
1240 	return 2 * rtree;
1241 }
1242 
1243 /*
1244  * Touch the watchdog for every WD_PAGE_COUNT pages.
1245  */
1246 #define WD_PAGE_COUNT	(128*1024)
1247 
1248 static void mark_free_pages(struct zone *zone)
1249 {
1250 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1251 	unsigned long flags;
1252 	unsigned int order, t;
1253 	struct page *page;
1254 
1255 	if (zone_is_empty(zone))
1256 		return;
1257 
1258 	spin_lock_irqsave(&zone->lock, flags);
1259 
1260 	max_zone_pfn = zone_end_pfn(zone);
1261 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1262 		if (pfn_valid(pfn)) {
1263 			page = pfn_to_page(pfn);
1264 
1265 			if (!--page_count) {
1266 				touch_nmi_watchdog();
1267 				page_count = WD_PAGE_COUNT;
1268 			}
1269 
1270 			if (page_zone(page) != zone)
1271 				continue;
1272 
1273 			if (!swsusp_page_is_forbidden(page))
1274 				swsusp_unset_page_free(page);
1275 		}
1276 
1277 	for_each_migratetype_order(order, t) {
1278 		list_for_each_entry(page,
1279 				&zone->free_area[order].free_list[t], buddy_list) {
1280 			unsigned long i;
1281 
1282 			pfn = page_to_pfn(page);
1283 			for (i = 0; i < (1UL << order); i++) {
1284 				if (!--page_count) {
1285 					touch_nmi_watchdog();
1286 					page_count = WD_PAGE_COUNT;
1287 				}
1288 				swsusp_set_page_free(pfn_to_page(pfn + i));
1289 			}
1290 		}
1291 	}
1292 	spin_unlock_irqrestore(&zone->lock, flags);
1293 }
1294 
1295 #ifdef CONFIG_HIGHMEM
1296 /**
1297  * count_free_highmem_pages - Compute the total number of free highmem pages.
1298  *
1299  * The returned number is system-wide.
1300  */
1301 static unsigned int count_free_highmem_pages(void)
1302 {
1303 	struct zone *zone;
1304 	unsigned int cnt = 0;
1305 
1306 	for_each_populated_zone(zone)
1307 		if (is_highmem(zone))
1308 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1309 
1310 	return cnt;
1311 }
1312 
1313 /**
1314  * saveable_highmem_page - Check if a highmem page is saveable.
1315  *
1316  * Determine whether a highmem page should be included in a hibernation image.
1317  *
1318  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1319  * and it isn't part of a free chunk of pages.
1320  */
1321 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1322 {
1323 	struct page *page;
1324 
1325 	if (!pfn_valid(pfn))
1326 		return NULL;
1327 
1328 	page = pfn_to_online_page(pfn);
1329 	if (!page || page_zone(page) != zone)
1330 		return NULL;
1331 
1332 	BUG_ON(!PageHighMem(page));
1333 
1334 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1335 		return NULL;
1336 
1337 	if (PageReserved(page) || PageOffline(page))
1338 		return NULL;
1339 
1340 	if (page_is_guard(page))
1341 		return NULL;
1342 
1343 	return page;
1344 }
1345 
1346 /**
1347  * count_highmem_pages - Compute the total number of saveable highmem pages.
1348  */
1349 static unsigned int count_highmem_pages(void)
1350 {
1351 	struct zone *zone;
1352 	unsigned int n = 0;
1353 
1354 	for_each_populated_zone(zone) {
1355 		unsigned long pfn, max_zone_pfn;
1356 
1357 		if (!is_highmem(zone))
1358 			continue;
1359 
1360 		mark_free_pages(zone);
1361 		max_zone_pfn = zone_end_pfn(zone);
1362 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1363 			if (saveable_highmem_page(zone, pfn))
1364 				n++;
1365 	}
1366 	return n;
1367 }
1368 #else
1369 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1370 {
1371 	return NULL;
1372 }
1373 #endif /* CONFIG_HIGHMEM */
1374 
1375 /**
1376  * saveable_page - Check if the given page is saveable.
1377  *
1378  * Determine whether a non-highmem page should be included in a hibernation
1379  * image.
1380  *
1381  * We should save the page if it isn't Nosave, and is not in the range
1382  * of pages statically defined as 'unsaveable', and it isn't part of
1383  * a free chunk of pages.
1384  */
1385 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1386 {
1387 	struct page *page;
1388 
1389 	if (!pfn_valid(pfn))
1390 		return NULL;
1391 
1392 	page = pfn_to_online_page(pfn);
1393 	if (!page || page_zone(page) != zone)
1394 		return NULL;
1395 
1396 	BUG_ON(PageHighMem(page));
1397 
1398 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1399 		return NULL;
1400 
1401 	if (PageOffline(page))
1402 		return NULL;
1403 
1404 	if (PageReserved(page)
1405 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1406 		return NULL;
1407 
1408 	if (page_is_guard(page))
1409 		return NULL;
1410 
1411 	return page;
1412 }
1413 
1414 /**
1415  * count_data_pages - Compute the total number of saveable non-highmem pages.
1416  */
1417 static unsigned int count_data_pages(void)
1418 {
1419 	struct zone *zone;
1420 	unsigned long pfn, max_zone_pfn;
1421 	unsigned int n = 0;
1422 
1423 	for_each_populated_zone(zone) {
1424 		if (is_highmem(zone))
1425 			continue;
1426 
1427 		mark_free_pages(zone);
1428 		max_zone_pfn = zone_end_pfn(zone);
1429 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1430 			if (saveable_page(zone, pfn))
1431 				n++;
1432 	}
1433 	return n;
1434 }
1435 
1436 /*
1437  * This is needed, because copy_page and memcpy are not usable for copying
1438  * task structs. Returns true if the page was filled with only zeros,
1439  * otherwise false.
1440  */
1441 static inline bool do_copy_page(long *dst, long *src)
1442 {
1443 	long z = 0;
1444 	int n;
1445 
1446 	for (n = PAGE_SIZE / sizeof(long); n; n--) {
1447 		z |= *src;
1448 		*dst++ = *src++;
1449 	}
1450 	return !z;
1451 }
1452 
1453 /**
1454  * safe_copy_page - Copy a page in a safe way.
1455  *
1456  * Check if the page we are going to copy is marked as present in the kernel
1457  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1458  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1459  * always returns 'true'. Returns true if the page was entirely composed of
1460  * zeros, otherwise it will return false.
1461  */
1462 static bool safe_copy_page(void *dst, struct page *s_page)
1463 {
1464 	bool zeros_only;
1465 
1466 	if (kernel_page_present(s_page)) {
1467 		zeros_only = do_copy_page(dst, page_address(s_page));
1468 	} else {
1469 		hibernate_map_page(s_page);
1470 		zeros_only = do_copy_page(dst, page_address(s_page));
1471 		hibernate_unmap_page(s_page);
1472 	}
1473 	return zeros_only;
1474 }
1475 
1476 #ifdef CONFIG_HIGHMEM
1477 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1478 {
1479 	return is_highmem(zone) ?
