1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/smp_lock.h> 18 #include <linux/delay.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/kernel.h> 22 #include <linux/pm.h> 23 #include <linux/device.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/mmu_context.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <asm/io.h> 34 35 #include "power.h" 36 37 /* List of PBEs needed for restoring the pages that were allocated before 38 * the suspend and included in the suspend image, but have also been 39 * allocated by the "resume" kernel, so their contents cannot be written 40 * directly to their "original" page frames. 41 */ 42 struct pbe *restore_pblist; 43 44 /* Pointer to an auxiliary buffer (1 page) */ 45 static void *buffer; 46 47 /** 48 * @safe_needed - on resume, for storing the PBE list and the image, 49 * we can only use memory pages that do not conflict with the pages 50 * used before suspend. The unsafe pages have PageNosaveFree set 51 * and we count them using unsafe_pages. 52 * 53 * Each allocated image page is marked as PageNosave and PageNosaveFree 54 * so that swsusp_free() can release it. 55 */ 56 57 #define PG_ANY 0 58 #define PG_SAFE 1 59 #define PG_UNSAFE_CLEAR 1 60 #define PG_UNSAFE_KEEP 0 61 62 static unsigned int allocated_unsafe_pages; 63 64 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 65 { 66 void *res; 67 68 res = (void *)get_zeroed_page(gfp_mask); 69 if (safe_needed) 70 while (res && PageNosaveFree(virt_to_page(res))) { 71 /* The page is unsafe, mark it for swsusp_free() */ 72 SetPageNosave(virt_to_page(res)); 73 allocated_unsafe_pages++; 74 res = (void *)get_zeroed_page(gfp_mask); 75 } 76 if (res) { 77 SetPageNosave(virt_to_page(res)); 78 SetPageNosaveFree(virt_to_page(res)); 79 } 80 return res; 81 } 82 83 unsigned long get_safe_page(gfp_t gfp_mask) 84 { 85 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 86 } 87 88 static struct page *alloc_image_page(gfp_t gfp_mask) 89 { 90 struct page *page; 91 92 page = alloc_page(gfp_mask); 93 if (page) { 94 SetPageNosave(page); 95 SetPageNosaveFree(page); 96 } 97 return page; 98 } 99 100 /** 101 * free_image_page - free page represented by @addr, allocated with 102 * get_image_page (page flags set by it must be cleared) 103 */ 104 105 static inline void free_image_page(void *addr, int clear_nosave_free) 106 { 107 struct page *page; 108 109 BUG_ON(!virt_addr_valid(addr)); 110 111 page = virt_to_page(addr); 112 113 ClearPageNosave(page); 114 if (clear_nosave_free) 115 ClearPageNosaveFree(page); 116 117 __free_page(page); 118 } 119 120 /* struct linked_page is used to build chains of pages */ 121 122 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 123 124 struct linked_page { 125 struct linked_page *next; 126 char data[LINKED_PAGE_DATA_SIZE]; 127 } __attribute__((packed)); 128 129 static inline void 130 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 131 { 132 while (list) { 133 struct linked_page *lp = list->next; 134 135 free_image_page(list, clear_page_nosave); 136 list = lp; 137 } 138 } 139 140 /** 141 * struct chain_allocator is used for allocating small objects out of 142 * a linked list of pages called 'the chain'. 143 * 144 * The chain grows each time when there is no room for a new object in 145 * the current page. The allocated objects cannot be freed individually. 146 * It is only possible to free them all at once, by freeing the entire 147 * chain. 