1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provide system snapshot/restore functionality. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * 8 * This file is released under the GPLv2, and is based on swsusp.c. 9 * 10 */ 11 12 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/suspend.h> 16 #include <linux/smp_lock.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/bootmem.h> 24 #include <linux/syscalls.h> 25 #include <linux/console.h> 26 #include <linux/highmem.h> 27 28 #include <asm/uaccess.h> 29 #include <asm/mmu_context.h> 30 #include <asm/pgtable.h> 31 #include <asm/tlbflush.h> 32 #include <asm/io.h> 33 34 #include "power.h" 35 36 struct pbe *pagedir_nosave; 37 unsigned int nr_copy_pages; 38 39 #ifdef CONFIG_HIGHMEM 40 unsigned int count_highmem_pages(void) 41 { 42 struct zone *zone; 43 unsigned long zone_pfn; 44 unsigned int n = 0; 45 46 for_each_zone (zone) 47 if (is_highmem(zone)) { 48 mark_free_pages(zone); 49 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; zone_pfn++) { 50 struct page *page; 51 unsigned long pfn = zone_pfn + zone->zone_start_pfn; 52 if (!pfn_valid(pfn)) 53 continue; 54 page = pfn_to_page(pfn); 55 if (PageReserved(page)) 56 continue; 57 if (PageNosaveFree(page)) 58 continue; 59 n++; 60 } 61 } 62 return n; 63 } 64 65 struct highmem_page { 66 char *data; 67 struct page *page; 68 struct highmem_page *next; 69 }; 70 71 static struct highmem_page *highmem_copy; 72 73 static int save_highmem_zone(struct zone *zone) 74 { 75 unsigned long zone_pfn; 76 mark_free_pages(zone); 77 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) { 78 struct page *page; 79 struct highmem_page *save; 80 void *kaddr; 81 unsigned long pfn = zone_pfn + zone->zone_start_pfn; 82 83 if (!(pfn%1000)) 84 printk("."); 85 if (!pfn_valid(pfn)) 86 continue; 87 page = pfn_to_page(pfn); 88 /* 89 * This condition results from rvmalloc() sans vmalloc_32() 90 * and architectural memory reservations. This should be 91 * corrected eventually when the cases giving rise to this 92 * are better understood. 93 */ 94 if (PageReserved(page)) 95 continue; 96 BUG_ON(PageNosave(page)); 97 if (PageNosaveFree(page)) 98 continue; 99 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC); 100 if (!save) 101 return -ENOMEM; 102 save->next = highmem_copy; 103 save->page = page; 104 save->data = (void *) get_zeroed_page(GFP_ATOMIC); 105 if (!save->data) { 106 kfree(save); 107 return -ENOMEM; 108 } 109 kaddr = kmap_atomic(page, KM_USER0); 110 memcpy(save->data, kaddr, PAGE_SIZE); 111 kunmap_atomic(kaddr, KM_USER0); 112 highmem_copy = save; 113 } 114 return 0; 115 } 116 117 int save_highmem(void) 118 { 119 struct zone *zone; 120 int res = 0; 121 122 pr_debug("swsusp: Saving Highmem\n"); 123 for_each_zone (zone) { 124 if (is_highmem(zone)) 125 res = save_highmem_zone(zone); 126 if (res) 127 return res; 128 } 129 return 0; 130 } 131 132 int restore_highmem(void) 133 { 134 printk("swsusp: Restoring Highmem\n"); 135 while (highmem_copy) { 136 struct highmem_page *save = highmem_copy; 137 void *kaddr; 138 highmem_copy = save->next; 139 140 kaddr = kmap_atomic(save->page, KM_USER0); 141 memcpy(kaddr, save->data, PAGE_SIZE); 142 kunmap_atomic(kaddr, KM_USER0); 143 free_page((long) save->data); 144 kfree(save); 145 } 146 return 0; 147 } 148 #endif 149 150 static int pfn_is_nosave(unsigned long pfn) 151 { 152 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT; 153 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT; 154 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn); 155 } 156 157 /** 158 * saveable - Determine whether a page should be cloned or not. 159 * @pfn: The page 160 * 161 * We save a page if it's Reserved, and not in the range of pages 162 * statically defined as 'unsaveable', or if it isn't reserved, and 163 * isn't part of a free chunk of pages. 