1480 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1481 }
1482 
1483 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1484 {
1485 	struct page *s_page, *d_page;
1486 	void *src, *dst;
1487 	bool zeros_only;
1488 
1489 	s_page = pfn_to_page(src_pfn);
1490 	d_page = pfn_to_page(dst_pfn);
1491 	if (PageHighMem(s_page)) {
1492 		src = kmap_local_page(s_page);
1493 		dst = kmap_local_page(d_page);
1494 		zeros_only = do_copy_page(dst, src);
1495 		kunmap_local(dst);
1496 		kunmap_local(src);
1497 	} else {
1498 		if (PageHighMem(d_page)) {
1499 			/*
1500 			 * The page pointed to by src may contain some kernel
1501 			 * data modified by kmap_atomic()
1502 			 */
1503 			zeros_only = safe_copy_page(buffer, s_page);
1504 			dst = kmap_local_page(d_page);
1505 			copy_page(dst, buffer);
1506 			kunmap_local(dst);
1507 		} else {
1508 			zeros_only = safe_copy_page(page_address(d_page), s_page);
1509 		}
1510 	}
1511 	return zeros_only;
1512 }
1513 #else
1514 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1515 
1516 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1517 {
1518 	return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1519 				pfn_to_page(src_pfn));
1520 }
1521 #endif /* CONFIG_HIGHMEM */
1522 
1523 /*
1524  * Copy data pages will copy all pages into pages pulled from the copy_bm.
1525  * If a page was entirely filled with zeros it will be marked in the zero_bm.
1526  *
1527  * Returns the number of pages copied.
1528  */
1529 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1530 			    struct memory_bitmap *orig_bm,
1531 			    struct memory_bitmap *zero_bm)
1532 {
1533 	unsigned long copied_pages = 0;
1534 	struct zone *zone;
1535 	unsigned long pfn, copy_pfn;
1536 
1537 	for_each_populated_zone(zone) {
1538 		unsigned long max_zone_pfn;
1539 
1540 		mark_free_pages(zone);
1541 		max_zone_pfn = zone_end_pfn(zone);
1542 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1543 			if (page_is_saveable(zone, pfn))
1544 				memory_bm_set_bit(orig_bm, pfn);
1545 	}
1546 	memory_bm_position_reset(orig_bm);
1547 	memory_bm_position_reset(copy_bm);
1548 	copy_pfn = memory_bm_next_pfn(copy_bm);
1549 	for(;;) {
1550 		pfn = memory_bm_next_pfn(orig_bm);
1551 		if (unlikely(pfn == BM_END_OF_MAP))
1552 			break;
1553 		if (copy_data_page(copy_pfn, pfn)) {
1554 			memory_bm_set_bit(zero_bm, pfn);
1555 			/* Use this copy_pfn for a page that is not full of zeros */
1556 			continue;
1557 		}
1558 		copied_pages++;
1559 		copy_pfn = memory_bm_next_pfn(copy_bm);
1560 	}
1561 	return copied_pages;
1562 }
1563 
1564 /* Total number of image pages */
1565 static unsigned int nr_copy_pages;
1566 /* Number of pages needed for saving the original pfns of the image pages */
1567 static unsigned int nr_meta_pages;
1568 /* Number of zero pages */
1569 static unsigned int nr_zero_pages;
1570 
1571 /*
1572  * Numbers of normal and highmem page frames allocated for hibernation image
1573  * before suspending devices.
1574  */
1575 static unsigned int alloc_normal, alloc_highmem;
1576 /*
1577  * Memory bitmap used for marking saveable pages (during hibernation) or
1578  * hibernation image pages (during restore)
1579  */
1580 static struct memory_bitmap orig_bm;
1581 /*
1582  * Memory bitmap used during hibernation for marking allocated page frames that
1583  * will contain copies of saveable pages.  During restore it is initially used
1584  * for marking hibernation image pages, but then the set bits from it are
1585  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1586  * used for marking "safe" highmem pages, but it has to be reinitialized for
1587  * this purpose.
1588  */
1589 static struct memory_bitmap copy_bm;
1590 
1591 /* Memory bitmap which tracks which saveable pages were zero filled. */
1592 static struct memory_bitmap zero_bm;
1593 
1594 /**
1595  * swsusp_free - Free pages allocated for hibernation image.
1596  *
1597  * Image pages are allocated before snapshot creation, so they need to be
1598  * released after resume.
1599  */
1600 void swsusp_free(void)
1601 {
1602 	unsigned long fb_pfn, fr_pfn;
1603 
1604 	if (!forbidden_pages_map || !free_pages_map)
1605 		goto out;
1606 
1607 	memory_bm_position_reset(forbidden_pages_map);
1608 	memory_bm_position_reset(free_pages_map);
1609 
1610 loop:
1611 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1612 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1613 
1614 	/*
1615 	 * Find the next bit set in both bitmaps. This is guaranteed to
1616 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1617 	 */
1618 	do {
1619 		if (fb_pfn < fr_pfn)
1620 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1621 		if (fr_pfn < fb_pfn)
1622 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1623 	} while (fb_pfn != fr_pfn);
1624 
1625 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1626 		struct page *page = pfn_to_page(fr_pfn);
1627 
1628 		memory_bm_clear_current(forbidden_pages_map);
1629 		memory_bm_clear_current(free_pages_map);
1630 		hibernate_restore_unprotect_page(page_address(page));
1631 		__free_page(page);
1632 		goto loop;
1633 	}
1634 
1635 out:
1636 	nr_copy_pages = 0;
1637 	nr_meta_pages = 0;
1638 	nr_zero_pages = 0;
1639 	restore_pblist = NULL;
1640 	buffer = NULL;
1641 	alloc_normal = 0;
1642 	alloc_highmem = 0;
1643 	hibernate_restore_protection_end();
1644 }
1645 
1646 /* Helper functions used for the shrinking of memory. */
1647 
1648 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1649 
1650 /**
1651  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1652  * @nr_pages: Number of page frames to allocate.
1653  * @mask: GFP flags to use for the allocation.