148 * 149 * NOTE: The chain allocator may be inefficient if the allocated objects 150 * are not much smaller than PAGE_SIZE. 151 */ 152 153 struct chain_allocator { 154 struct linked_page *chain; /* the chain */ 155 unsigned int used_space; /* total size of objects allocated out 156 * of the current page 157 */ 158 gfp_t gfp_mask; /* mask for allocating pages */ 159 int safe_needed; /* if set, only "safe" pages are allocated */ 160 }; 161 162 static void 163 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 164 { 165 ca->chain = NULL; 166 ca->used_space = LINKED_PAGE_DATA_SIZE; 167 ca->gfp_mask = gfp_mask; 168 ca->safe_needed = safe_needed; 169 } 170 171 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 172 { 173 void *ret; 174 175 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 176 struct linked_page *lp; 177 178 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 179 if (!lp) 180 return NULL; 181 182 lp->next = ca->chain; 183 ca->chain = lp; 184 ca->used_space = 0; 185 } 186 ret = ca->chain->data + ca->used_space; 187 ca->used_space += size; 188 return ret; 189 } 190 191 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 192 { 193 free_list_of_pages(ca->chain, clear_page_nosave); 194 memset(ca, 0, sizeof(struct chain_allocator)); 195 } 196 197 /** 198 * Data types related to memory bitmaps. 199 * 200 * Memory bitmap is a structure consiting of many linked lists of 201 * objects. The main list's elements are of type struct zone_bitmap 202 * and each of them corresonds to one zone. For each zone bitmap 203 * object there is a list of objects of type struct bm_block that 204 * represent each blocks of bit chunks in which information is 205 * stored. 206 * 207 * struct memory_bitmap contains a pointer to the main list of zone 208 * bitmap objects, a struct bm_position used for browsing the bitmap, 209 * and a pointer to the list of pages used for allocating all of the 210 * zone bitmap objects and bitmap block objects. 211 * 212 * NOTE: It has to be possible to lay out the bitmap in memory 213 * using only allocations of order 0. Additionally, the bitmap is 214 * designed to work with arbitrary number of zones (this is over the 215 * top for now, but let's avoid making unnecessary assumptions ;-). 216 * 217 * struct zone_bitmap contains a pointer to a list of bitmap block 218 * objects and a pointer to the bitmap block object that has been 219 * most recently used for setting bits. Additionally, it contains the 220 * pfns that correspond to the start and end of the represented zone. 221 * 222 * struct bm_block contains a pointer to the memory page in which 223 * information is stored (in the form of a block of bit chunks 224 * of type unsigned long each). It also contains the pfns that 225 * correspond to the start and end of the represented memory area and 226 * the number of bit chunks in the block. 227 * 228 * NOTE: Memory bitmaps are used for two types of operations only: 229 * "set a bit" and "find the next bit set". Moreover, the searching 230 * is always carried out after all of the "set a bit" operations 231 * on given bitmap. 232 */ 233 234 #define BM_END_OF_MAP (~0UL) 235 236 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long)) 237 #define BM_BITS_PER_CHUNK (sizeof(long) << 3) 238 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 239 240 struct bm_block { 241 struct bm_block *next; /* next element of the list */ 242 unsigned long start_pfn; /* pfn represented by the first bit */ 243 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 244 unsigned int size; /* number of bit chunks */ 245 unsigned long *data; /* chunks of bits representing pages */ 246 }; 247 248 struct zone_bitmap { 249 struct zone_bitmap *next; /* next element of the list */ 250 unsigned long start_pfn; /* minimal pfn in this zone */ 251 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 252 struct bm_block *bm_blocks; /* list of bitmap blocks */ 253 struct bm_block *cur_block; /* recently