164 */ 165 166 static int saveable(struct zone *zone, unsigned long *zone_pfn) 167 { 168 unsigned long pfn = *zone_pfn + zone->zone_start_pfn; 169 struct page *page; 170 171 if (!pfn_valid(pfn)) 172 return 0; 173 174 page = pfn_to_page(pfn); 175 BUG_ON(PageReserved(page) && PageNosave(page)); 176 if (PageNosave(page)) 177 return 0; 178 if (PageReserved(page) && pfn_is_nosave(pfn)) 179 return 0; 180 if (PageNosaveFree(page)) 181 return 0; 182 183 return 1; 184 } 185 186 unsigned int count_data_pages(void) 187 { 188 struct zone *zone; 189 unsigned long zone_pfn; 190 unsigned int n = 0; 191 192 for_each_zone (zone) { 193 if (is_highmem(zone)) 194 continue; 195 mark_free_pages(zone); 196 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 197 n += saveable(zone, &zone_pfn); 198 } 199 return n; 200 } 201 202 static void copy_data_pages(struct pbe *pblist) 203 { 204 struct zone *zone; 205 unsigned long zone_pfn; 206 struct pbe *pbe, *p; 207 208 pbe = pblist; 209 for_each_zone (zone) { 210 if (is_highmem(zone)) 211 continue; 212 mark_free_pages(zone); 213 /* This is necessary for swsusp_free() */ 214 for_each_pb_page (p, pblist) 215 SetPageNosaveFree(virt_to_page(p)); 216 for_each_pbe (p, pblist) 217 SetPageNosaveFree(virt_to_page(p->address)); 218 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) { 219 if (saveable(zone, &zone_pfn)) { 220 struct page *page; 221 page = pfn_to_page(zone_pfn + zone->zone_start_pfn); 222 BUG_ON(!pbe); 223 pbe->orig_address = (unsigned long)page_address(page); 224 /* copy_page is not usable for copying task structs. */ 225 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE); 226 pbe = pbe->next; 227 } 228 } 229 } 230 BUG_ON(pbe); 231 } 232 233 234 /** 235 * free_pagedir - free pages allocated with alloc_pagedir() 236 */ 237 238 void free_pagedir(struct pbe *pblist) 239 { 240 struct pbe *pbe; 241 242 while (pblist) { 243 pbe = (pblist + PB_PAGE_SKIP)->next; 244 ClearPageNosave(virt_to_page(pblist)); 245 ClearPageNosaveFree(virt_to_page(pblist)); 246 free_page((unsigned long)pblist); 247 pblist = pbe; 248 } 249 } 250 251 /** 252 * fill_pb_page - Create a list of PBEs on a given memory page 253 */ 254 255 static inline void fill_pb_page(struct pbe *pbpage) 256 { 257 struct pbe *p; 258 259 p = pbpage; 260 pbpage += PB_PAGE_SKIP; 261 do 262 p->next = p + 1; 263 while (++p < pbpage); 264 } 265 266 /** 267 * create_pbe_list - Create a list of PBEs on top of a given chain 268 * of memory pages allocated with alloc_pagedir() 269 */ 270 271 static inline void create_pbe_list(struct pbe *pblist, unsigned int nr_pages) 272 { 273 struct pbe *pbpage, *p; 274 unsigned int num = PBES_PER_PAGE; 275 276 for_each_pb_page (pbpage, pblist) { 277 if (num >= nr_pages) 278 break; 279 280 fill_pb_page(pbpage); 281 num += PBES_PER_PAGE; 282 } 283 if (pbpage) { 284 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++) 285 p->next = p + 1; 286 p->next = NULL; 287 } 288 } 289 290 /** 291 * On resume it is necessary to trace and eventually free the unsafe 292 * pages that have been allocated, because they are needed for I/O 293 * (on x86-64 we likely will "eat" these pages once again while 294 * creating the temporary page translation tables) 295 */ 296 297 struct eaten_page { 298 struct eaten_page *next; 299 char padding[PAGE_SIZE - sizeof(void *)]; 300 }; 301 302 static struct eaten_page *eaten_pages = NULL; 303 304 void release_eaten_pages(void) 305 { 306 struct eaten_page *p, *q; 307 308 p = eaten_pages; 309 while (p) { 310 q = p->next; 311 /* We don't want swsusp_free() to free this page again */ 312 ClearPageNosave(virt_to_page(p)); 313 free_page((unsigned long)p); 314 p = q; 315 } 316 eaten_pages = NULL; 317 } 318 319 /** 320 * @safe_needed - on resume, for storing the PBE list and the image, 321 * we can only use memory pages that do not conflict with the pages 322 * which had been used before suspend. 323 * 324 * The unsafe pages are marked with the PG_nosave_free flag 325 * 326 * Allocated but unusable (ie eaten) memory pages should be marked 327 * so that swsusp_free() can release them 328 */ 329 330 static inline void *alloc_image_page(gfp_t gfp_mask, int safe_needed) 331 { 332 void *res; 333 334 if (safe_needed) 335 do { 336 res = (void *)get_zeroed_page(gfp_mask); 337 if (res && PageNosaveFree(virt_to_page(res))) { 338 /* This is for swsusp_free() */ 339 SetPageNosave(virt_to_page(res)); 340 ((struct eaten_page *)res)->next = eaten_pages; 341 eaten_pages = res; 342 } 343 } while (res && PageNosaveFree(virt_to_page(res))); 344 else 345 res = (void *)get_zeroed_page(gfp_mask); 346 if (res) { 347 SetPageNosave(virt_to_page(res)); 348 SetPageNosaveFree(virt_to_page(res)); 349 } 350 return res; 351 } 352 353 unsigned long get_safe_page(gfp_t gfp_mask) 354 { 355 return (unsigned long)alloc_image_page(gfp_mask, 1); 356 } 357 358 /** 359 * alloc_pagedir - Allocate the page directory. 