1654  *
1655  * Return value: Number of page frames actually allocated
1656  */
1657 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1658 {
1659 	unsigned long nr_alloc = 0;
1660 
1661 	while (nr_pages > 0) {
1662 		struct page *page;
1663 
1664 		page = alloc_image_page(mask);
1665 		if (!page)
1666 			break;
1667 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1668 		if (PageHighMem(page))
1669 			alloc_highmem++;
1670 		else
1671 			alloc_normal++;
1672 		nr_pages--;
1673 		nr_alloc++;
1674 	}
1675 
1676 	return nr_alloc;
1677 }
1678 
1679 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1680 					      unsigned long avail_normal)
1681 {
1682 	unsigned long alloc;
1683 
1684 	if (avail_normal <= alloc_normal)
1685 		return 0;
1686 
1687 	alloc = avail_normal - alloc_normal;
1688 	if (nr_pages < alloc)
1689 		alloc = nr_pages;
1690 
1691 	return preallocate_image_pages(alloc, GFP_IMAGE);
1692 }
1693 
1694 #ifdef CONFIG_HIGHMEM
1695 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1696 {
1697 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1698 }
1699 
1700 /**
1701  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1702  */
1703 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1704 {
1705 	return div64_u64(x * multiplier, base);
1706 }
1707 
1708 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1709 						  unsigned long highmem,
1710 						  unsigned long total)
1711 {
1712 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1713 
1714 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1715 }
1716 #else /* CONFIG_HIGHMEM */
1717 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1718 {
1719 	return 0;
1720 }
1721 
1722 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1723 							 unsigned long highmem,
1724 							 unsigned long total)
1725 {
1726 	return 0;
1727 }
1728 #endif /* CONFIG_HIGHMEM */
1729 
1730 /**
1731  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1732  */
1733 static unsigned long free_unnecessary_pages(void)
1734 {
1735 	unsigned long save, to_free_normal, to_free_highmem, free;
1736 
1737 	save = count_data_pages();
1738 	if (alloc_normal >= save) {
1739 		to_free_normal = alloc_normal - save;
1740 		save = 0;
1741 	} else {
1742 		to_free_normal = 0;
1743 		save -= alloc_normal;
1744 	}
1745 	save += count_highmem_pages();
1746 	if (alloc_highmem >= save) {
1747 		to_free_highmem = alloc_highmem - save;
1748 	} else {
1749 		to_free_highmem = 0;
1750 		save -= alloc_highmem;
1751 		if (to_free_normal > save)
1752 			to_free_normal -= save;
1753 		else
1754 			to_free_normal = 0;
1755 	}
1756 	free = to_free_normal + to_free_highmem;
1757 
1758 	memory_bm_position_reset(&copy_bm);
1759 
1760 	while (to_free_normal > 0 || to_free_highmem > 0) {
1761 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1762 		struct page *page = pfn_to_page(pfn);
1763 
1764 		if (PageHighMem(page)) {
1765 			if (!to_free_highmem)
1766 				continue;
1767 			to_free_highmem--;
1768 			alloc_highmem--;
1769 		} else {
1770 			if (!to_free_normal)
1771 				continue;
1772 			to_free_normal--;
1773 			alloc_normal--;
1774 		}
1775 		memory_bm_clear_bit(&copy_bm, pfn);
1776 		swsusp_unset_page_forbidden(page);
1777 		swsusp_unset_page_free(page);
1778 		__free_page(page);
1779 	}
1780 
1781 	return free;
1782 }
1783 
1784 /**
1785  * minimum_image_size - Estimate the minimum acceptable size of an image.
1786  * @saveable: Number of saveable pages in the system.
1787  *
1788  * We want to avoid attempting to free too much memory too hard, so estimate the
1789  * minimum acceptable size of a hibernation image to use as the lower limit for
1790  * preallocating memory.
1791  *
1792  * We assume that the minimum image size should be proportional to
1793  *
1794  * [number of saveable pages] - [number of pages that can be freed in theory]
1795  *
1796  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1797  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1798  */
1799 static unsigned long minimum_image_size(unsigned long saveable)
1800 {
1801 	unsigned long size;
1802 
1803 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1804 		+ global_node_page_state(NR_ACTIVE_ANON)
1805 		+ global_node_page_state(NR_INACTIVE_ANON)
1806 		+ global_node_page_state(NR_ACTIVE_FILE)
1807 		+ global_node_page_state(NR_INACTIVE_FILE);
1808 
1809 	return saveable <= size ? 0 : saveable - size;
1810 }
1811 
1812 /**
1813  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1814  *
1815  * To create a hibernation image it is necessary to make a copy of every page
1816  * frame in use.  We also need a number of page frames to be free during
1817  * hibernation for allocations made while saving the image and for device
1818  * drivers, in case they need to allocate memory from their hibernation
1819  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1820  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1821  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1822  * total number of available page frames and allocate at least
1823  *
1824  * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1825  *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1826  *
1827  * of them, which corresponds to the maximum size of a hibernation image.
1828  *
1829  * If image_size is set below the number following from the above formula,
1830  * the preallocation of memory is continued until the total number of saveable
1831  * pages in the system is below the requested image size or the minimum
1832  * acceptable image size returned by minimum_image_size(), whichever is greater.
1833  */
1834 int hibernate_preallocate_memory(void)
1835 {
1836 	struct zone *zone;
1837 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1838 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1839 	ktime_t start, stop;
1840 	int error;
1841 
1842 	pr_info("Preallocating image memory\n");
1843 	start = ktime_get();
1844 
1845 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1846 	if (error) {
1847 		pr_err("Cannot allocate original bitmap\n");
1848 		goto err_out;
1849 	}
1850 
1851 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1852 	if (error) {
1853 		pr_err("Cannot allocate copy bitmap\n");
1854 		goto err_out;
1855 	}
1856 
1857 	error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1858 	if (error) {
1859 		pr_err("Cannot allocate zero bitmap\n");
1860 		goto err_out;
1861 	}
1862 
1863 	alloc_normal = 0;
1864 	alloc_highmem = 0;
1865 	nr_zero_pages = 0;
1866 
1867 	/* Count the number of saveable data pages. */
1868 	save_highmem = count_highmem_pages();
1869 	saveable = count_data_pages();
1870 
1871 	/*
1872 	 * Compute the total number of page frames we can use (count) and the
1873 	 * number of pages needed for image metadata (size).
1874 	 */
1875 	count = saveable;
1876 	saveable += save_highmem;
1877 	highmem = save_highmem;
1878 	size = 0;
1879 	for_each_populated_zone(zone) {
1880 		size += snapshot_additional_pages(zone);
1881 		if (is_highmem(zone))
1882 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1883 		else
1884 			count += zone_page_state(zone, NR_FREE_PAGES);
1885 	}
1886 	avail_normal = count;
1887 	count += highmem;
1888 	count -= totalreserve_pages;
1889 
1890 	/* Compute the maximum number of saveable pages to leave in memory. */
1891 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1892 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1893 	/* Compute the desired number of image pages specified by image_size. */
1894 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1895 	if (size > max_size)
1896 		size = max_size;
1897 	/*
1898 	 * If the desired number of image pages is at least as large as the
1899 	 * current number of saveable pages in memory, allocate page frames for
1900 	 * the image and we're done.
1901 	 */
1902 	if (size >= saveable) {
1903 		pages = preallocate_image_highmem(save_highmem);
1904 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1905 		goto out;
1906 	}
1907 
1908 	/* Estimate the minimum size of the image. */
1909 	pages = minimum_image_size(saveable);
1910 	/*
1911 	 * To avoid excessive pressure on the normal zone, leave room in it to
1912 	 * accommodate an image of the minimum size (unless it's already too
1913 	 * small, in which case don't preallocate pages from it at all).