used bitmap block */ 254 }; 255 256 /* strcut bm_position is used for browsing memory bitmaps */ 257 258 struct bm_position { 259 struct zone_bitmap *zone_bm; 260 struct bm_block *block; 261 int chunk; 262 int bit; 263 }; 264 265 struct memory_bitmap { 266 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 267 struct linked_page *p_list; /* list of pages used to store zone 268 * bitmap objects and bitmap block 269 * objects 270 */ 271 struct bm_position cur; /* most recently used bit position */ 272 }; 273 274 /* Functions that operate on memory bitmaps */ 275 276 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm) 277 { 278 bm->cur.chunk = 0; 279 bm->cur.bit = -1; 280 } 281 282 static void memory_bm_position_reset(struct memory_bitmap *bm) 283 { 284 struct zone_bitmap *zone_bm; 285 286 zone_bm = bm->zone_bm_list; 287 bm->cur.zone_bm = zone_bm; 288 bm->cur.block = zone_bm->bm_blocks; 289 memory_bm_reset_chunk(bm); 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 */ 297 298 static inline struct bm_block * 299 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 300 { 301 struct bm_block *bblist = NULL; 302 303 while (nr_blocks-- > 0) { 304 struct bm_block *bb; 305 306 bb = chain_alloc(ca, sizeof(struct bm_block)); 307 if (!bb) 308 return NULL; 309 310 bb->next = bblist; 311 bblist = bb; 312 } 313 return bblist; 314 } 315 316 /** 317 * create_zone_bm_list - create a list of zone bitmap objects 318 */ 319 320 static inline struct zone_bitmap * 321 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 322 { 323 struct zone_bitmap *zbmlist = NULL; 324 325 while (nr_zones-- > 0) { 326 struct zone_bitmap *zbm; 327 328 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 329 if (!zbm) 330 return NULL; 331 332 zbm->next = zbmlist; 333 zbmlist = zbm; 334 } 335 return zbmlist; 336 } 337 338 /** 339 * memory_bm_create - allocate memory for a memory bitmap 340 */ 341 342 static int 343 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 344 { 345 struct chain_allocator ca; 346 struct zone *zone; 347 struct zone_bitmap *zone_bm; 348 struct bm_block *bb; 349 unsigned int nr; 350 351 chain_init(&ca, gfp_mask, safe_needed); 352 353 /* Compute the number of zones */ 354 nr = 0; 355 for_each_zone(zone) 356 if (populated_zone(zone)) 357 nr++; 358 359 /* Allocate the list of zones bitmap objects */ 360 zone_bm = create_zone_bm_list(nr, &ca); 361 bm->zone_bm_list = zone_bm; 362 if (!zone_bm) { 363 chain_free(&ca, PG_UNSAFE_CLEAR); 364 return -ENOMEM; 365 } 366 367 /* Initialize the zone bitmap objects */ 368 for_each_zone(zone) { 369 unsigned long pfn; 370 371 if (!populated_zone(zone)) 372 continue; 373 374 zone_bm->start_pfn = zone->zone_start_pfn; 375 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 376 /* Allocate the list of bitmap block objects */ 377 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 378 bb = create_bm_block_list(nr, &ca); 379 zone_bm->bm_blocks = bb; 380 zone_bm->cur_block = bb; 381 if (!bb) 382 goto Free; 383 384 nr = zone->spanned_pages; 385 pfn = zone->zone_start_pfn; 386 /* Initialize the bitmap block objects */ 387 while (bb) { 388 unsigned long *ptr; 389 390 ptr = get_image_page(gfp_mask, safe_needed); 391 bb->data = ptr; 392 if (!ptr) 393 goto Free; 394 395 bb->start_pfn = pfn; 396 if (nr >= BM_BITS_PER_BLOCK) { 397 pfn += BM_BITS_PER_BLOCK; 398 bb->size = BM_CHUNKS_PER_BLOCK; 399 nr -= BM_BITS_PER_BLOCK; 400 } else { 401 /* This is executed only once in the loop */ 402 pfn += nr; 403 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK); 404 } 405 bb->end_pfn = pfn; 406 bb = bb->next; 407 } 408 zone_bm = zone_bm->next; 409 } 410 bm->p_list = ca.chain; 411 memory_bm_position_reset(bm); 