360 * 361 * First, determine exactly how many pages we need and 362 * allocate them. 363 * 364 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE 365 * struct pbe elements (pbes) and the last element in the page points 366 * to the next page. 367 * 368 * On each page we set up a list of struct_pbe elements. 369 */ 370 371 struct pbe *alloc_pagedir(unsigned int nr_pages, gfp_t gfp_mask, int safe_needed) 372 { 373 unsigned int num; 374 struct pbe *pblist, *pbe; 375 376 if (!nr_pages) 377 return NULL; 378 379 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages); 380 pblist = alloc_image_page(gfp_mask, safe_needed); 381 /* FIXME: rewrite this ugly loop */ 382 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages; 383 pbe = pbe->next, num += PBES_PER_PAGE) { 384 pbe += PB_PAGE_SKIP; 385 pbe->next = alloc_image_page(gfp_mask, safe_needed); 386 } 387 if (!pbe) { /* get_zeroed_page() failed */ 388 free_pagedir(pblist); 389 pblist = NULL; 390 } else 391 create_pbe_list(pblist, nr_pages); 392 return pblist; 393 } 394 395 /** 396 * Free pages we allocated for suspend. Suspend pages are alocated 397 * before atomic copy, so we need to free them after resume. 398 */ 399 400 void swsusp_free(void) 401 { 402 struct zone *zone; 403 unsigned long zone_pfn; 404 405 for_each_zone(zone) { 406 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 407 if (pfn_valid(zone_pfn + zone->zone_start_pfn)) { 408 struct page *page; 409 page = pfn_to_page(zone_pfn + zone->zone_start_pfn); 410 if (PageNosave(page) && PageNosaveFree(page)) { 411 ClearPageNosave(page); 412 ClearPageNosaveFree(page); 413 free_page((long) page_address(page)); 414 } 415 } 416 } 417 } 418 419 420 /** 421 * enough_free_mem - Make sure we enough free memory to snapshot. 422 * 423 * Returns TRUE or FALSE after checking the number of available 424 * free pages. 425 */ 426 427 static int enough_free_mem(unsigned int nr_pages) 428 { 429 struct zone *zone; 430 unsigned int n = 0; 431 432 for_each_zone (zone) 433 if (!is_highmem(zone)) 434 n += zone->free_pages; 435 pr_debug("swsusp: available memory: %u pages\n", n); 436 return n > (nr_pages + PAGES_FOR_IO + 437 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE); 438 } 439 440 int alloc_data_pages(struct pbe *pblist, gfp_t gfp_mask, int safe_needed) 441 { 442 struct pbe *p; 443 444 for_each_pbe (p, pblist) { 445 p->address = (unsigned long)alloc_image_page(gfp_mask, safe_needed); 446 if (!p->address) 447 return -ENOMEM; 448 } 449 return 0; 450 } 451 452 static struct pbe *swsusp_alloc(unsigned int nr_pages) 453 { 454 struct pbe *pblist; 455 456 if (!(pblist = alloc_pagedir(nr_pages, GFP_ATOMIC | __GFP_COLD, 0))) { 457 printk(KERN_ERR "suspend: Allocating pagedir failed.\n"); 458 return NULL; 459 } 460 461 if (alloc_data_pages(pblist, GFP_ATOMIC | __GFP_COLD, 0)) { 462 printk(KERN_ERR "suspend: Allocating image pages failed.\n"); 463 swsusp_free(); 464 return NULL; 465 } 466 467 return pblist; 468 } 469 470 asmlinkage int swsusp_save(void) 471 { 472 unsigned int nr_pages; 473 474 pr_debug("swsusp: critical section: \n"); 475 476 drain_local_pages(); 477 nr_pages = count_data_pages(); 478 printk("swsusp: Need to copy %u pages\n", nr_pages); 479 480 pr_debug("swsusp: pages needed: %u + %lu + %u, free: %u\n", 481 nr_pages, 482 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE, 483 PAGES_FOR_IO, nr_free_pages()); 484 485 if (!enough_free_mem(nr_pages)) { 486 printk(KERN_ERR "swsusp: Not enough free memory\n"); 487 return -ENOMEM; 488 } 489 490 pagedir_nosave = swsusp_alloc(nr_pages); 491 if (!pagedir_nosave) 492 return -ENOMEM; 493 494 /* During allocating of suspend pagedir, new cold pages may appear. 495 * Kill them. 496 */ 497 drain_local_pages(); 498 copy_data_pages(pagedir_nosave); 499 500 /* 501 * End of critical section. From now on, we can write to memory, 502 * but we should not touch disk. This specially means we must _not_ 503 * touch swap space! Except we must write out our image of course. 504 */ 505 506 nr_copy_pages = nr_pages; 507 508 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages); 509 return 0; 510 } 511