1914 	 */
1915 	if (avail_normal > pages)
1916 		avail_normal -= pages;
1917 	else
1918 		avail_normal = 0;
1919 	if (size < pages)
1920 		size = min_t(unsigned long, pages, max_size);
1921 
1922 	/*
1923 	 * Let the memory management subsystem know that we're going to need a
1924 	 * large number of page frames to allocate and make it free some memory.
1925 	 * NOTE: If this is not done, performance will be hurt badly in some
1926 	 * test cases.
1927 	 */
1928 	shrink_all_memory(saveable - size);
1929 
1930 	/*
1931 	 * The number of saveable pages in memory was too high, so apply some
1932 	 * pressure to decrease it.  First, make room for the largest possible
1933 	 * image and fail if that doesn't work.  Next, try to decrease the size
1934 	 * of the image as much as indicated by 'size' using allocations from
1935 	 * highmem and non-highmem zones separately.
1936 	 */
1937 	pages_highmem = preallocate_image_highmem(highmem / 2);
1938 	alloc = count - max_size;
1939 	if (alloc > pages_highmem)
1940 		alloc -= pages_highmem;
1941 	else
1942 		alloc = 0;
1943 	pages = preallocate_image_memory(alloc, avail_normal);
1944 	if (pages < alloc) {
1945 		/* We have exhausted non-highmem pages, try highmem. */
1946 		alloc -= pages;
1947 		pages += pages_highmem;
1948 		pages_highmem = preallocate_image_highmem(alloc);
1949 		if (pages_highmem < alloc) {
1950 			pr_err("Image allocation is %lu pages short\n",
1951 				alloc - pages_highmem);
1952 			goto err_out;
1953 		}
1954 		pages += pages_highmem;
1955 		/*
1956 		 * size is the desired number of saveable pages to leave in
1957 		 * memory, so try to preallocate (all memory - size) pages.
1958 		 */
1959 		alloc = (count - pages) - size;
1960 		pages += preallocate_image_highmem(alloc);
1961 	} else {
1962 		/*
1963 		 * There are approximately max_size saveable pages at this point
1964 		 * and we want to reduce this number down to size.
1965 		 */
1966 		alloc = max_size - size;
1967 		size = preallocate_highmem_fraction(alloc, highmem, count);
1968 		pages_highmem += size;
1969 		alloc -= size;
1970 		size = preallocate_image_memory(alloc, avail_normal);
1971 		pages_highmem += preallocate_image_highmem(alloc - size);
1972 		pages += pages_highmem + size;
1973 	}
1974 
1975 	/*
1976 	 * We only need as many page frames for the image as there are saveable
1977 	 * pages in memory, but we have allocated more.  Release the excessive
1978 	 * ones now.
1979 	 */
1980 	pages -= free_unnecessary_pages();
1981 
1982  out:
1983 	stop = ktime_get();
1984 	pr_info("Allocated %lu pages for snapshot\n", pages);
1985 	swsusp_show_speed(start, stop, pages, "Allocated");
1986 
1987 	return 0;
1988 
1989  err_out:
1990 	swsusp_free();
1991 	return -ENOMEM;
1992 }
1993 
1994 #ifdef CONFIG_HIGHMEM
1995 /**
1996  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1997  *
1998  * Compute the number of non-highmem pages that will be necessary for creating
1999  * copies of highmem pages.
2000  */
2001 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
2002 {
2003 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
2004 
2005 	if (free_highmem >= nr_highmem)
2006 		nr_highmem = 0;
2007 	else
2008 		nr_highmem -= free_highmem;
2009 
2010 	return nr_highmem;
2011 }
2012 #else
2013 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
2014 #endif /* CONFIG_HIGHMEM */
2015 
2016 /**
2017  * enough_free_mem - Check if there is enough free memory for the image.
2018  */
2019 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
2020 {
2021 	struct zone *zone;
2022 	unsigned int free = alloc_normal;
2023 
2024 	for_each_populated_zone(zone)
2025 		if (!is_highmem(zone))
2026 			free += zone_page_state(zone, NR_FREE_PAGES);
2027 
2028 	nr_pages += count_pages_for_highmem(nr_highmem);
2029 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2030 		 nr_pages, PAGES_FOR_IO, free);
2031 
2032 	return free > nr_pages + PAGES_FOR_IO;
2033 }
2034 
2035 #ifdef CONFIG_HIGHMEM
2036 /**
2037  * get_highmem_buffer - Allocate a buffer for highmem pages.
2038  *
2039  * If there are some highmem pages in the hibernation image, we may need a
2040  * buffer to copy them and/or load their data.
2041  */
2042 static inline int get_highmem_buffer(int safe_needed)
2043 {
2044 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
2045 	return buffer ? 0 : -ENOMEM;
2046 }
2047 
2048 /**
2049  * alloc_highmem_pages - Allocate some highmem pages for the image.
2050  *
2051  * Try to allocate as many pages as needed, but if the number of free highmem
2052  * pages is less than that, allocate them all.
2053  */
2054 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2055 					       unsigned int nr_highmem)
2056 {
2057 	unsigned int to_alloc = count_free_highmem_pages();
2058 
2059 	if (to_alloc > nr_highmem)
2060 		to_alloc = nr_highmem;
2061 
2062 	nr_highmem -= to_alloc;
2063 	while (to_alloc-- > 0) {
2064 		struct page *page;
2065 
2066 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2067 		memory_bm_set_bit(bm, page_to_pfn(page));
2068 	}
2069 	return nr_highmem;
2070 }
2071 #else
2072 static inline int get_highmem_buffer(int safe_needed) { return 0; }
2073 
2074 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2075 					       unsigned int n) { return 0; }
2076 #endif /* CONFIG_HIGHMEM */
2077 
2078 /**
2079  * swsusp_alloc - Allocate memory for hibernation image.
2080  *
2081  * We first try to allocate as many highmem pages as there are
2082  * saveable highmem pages in the system.  If that fails, we allocate
2083  * non-highmem pages for the copies of the remaining highmem ones.
2084  *
2085  * In this approach it is likely that the copies of highmem pages will
2086  * also be located in the high memory, because of the way in which
2087  * copy_data_pages() works.