412 return 0; 413 414 Free: 415 bm->p_list = ca.chain; 416 memory_bm_free(bm, PG_UNSAFE_CLEAR); 417 return -ENOMEM; 418 } 419 420 /** 421 * memory_bm_free - free memory occupied by the memory bitmap @bm 422 */ 423 424 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 425 { 426 struct zone_bitmap *zone_bm; 427 428 /* Free the list of bit blocks for each zone_bitmap object */ 429 zone_bm = bm->zone_bm_list; 430 while (zone_bm) { 431 struct bm_block *bb; 432 433 bb = zone_bm->bm_blocks; 434 while (bb) { 435 if (bb->data) 436 free_image_page(bb->data, clear_nosave_free); 437 bb = bb->next; 438 } 439 zone_bm = zone_bm->next; 440 } 441 free_list_of_pages(bm->p_list, clear_nosave_free); 442 bm->zone_bm_list = NULL; 443 } 444 445 /** 446 * memory_bm_set_bit - set the bit in the bitmap @bm that corresponds 447 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 448 * of @bm->cur_zone_bm are updated. 449 * 450 * If the bit cannot be set, the function returns -EINVAL . 451 */ 452 453 static int 454 memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 455 { 456 struct zone_bitmap *zone_bm; 457 struct bm_block *bb; 458 459 /* Check if the pfn is from the current zone */ 460 zone_bm = bm->cur.zone_bm; 461 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 462 zone_bm = bm->zone_bm_list; 463 /* We don't assume that the zones are sorted by pfns */ 464 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 465 zone_bm = zone_bm->next; 466 if (unlikely(!zone_bm)) 467 return -EINVAL; 468 } 469 bm->cur.zone_bm = zone_bm; 470 } 471 /* Check if the pfn corresponds to the current bitmap block */ 472 bb = zone_bm->cur_block; 473 if (pfn < bb->start_pfn) 474 bb = zone_bm->bm_blocks; 475 476 while (pfn >= bb->end_pfn) { 477 bb = bb->next; 478 if (unlikely(!bb)) 479 return -EINVAL; 480 } 481 zone_bm->cur_block = bb; 482 pfn -= bb->start_pfn; 483 set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK); 484 return 0; 485 } 486 487 /* Two auxiliary functions for memory_bm_next_pfn */ 488 489 /* Find the first set bit in the given chunk, if there is one */ 490 491 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p) 492 { 493 bit++; 494 while (bit < BM_BITS_PER_CHUNK) { 495 if (test_bit(bit, chunk_p)) 496 return bit; 497 498 bit++; 499 } 500 return -1; 501 } 502 503 /* Find a chunk containing some bits set in given block of bits */ 504 505 static inline int next_chunk_in_block(int n, struct bm_block *bb) 506 { 507 n++; 508 while (n < bb->size) { 509 if (bb->data[n]) 510 return n; 511 512 n++; 513 } 514 return -1; 515 } 516 517 /** 518 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 519 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 520 * returned. 521 * 522 * It is required to run memory_bm_position_reset() before the first call to 523 * this function. 524 */ 525 526 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 527 { 528 struct zone_bitmap *zone_bm; 529 struct bm_block *bb; 530 int chunk; 531 int bit; 532 533 do { 534 bb = bm->cur.block; 535 do { 536 chunk = bm->cur.chunk; 537 bit = bm->cur.bit; 538 do { 539 bit = next_bit_in_chunk(bit, bb->data + chunk); 540 if (bit >= 0) 541 goto Return_pfn; 542 543 chunk = next_chunk_in_block(chunk, bb); 544 bit = -1; 545 } while (chunk >= 0); 546 bb = bb->next; 547 bm->cur.block = bb; 548 memory_bm_reset_chunk(bm); 549 } while (bb); 550 zone_bm = bm->cur.zone_bm->next; 551 if (zone_bm) { 552 bm->cur.zone_bm = zone_bm; 553 bm->cur.block = zone_bm->bm_blocks; 554 memory_bm_reset_chunk(bm); 555 } 556 } while (zone_bm); 557 memory_bm_position_reset(bm); 558 return BM_END_OF_MAP; 559 560 Return_pfn: 561 bm->cur.chunk = chunk; 562 bm->cur.bit = bit; 563 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 564 } 565 566 /** 567 * snapshot_additional_pages - estimate the number of additional pages 568 * be needed for setting up the suspend image data structures for given 569 * zone (usually the returned value is greater than the exact number) 570 */ 571 572 unsigned int snapshot_additional_pages(struct zone *zone) 573 { 574 unsigned int res; 575 576 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 577 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 578 return 2 * res; 579 } 580 581 #ifdef CONFIG_HIGHMEM 582 /** 583 * count_free_highmem_pages - compute the total number of free highmem 584 * pages, system-wide. 585 */ 586 587 static unsigned int count_free_highmem_pages(void) 588 { 589 struct zone *zone; 590 unsigned int cnt = 0; 591 592 for_each_zone(zone) 593 if (populated_zone(zone) && is_highmem(zone)) 594 cnt += zone_page_state(zone, NR_FREE_PAGES); 595 596 return cnt; 597 } 598 599 /** 600 * saveable_highmem_page - Determine whether a highmem page should be 601 * included in the suspend image. 602 * 603 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 604 * and it isn't a part of a free chunk of pages. 605 */ 606 607 static struct page *saveable_highmem_page(unsigned long pfn) 608 { 609 struct page *page; 610 611 if (!pfn_valid(pfn)) 612 return NULL; 613 614 page = pfn_to_page(pfn); 615 616 BUG_ON(!PageHighMem(page)); 617 618 if (PageNosave(page) || PageReserved(page) || PageNosaveFree(page)) 619 return NULL; 620 621 return page; 622 } 623 624 /** 625 * count_highmem_pages - compute the total number of saveable highmem 626 * pages. 627 */ 628 629 unsigned int count_highmem_pages(void) 630 { 631 struct zone *zone; 632 unsigned int n = 0; 633 634 for_each_zone(zone) { 635 unsigned long pfn, max_zone_pfn; 636 637 if (!is_highmem(zone)) 638 continue; 639 640 mark_free_pages(zone); 641 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 642 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 643 if (saveable_highmem_page(pfn)) 644 n++; 645 } 646 return n; 647 } 648 #else 649 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 650 static inline unsigned int count_highmem_pages(void) { return 0; } 651 #endif /* CONFIG_HIGHMEM */ 652 653 /** 654 * pfn_is_nosave - check if given pfn is in the 'nosave' section 655 */ 656 657 static inline int pfn_is_nosave(unsigned long pfn) 658 { 659 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT; 660 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT; 661 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn); 662 } 663 664 /** 665 * saveable - Determine whether a non-highmem page should be included in 666 * the suspend image. 667 * 668 * We should save the page if it isn't Nosave, and is not in the range 669 * of pages statically defined as 'unsaveable', and it isn't a part of 670 * a free chunk of pages. 671 */ 672 673 static struct page *saveable_page(unsigned long pfn) 674 { 675 struct page *page; 676 677 if (!pfn_valid(pfn)) 678 return NULL; 679 680 page = pfn_to_page(pfn); 681 682 BUG_ON(PageHighMem(page)); 683 684 if (PageNosave(page) || PageNosaveFree(page)) 685 return NULL; 686 687 if (PageReserved(page) && pfn_is_nosave(pfn)) 688 return NULL; 689 690 return page; 691 } 692 693 /** 694 * count_data_pages - compute the total number of saveable non-highmem 695 * pages. 696 */ 697 698 unsigned int count_data_pages(void) 699 { 700 struct zone *zone; 701 unsigned long pfn, max_zone_pfn; 702 unsigned int n = 0; 703 704 for_each_zone(zone) { 705 if (is_highmem(zone)) 706 continue; 707 708 mark_free_pages(zone); 709 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 710 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 711 if(saveable_page(pfn)) 712 n++; 713 } 714 return n; 715 } 716 717 /* This is needed, because copy_page and memcpy are not usable for copying 718 * task structs. 