2088  */
2089 static int swsusp_alloc(struct memory_bitmap *copy_bm,
2090 			unsigned int nr_pages, unsigned int nr_highmem)
2091 {
2092 	if (nr_highmem > 0) {
2093 		if (get_highmem_buffer(PG_ANY))
2094 			goto err_out;
2095 		if (nr_highmem > alloc_highmem) {
2096 			nr_highmem -= alloc_highmem;
2097 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2098 		}
2099 	}
2100 	if (nr_pages > alloc_normal) {
2101 		nr_pages -= alloc_normal;
2102 		while (nr_pages-- > 0) {
2103 			struct page *page;
2104 
2105 			page = alloc_image_page(GFP_ATOMIC);
2106 			if (!page)
2107 				goto err_out;
2108 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2109 		}
2110 	}
2111 
2112 	return 0;
2113 
2114  err_out:
2115 	swsusp_free();
2116 	return -ENOMEM;
2117 }
2118 
2119 asmlinkage __visible int swsusp_save(void)
2120 {
2121 	unsigned int nr_pages, nr_highmem;
2122 
2123 	pr_info("Creating image:\n");
2124 
2125 	drain_local_pages(NULL);
2126 	nr_pages = count_data_pages();
2127 	nr_highmem = count_highmem_pages();
2128 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2129 
2130 	if (!enough_free_mem(nr_pages, nr_highmem)) {
2131 		pr_err("Not enough free memory\n");
2132 		return -ENOMEM;
2133 	}
2134 
2135 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2136 		pr_err("Memory allocation failed\n");
2137 		return -ENOMEM;
2138 	}
2139 
2140 	/*
2141 	 * During allocating of suspend pagedir, new cold pages may appear.
2142 	 * Kill them.
2143 	 */
2144 	drain_local_pages(NULL);
2145 	nr_copy_pages = copy_data_pages(&copy_bm, &orig_bm, &zero_bm);
2146 
2147 	/*
2148 	 * End of critical section. From now on, we can write to memory,
2149 	 * but we should not touch disk. This specially means we must _not_
2150 	 * touch swap space! Except we must write out our image of course.
2151 	 */
2152 	nr_pages += nr_highmem;
2153 	/* We don't actually copy the zero pages */
2154 	nr_zero_pages = nr_pages - nr_copy_pages;
2155 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2156 
2157 	pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages);
2158 
2159 	return 0;
2160 }
2161 
2162 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2163 static int init_header_complete(struct swsusp_info *info)
2164 {
2165 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2166 	info->version_code = LINUX_VERSION_CODE;
2167 	return 0;
2168 }
2169 
2170 static const char *check_image_kernel(struct swsusp_info *info)
2171 {
2172 	if (info->version_code != LINUX_VERSION_CODE)
2173 		return "kernel version";
2174 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2175 		return "system type";
2176 	if (strcmp(info->uts.release,init_utsname()->release))
2177 		return "kernel release";
2178 	if (strcmp(info->uts.version,init_utsname()->version))
2179 		return "version";
2180 	if (strcmp(info->uts.machine,init_utsname()->machine))
2181 		return "machine";
2182 	return NULL;
2183 }
2184 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2185 
2186 unsigned long snapshot_get_image_size(void)
2187 {
2188 	return nr_copy_pages + nr_meta_pages + 1;
2189 }
2190 
2191 static int init_header(struct swsusp_info *info)
2192 {
2193 	memset(info, 0, sizeof(struct swsusp_info));
2194 	info->num_physpages = get_num_physpages();
2195 	info->image_pages = nr_copy_pages;
2196 	info->pages = snapshot_get_image_size();
2197 	info->size = info->pages;
2198 	info->size <<= PAGE_SHIFT;
2199 	return init_header_complete(info);
2200 }
2201 
2202 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2203 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2204 
2205 /**
2206  * pack_pfns - Prepare PFNs for saving.
2207  * @bm: Memory bitmap.
2208  * @buf: Memory buffer to store the PFNs in.
2209  * @zero_bm: Memory bitmap containing PFNs of zero pages.
2210  *
2211  * PFNs corresponding to set bits in @bm are stored in the area of memory
2212  * pointed to by @buf (1 page at a time). Pages which were filled with only
2213  * zeros will have the highest bit set in the packed format to distinguish
2214  * them from PFNs which will be contained in the image file.
2215  */
2216 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2217 		struct memory_bitmap *zero_bm)
2218 {
2219 	int j;
2220 
2221 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2222 		buf[j] = memory_bm_next_pfn(bm);
2223 		if (unlikely(buf[j] == BM_END_OF_MAP))
2224 			break;
2225 		if (memory_bm_test_bit(zero_bm, buf[j]))
2226 			buf[j] |= ENCODED_PFN_ZERO_FLAG;
2227 	}
2228 }
2229 
2230 /**
2231  * snapshot_read_next - Get the address to read the next image page from.
2232  * @handle: Snapshot handle to be used for the reading.
2233  *
2234  * On the first call, @handle should point to a zeroed snapshot_handle
2235  * structure.  The structure gets populated then and a pointer to it should be
2236  * passed to this function every next time.
2237  *
2238  * On success, the function returns a positive number.  Then, the caller
2239  * is allowed to read up to the returned number of bytes from the memory
2240  * location computed by the data_of() macro.
2241  *
2242  * The function returns 0 to indicate the end of the data stream condition,
2243  * and negative numbers are returned on errors.  If that happens, the structure
2244  * pointed to by @handle is not updated and should not be used any more.
2245  */
2246 int snapshot_read_next(struct snapshot_handle *handle)
2247 {
2248 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2249 		return 0;
2250 
2251 	if (!buffer) {
2252 		/* This makes the buffer be freed by swsusp_free() */
2253 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2254 		if (!buffer)
2255 			return -ENOMEM;
2256 	}
2257 	if (!handle->cur) {
2258 		int error;
2259 
2260 		error = init_header((struct swsusp_info *)buffer);
2261 		if (error)
2262 			return error;
2263 		handle->buffer = buffer;
2264 		memory_bm_position_reset(&orig_bm);
2265 		memory_bm_position_reset(&copy_bm);
2266 	} else if (handle->cur <= nr_meta_pages) {
2267 		clear_page(buffer);
2268 		pack_pfns(buffer, &orig_bm, &zero_bm);
2269 	} else {
2270 		struct page *page;
2271 
2272 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2273 		if (PageHighMem(page)) {
2274 			/*
2275 			 * Highmem pages are copied to the buffer,
2276 			 * because we can't return with a kmapped
2277 			 * highmem page (we may not be called again).
2278 			 */
2279 			void *kaddr;
2280 
2281 			kaddr = kmap_atomic(page);
2282 			copy_page(buffer, kaddr);
2283 			kunmap_atomic(kaddr);
2284 			handle->buffer = buffer;
2285 		} else {
2286 			handle->buffer = page_address(page);
2287 		}
2288 	}
2289 	handle->cur++;
2290 	return PAGE_SIZE;
2291 }
2292 
2293 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2294 				    struct memory_bitmap *src)
2295 {
2296 	unsigned long pfn;
2297 
2298 	memory_bm_position_reset(src);
2299 	pfn = memory_bm_next_pfn(src);
2300 	while (pfn != BM_END_OF_MAP) {
2301 		memory_bm_set_bit(dst, pfn);
2302 		pfn = memory_bm_next_pfn(src);
2303 	}
2304 }
2305 
2306 /**
2307  * mark_unsafe_pages - Mark pages that were used before hibernation.
2308  *
2309  * Mark the pages that cannot be used for storing the image during restoration,
2310  * because they conflict with the pages that had been used before hibernation.