719 */ 720 static inline void do_copy_page(long *dst, long *src) 721 { 722 int n; 723 724 for (n = PAGE_SIZE / sizeof(long); n; n--) 725 *dst++ = *src++; 726 } 727 728 #ifdef CONFIG_HIGHMEM 729 static inline struct page * 730 page_is_saveable(struct zone *zone, unsigned long pfn) 731 { 732 return is_highmem(zone) ? 733 saveable_highmem_page(pfn) : saveable_page(pfn); 734 } 735 736 static inline void 737 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 738 { 739 struct page *s_page, *d_page; 740 void *src, *dst; 741 742 s_page = pfn_to_page(src_pfn); 743 d_page = pfn_to_page(dst_pfn); 744 if (PageHighMem(s_page)) { 745 src = kmap_atomic(s_page, KM_USER0); 746 dst = kmap_atomic(d_page, KM_USER1); 747 do_copy_page(dst, src); 748 kunmap_atomic(src, KM_USER0); 749 kunmap_atomic(dst, KM_USER1); 750 } else { 751 src = page_address(s_page); 752 if (PageHighMem(d_page)) { 753 /* Page pointed to by src may contain some kernel 754 * data modified by kmap_atomic() 755 */ 756 do_copy_page(buffer, src); 757 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 758 memcpy(dst, buffer, PAGE_SIZE); 759 kunmap_atomic(dst, KM_USER0); 760 } else { 761 dst = page_address(d_page); 762 do_copy_page(dst, src); 763 } 764 } 765 } 766 #else 767 #define page_is_saveable(zone, pfn) saveable_page(pfn) 768 769 static inline void 770 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 771 { 772 do_copy_page(page_address(pfn_to_page(dst_pfn)), 773 page_address(pfn_to_page(src_pfn))); 774 } 775 #endif /* CONFIG_HIGHMEM */ 776 777 static void 778 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 779 { 780 struct zone *zone; 781 unsigned long pfn; 782 783 for_each_zone(zone) { 784 unsigned long max_zone_pfn; 785 786 mark_free_pages(zone); 787 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 788 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 789 if (page_is_saveable(zone, pfn)) 790 memory_bm_set_bit(orig_bm, pfn); 791 } 792 memory_bm_position_reset(orig_bm); 793 memory_bm_position_reset(copy_bm); 794 do { 795 pfn = memory_bm_next_pfn(orig_bm); 796 if (likely(pfn != BM_END_OF_MAP)) 797 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 798 } while (pfn != BM_END_OF_MAP); 799 } 800 801 /* Total number of image pages */ 802 static unsigned int nr_copy_pages; 803 /* Number of pages needed for saving the original pfns of the image pages */ 804 static unsigned int nr_meta_pages; 805 806 /** 807 * swsusp_free - free pages allocated for the suspend. 808 * 809 * Suspend pages are alocated before the atomic copy is made, so we 810 * need to release them after the resume. 811 */ 812 813 void swsusp_free(void) 814 { 815 struct zone *zone; 816 unsigned long pfn, max_zone_pfn; 817 818 for_each_zone(zone) { 819 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 820 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 821 if (pfn_valid(pfn)) { 822 struct page *page = pfn_to_page(pfn); 823 824 if (PageNosave(page) && PageNosaveFree(page)) { 825 ClearPageNosave(page); 826 ClearPageNosaveFree(page); 827 __free_page(page); 828 } 829 } 830 } 831 nr_copy_pages = 0; 832 nr_meta_pages = 0; 833 restore_pblist = NULL; 834 buffer = NULL; 835 } 836 837 #ifdef CONFIG_HIGHMEM 838 /** 839 * count_pages_for_highmem - compute the number of non-highmem pages 840 * that will be necessary for creating copies of highmem pages. 