2311  */
2312 static void mark_unsafe_pages(struct memory_bitmap *bm)
2313 {
2314 	unsigned long pfn;
2315 
2316 	/* Clear the "free"/"unsafe" bit for all PFNs */
2317 	memory_bm_position_reset(free_pages_map);
2318 	pfn = memory_bm_next_pfn(free_pages_map);
2319 	while (pfn != BM_END_OF_MAP) {
2320 		memory_bm_clear_current(free_pages_map);
2321 		pfn = memory_bm_next_pfn(free_pages_map);
2322 	}
2323 
2324 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2325 	duplicate_memory_bitmap(free_pages_map, bm);
2326 
2327 	allocated_unsafe_pages = 0;
2328 }
2329 
2330 static int check_header(struct swsusp_info *info)
2331 {
2332 	const char *reason;
2333 
2334 	reason = check_image_kernel(info);
2335 	if (!reason && info->num_physpages != get_num_physpages())
2336 		reason = "memory size";
2337 	if (reason) {
2338 		pr_err("Image mismatch: %s\n", reason);
2339 		return -EPERM;
2340 	}
2341 	return 0;
2342 }
2343 
2344 /**
2345  * load_header - Check the image header and copy the data from it.
2346  */
2347 static int load_header(struct swsusp_info *info)
2348 {
2349 	int error;
2350 
2351 	restore_pblist = NULL;
2352 	error = check_header(info);
2353 	if (!error) {
2354 		nr_copy_pages = info->image_pages;
2355 		nr_meta_pages = info->pages - info->image_pages - 1;
2356 	}
2357 	return error;
2358 }
2359 
2360 /**
2361  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2362  * @bm: Memory bitmap.
2363  * @buf: Area of memory containing the PFNs.
2364  * @zero_bm: Memory bitmap with the zero PFNs marked.
2365  *
2366  * For each element of the array pointed to by @buf (1 page at a time), set the
2367  * corresponding bit in @bm. If the page was originally populated with only
2368  * zeros then a corresponding bit will also be set in @zero_bm.
2369  */
2370 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2371 		struct memory_bitmap *zero_bm)
2372 {
2373 	unsigned long decoded_pfn;
2374         bool zero;
2375 	int j;
2376 
2377 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2378 		if (unlikely(buf[j] == BM_END_OF_MAP))
2379 			break;
2380 
2381 		zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2382 		decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2383 		if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2384 			memory_bm_set_bit(bm, decoded_pfn);
2385 			if (zero) {
2386 				memory_bm_set_bit(zero_bm, decoded_pfn);
2387 				nr_zero_pages++;
2388 			}
2389 		} else {
2390 			if (!pfn_valid(decoded_pfn))
2391 				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2392 				       (unsigned long long)PFN_PHYS(decoded_pfn));
2393 			return -EFAULT;
2394 		}
2395 	}
2396 
2397 	return 0;
2398 }
2399 
2400 #ifdef CONFIG_HIGHMEM
2401 /*
2402  * struct highmem_pbe is used for creating the list of highmem pages that
2403  * should be restored atomically during the resume from disk, because the page
2404  * frames they have occupied before the suspend are in use.
2405  */
2406 struct highmem_pbe {
2407 	struct page *copy_page;	/* data is here now */
2408 	struct page *orig_page;	/* data was here before the suspend */
2409 	struct highmem_pbe *next;
2410 };
2411 
2412 /*
2413  * List of highmem PBEs needed for restoring the highmem pages that were
2414  * allocated before the suspend and included in the suspend image, but have
2415  * also been allocated by the "resume" kernel, so their contents cannot be
2416  * written directly to their "original" page frames.
2417  */
2418 static struct highmem_pbe *highmem_pblist;
2419 
2420 /**
2421  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2422  * @bm: Memory bitmap.
2423  *
2424  * The bits in @bm that correspond to image pages are assumed to be set.
2425  */
2426 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2427 {
2428 	unsigned long pfn;
2429 	unsigned int cnt = 0;
2430 
2431 	memory_bm_position_reset(bm);
2432 	pfn = memory_bm_next_pfn(bm);
2433 	while (pfn != BM_END_OF_MAP) {
2434 		if (PageHighMem(pfn_to_page(pfn)))
2435 			cnt++;
2436 
2437 		pfn = memory_bm_next_pfn(bm);
2438 	}
2439 	return cnt;
2440 }
2441 
2442 static unsigned int safe_highmem_pages;
2443 
2444 static struct memory_bitmap *safe_highmem_bm;
2445 
2446 /**
2447  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2448  * @bm: Pointer to an uninitialized memory bitmap structure.
2449  * @nr_highmem_p: Pointer to the number of highmem image pages.
2450  *
2451  * Try to allocate as many highmem pages as there are highmem image pages
2452  * (@nr_highmem_p points to the variable containing the number of highmem image
2453  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2454  * hibernation image is restored entirely) have the corresponding bits set in
2455  * @bm (it must be uninitialized).
2456  *
2457  * NOTE: This function should not be called if there are no highmem image pages.
2458  */
2459 static int prepare_highmem_image(struct memory_bitmap *bm,
2460 				 unsigned int *nr_highmem_p)
2461 {
2462 	unsigned int to_alloc;
2463 
2464 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2465 		return -ENOMEM;
2466 
2467 	if (get_highmem_buffer(PG_SAFE))
2468 		return -ENOMEM;
2469 
2470 	to_alloc = count_free_highmem_pages();
2471 	if (to_alloc > *nr_highmem_p)
2472 		to_alloc = *nr_highmem_p;
2473 	else
2474 		*nr_highmem_p = to_alloc;
2475 
2476 	safe_highmem_pages = 0;
2477 	while (to_alloc-- > 0) {
2478 		struct page *page;
2479 
2480 		page = alloc_page(__GFP_HIGHMEM);
2481 		if (!swsusp_page_is_free(page)) {
2482 			/* The page is "safe", set its bit the bitmap */
2483 			memory_bm_set_bit(bm, page_to_pfn(page));
2484 			safe_highmem_pages++;
2485 		}
2486 		/* Mark the page as allocated */
2487 		swsusp_set_page_forbidden(page);
2488 		swsusp_set_page_free(page);
2489 	}
2490 	memory_bm_position_reset(bm);
2491 	safe_highmem_bm = bm;
2492 	return 0;
2493 }
2494 
2495 static struct page *last_highmem_page;
2496 
2497 /**
2498  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2499  *
2500  * For a given highmem image page get a buffer that suspend_write_next() should
2501  * return to its caller to write to.
2502  *
2503  * If the page is to be saved to its "original" page frame or a copy of
2504  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2505  * the copy of the page is to be made in normal memory, so the address of
2506  * the copy is returned.
2507  *
2508  * If @buffer is returned, the caller of suspend_write_next() will write
2509  * the page's contents to @buffer, so they will have to be copied to the
2510  * right location on the next call to suspend_write_next() and it is done
2511  * with the help of copy_last_highmem_page().  For this purpose, if
2512  * @buffer is returned, @last_highmem_page is set to the page to which
2513  * the data will have to be copied from @buffer.
2514  */
2515 static void *get_highmem_page_buffer(struct page *page,
2516 				     struct chain_allocator *ca)
2517 {
2518 	struct highmem_pbe *pbe;
2519 	void *kaddr;
2520 
2521 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2522 		/*
2523 		 * We have allocated the "original" page frame and we can
2524 		 * use it directly to store the loaded page.
2525 		 */
2526 		last_highmem_page = page;
2527 		return buffer;
2528 	}
2529 	/*
2530 	 * The "original" page frame has not been allocated and we have to
2531 	 * use a "safe" page frame to store the loaded page.
2532 	 */
2533 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2534 	if (!pbe) {
2535 		swsusp_free();
2536 		return ERR_PTR(-ENOMEM);
2537 	}
2538 	pbe->orig_page = page;
2539 	if (safe_highmem_pages > 0) {
2540 		struct page *tmp;
2541 
2542 		/* Copy of the page will be stored in high memory */
2543 		kaddr = buffer;
2544 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2545 		safe_highmem_pages--;
2546 		last_highmem_page = tmp;
2547 		pbe->copy_page = tmp;
2548 	} else {
2549 		/* Copy of the page will be stored in normal memory */
2550 		kaddr = __get_safe_page(ca->gfp_mask);
2551 		if (!kaddr)
2552 			return ERR_PTR(-ENOMEM);
2553 		pbe->copy_page = virt_to_page(kaddr);
2554 	}
2555 	pbe->next = highmem_pblist;
2556 	highmem_pblist = pbe;
2557 	return kaddr;
2558 }
2559 
2560 /**
2561  * copy_last_highmem_page - Copy most the most recent highmem image page.
2562  *
2563  * Copy the contents of a highmem image from @buffer, where the caller of
2564  * snapshot_write_next() has stored them, to the right location represented by
2565  * @last_highmem_page .
2566  */
2567 static void copy_last_highmem_page(void)
2568 {
2569 	if (last_highmem_page) {
2570 		void *dst;
2571 
2572 		dst = kmap_atomic(last_highmem_page);
2573 		copy_page(dst, buffer);
2574 		kunmap_atomic(dst);
2575 		last_highmem_page = NULL;
2576 	}
2577 }
2578 
2579 static inline int last_highmem_page_copied(void)
2580 {
2581 	return !last_highmem_page;
2582 }
2583 
2584 static inline void free_highmem_data(void)
2585 {
2586 	if (safe_highmem_bm)
2587 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2588 
2589 	if (buffer)
2590 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2591 }
2592 #else
2593 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2594 
2595 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2596 					unsigned int *nr_highmem_p) { return 0; }
2597 
2598 static inline void *get_highmem_page_buffer(struct page *page,
2599 					    struct chain_allocator *ca)
2600 {
2601 	return ERR_PTR(-EINVAL);
2602 }
2603 
2604 static inline void copy_last_highmem_page(void) {}
2605 static inline int last_highmem_page_copied(void) { return 1; }
2606 static inline void free_highmem_data(void) {}
2607 #endif /* CONFIG_HIGHMEM */
2608 
2609 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2610 
2611 /**
2612  * prepare_image - Make room for loading hibernation image.
2613  * @new_bm: Uninitialized memory bitmap structure.
2614  * @bm: Memory bitmap with unsafe pages marked.
2615  * @zero_bm: Memory bitmap containing the zero pages.
2616  *
2617  * Use @bm to mark the pages that will be overwritten in the process of
2618  * restoring the system memory state from the suspend image ("unsafe" pages)
2619  * and allocate memory for the image.
2620  *
2621  * The idea is to allocate a new memory bitmap first and then allocate
2622  * as many pages as needed for image data, but without specifying what those
2623  * pages will be used for just yet.  Instead, we mark them all as allocated and
2624  * create a lists of "safe" pages to be used later.  On systems with high
2625  * memory a list of "safe" highmem pages is created too.
2626  *
2627  * Because it was not known which pages were unsafe when @zero_bm was created,
2628  * make a copy of it and recreate it within safe pages.
2629  */
2630 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2631 		struct memory_bitmap *zero_bm)
2632 {
2633 	unsigned int nr_pages, nr_highmem;
2634 	struct memory_bitmap tmp;
2635 	struct linked_page *lp;
2636 	int error;
2637 
2638 	/* If there is no highmem, the buffer will not be necessary */
2639 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2640 	buffer = NULL;
2641 
2642 	nr_highmem = count_highmem_image_pages(bm);
2643 	mark_unsafe_pages(bm);
2644 
2645 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2646 	if (error)
2647 		goto Free;
2648 
2649 	duplicate_memory_bitmap(new_bm, bm);
2650 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2651 
2652 	/* Make a copy of zero_bm so it can be created in safe pages */
2653 	error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2654 	if (error)
2655 		goto Free;
2656 
2657 	duplicate_memory_bitmap(&tmp, zero_bm);
2658 	memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2659 
2660 	/* Recreate zero_bm in safe pages */
2661 	error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2662 	if (error)
2663 		goto Free;
2664 
2665 	duplicate_memory_bitmap(zero_bm, &tmp);
2666 	memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2667 	/* At this point zero_bm is in safe pages and it can be used for restoring. */
2668 
2669 	if (nr_highmem > 0) {
2670 		error = prepare_highmem_image(bm, &nr_highmem);
2671 		if (error)
2672 			goto Free;
2673 	}
2674 	/*
2675 	 * Reserve some safe pages for potential later use.
2676 	 *
2677 	 * NOTE: This way we make sure there will be enough safe pages for the
2678 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2679 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2680 	 *
2681 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2682 	 */
2683 	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2684 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2685 	while (nr_pages > 0) {
2686 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2687 		if (!lp) {
2688 			error = -ENOMEM;
2689 			goto Free;
2690 		}
2691 		lp->next = safe_pages_list;
2692 		safe_pages_list = lp;
2693 		nr_pages--;
2694 	}
2695 	/* Preallocate memory for the image */
2696 	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2697 	while (nr_pages > 0) {
2698 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2699 		if (!lp) {
2700 			error = -ENOMEM;
2701 			goto Free;
2702 		}
2703 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2704 			/* The page is "safe", add it to the list */
2705 			lp->next = safe_pages_list;
2706 			safe_pages_list = lp;
2707 		}
2708 		/* Mark the page as allocated */
2709 		swsusp_set_page_forbidden(virt_to_page(lp));
2710 		swsusp_set_page_free(virt_to_page(lp));
2711 		nr_pages--;
2712 	}
2713 	return 0;
2714 
2715  Free:
2716 	swsusp_free();
2717 	return error;
2718 }
2719 
2720 /**
2721  * get_buffer - Get the address to store the next image data page.
2722  *
2723  * Get the address that snapshot_write_next() should return to its caller to
2724  * write to.
2725  */
2726 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2727 {
2728 	struct pbe *pbe;
2729 	struct page *page;
2730 	unsigned long pfn = memory_bm_next_pfn(bm);
2731 
2732 	if (pfn == BM_END_OF_MAP)
2733 		return ERR_PTR(-EFAULT);
2734 
2735 	page = pfn_to_page(pfn);
2736 	if (PageHighMem(page))
2737 		return get_highmem_page_buffer(page, ca);
2738 
2739 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2740 		/*
2741 		 * We have allocated the "original" page frame and we can
2742 		 * use it directly to store the loaded page.
2743 		 */
2744 		return page_address(page);
2745 
2746 	/*
2747 	 * The "original" page frame has not been allocated and we have to
2748 	 * use a "safe" page frame to store the loaded page.
2749 	 */
2750 	pbe = chain_alloc(ca, sizeof(struct pbe));
2751 	if (!pbe) {
2752 		swsusp_free();
2753 		return ERR_PTR(-ENOMEM);
2754 	}
2755 	pbe->orig_address = page_address(page);
2756 	pbe->address = __get_safe_page(ca->gfp_mask);
2757 	if (!pbe->address)
2758 		return ERR_PTR(-ENOMEM);
2759 	pbe->next = restore_pblist;
2760 	restore_pblist = pbe;
2761 	return pbe->address;
2762 }
2763 
2764 /**
2765  * snapshot_write_next - Get the address to store the next image page.
2766  * @handle: Snapshot handle structure to guide the writing.
2767  *
2768  * On the first call, @handle should point to a zeroed snapshot_handle
2769  * structure.  The structure gets populated then and a pointer to it should be
2770  * passed to this function every next time.
2771  *
2772  * On success, the function returns a positive number.  Then, the caller
2773  * is allowed to write up to the returned number of bytes to the memory
2774  * location computed by the data_of() macro.
2775  *
2776  * The function returns 0 to indicate the "end of file" condition.  Negative
2777  * numbers are returned on errors, in which cases the structure pointed to by
2778  * @handle is not updated and should not be used any more.
2779  */
2780 int snapshot_write_next(struct snapshot_handle *handle)
2781 {
2782 	static struct chain_allocator ca;
2783 	int error;
2784 
2785 next:
2786 	/* Check if we have already loaded the entire image */
2787 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2788 		return 0;
2789 
2790 	if (!handle->cur) {
2791 		if (!buffer)
2792 			/* This makes the buffer be freed by swsusp_free() */
2793 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2794 
2795 		if (!buffer)
2796 			return -ENOMEM;
2797 
2798 		handle->buffer = buffer;
2799 	} else if (handle->cur == 1) {
2800 		error = load_header(buffer);
2801 		if (error)
2802 			return error;
2803 
2804 		safe_pages_list = NULL;
2805 
2806 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2807 		if (error)
2808 			return error;
2809 
2810 		error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
2811 		if (error)
2812 			return error;
2813 
2814 		nr_zero_pages = 0;
2815 
2816 		hibernate_restore_protection_begin();
2817 	} else if (handle->cur <= nr_meta_pages + 1) {
2818 		error = unpack_orig_pfns(buffer, &copy_bm, &zero_bm);
2819 		if (error)
2820 			return error;
2821 
2822 		if (handle->cur == nr_meta_pages + 1) {
2823 			error = prepare_image(&orig_bm, &copy_bm, &zero_bm);
2824 			if (error)
2825 				return error;
2826 
2827 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2828 			memory_bm_position_reset(&orig_bm);
2829 			memory_bm_position_reset(&zero_bm);
2830 			restore_pblist = NULL;
2831 			handle->buffer = get_buffer(&orig_bm, &ca);
2832 			if (IS_ERR(handle->buffer))
2833 				return PTR_ERR(handle->buffer);
2834 		}
2835 	} else {
2836 		copy_last_highmem_page();
2837 		error = hibernate_restore_protect_page(handle->buffer);
2838 		if (error)
2839 			return error;
2840 		handle->buffer = get_buffer(&orig_bm, &ca);
2841 		if (IS_ERR(handle->buffer))
2842 			return PTR_ERR(handle->buffer);
2843 	}
2844 	handle->sync_read = (handle->buffer == buffer);
2845 	handle->cur++;
2846 
2847 	/* Zero pages were not included in the image, memset it and move on. */
2848 	if (handle->cur > nr_meta_pages + 1 &&
2849 	    memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2850 		memset(handle->buffer, 0, PAGE_SIZE);
2851 		goto next;
2852 	}
2853 
2854 	return PAGE_SIZE;
2855 }
2856 
2857 /**
2858  * snapshot_write_finalize - Complete the loading of a hibernation image.
2859  *
2860  * Must be called after the last call to snapshot_write_next() in case the last
2861  * page in the image happens to be a highmem page and its contents should be
2862  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2863  * necessary any more.
2864  */
2865 int snapshot_write_finalize(struct snapshot_handle *handle)
2866 {
2867 	int error;
2868 
2869 	copy_last_highmem_page();
2870 	error = hibernate_restore_protect_page(handle->buffer);
2871 	/* Do that only if we have loaded the image entirely */
2872 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2873 		memory_bm_recycle(&orig_bm);
2874 		free_highmem_data();
2875 	}
2876 	return error;
2877 }
2878 
2879 int snapshot_image_loaded(struct snapshot_handle *handle)
2880 {
2881 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2882 			handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2883 }
2884 
2885 #ifdef CONFIG_HIGHMEM
2886 /* Assumes that @buf is ready and points to a "safe" page */
2887 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2888 				       void *buf)
2889 {
2890 	void *kaddr1, *kaddr2;
2891 
2892 	kaddr1 = kmap_atomic(p1);
2893 	kaddr2 = kmap_atomic(p2);
2894 	copy_page(buf, kaddr1);
2895 	copy_page(kaddr1, kaddr2);
2896 	copy_page(kaddr2, buf);
2897 	kunmap_atomic(kaddr2);
2898 	kunmap_atomic(kaddr1);
2899 }
2900 
2901 /**
2902  * restore_highmem - Put highmem image pages into their original locations.
2903  *
2904  * For each highmem page that was in use before hibernation and is included in
2905  * the image, and also has been allocated by the "restore" kernel, swap its
2906  * current contents with the previous (ie. "before hibernation") ones.
2907  *
2908  * If the restore eventually fails, we can call this function once again and
2909  * restore the highmem state as seen by the restore kernel.
2910  */
2911 int restore_highmem(void)
2912 {
2913 	struct highmem_pbe *pbe = highmem_pblist;
2914 	void *buf;
2915 
2916 	if (!pbe)
2917 		return 0;
2918 
2919 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2920 	if (!buf)
2921 		return -ENOMEM;
2922 
2923 	while (pbe) {
2924 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2925 		pbe = pbe->next;
2926 	}
2927 	free_image_page(buf, PG_UNSAFE_CLEAR);
2928 	return 0;
2929 }
2930 #endif /* CONFIG_HIGHMEM */
2931