841 */ 842 843 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 844 { 845 unsigned int free_highmem = count_free_highmem_pages(); 846 847 if (free_highmem >= nr_highmem) 848 nr_highmem = 0; 849 else 850 nr_highmem -= free_highmem; 851 852 return nr_highmem; 853 } 854 #else 855 static unsigned int 856 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 857 #endif /* CONFIG_HIGHMEM */ 858 859 /** 860 * enough_free_mem - Make sure we have enough free memory for the 861 * snapshot image. 862 */ 863 864 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 865 { 866 struct zone *zone; 867 unsigned int free = 0, meta = 0; 868 869 for_each_zone(zone) { 870 meta += snapshot_additional_pages(zone); 871 if (!is_highmem(zone)) 872 free += zone_page_state(zone, NR_FREE_PAGES); 873 } 874 875 nr_pages += count_pages_for_highmem(nr_highmem); 876 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n", 877 nr_pages, PAGES_FOR_IO, meta, free); 878 879 return free > nr_pages + PAGES_FOR_IO + meta; 880 } 881 882 #ifdef CONFIG_HIGHMEM 883 /** 884 * get_highmem_buffer - if there are some highmem pages in the suspend 885 * image, we may need the buffer to copy them and/or load their data. 886 */ 887 888 static inline int get_highmem_buffer(int safe_needed) 889 { 890 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 891 return buffer ? 0 : -ENOMEM; 892 } 893 894 /** 895 * alloc_highmem_image_pages - allocate some highmem pages for the image. 896 * Try to allocate as many pages as needed, but if the number of free 897 * highmem pages is lesser than that, allocate them all. 898 */ 899 900 static inline unsigned int 901 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 902 { 903 unsigned int to_alloc = count_free_highmem_pages(); 904 905 if (to_alloc > nr_highmem) 906 to_alloc = nr_highmem; 907 908 nr_highmem -= to_alloc; 909 while (to_alloc-- > 0) { 910 struct page *page; 911 912 page = alloc_image_page(__GFP_HIGHMEM); 913 memory_bm_set_bit(bm, page_to_pfn(page)); 914 } 915 return nr_highmem; 916 } 917 #else 918 static inline int get_highmem_buffer(int safe_needed) { return 0; } 919 920 static inline unsigned int 921 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 922 #endif /* CONFIG_HIGHMEM */ 923 924 /** 925 * swsusp_alloc - allocate memory for the suspend image 926 * 927 * We first try to allocate as many highmem pages as there are 928 * saveable highmem pages in the system. If that fails, we allocate 929 * non-highmem pages for the copies of the remaining highmem ones. 930 * 931 * In this approach it is likely that the copies of highmem pages will 932 * also be located in the high memory, because of the way in which 933 * copy_data_pages() works. 934 */ 935 936 static int 937 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 938 unsigned int nr_pages, unsigned int nr_highmem) 939 { 940 int error; 941 942 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 943 if (error) 944 goto Free; 945 946 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 947 if (error) 948 goto Free; 949 950 if (nr_highmem > 0) { 951 error = get_highmem_buffer(PG_ANY); 952 if (error) 953 goto Free; 954 955 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 956 } 957 while (nr_pages-- > 0) { 958 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 959 960 if (!page) 961 goto Free; 962 963 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 964 } 965 return 0; 966 967 Free: 968 swsusp_free(); 969 return -ENOMEM; 970 } 971 972 /* Memory bitmap used for marking saveable pages (during suspend) or the 973 * suspend image pages (during resume) 974 */ 975 static struct memory_bitmap orig_bm; 976 /* Memory bitmap used on suspend for marking allocated pages that will contain 977 * the copies of saveable pages. During resume it is initially used for 978 * marking the suspend image pages, but then its set bits are duplicated in 979 * @orig_bm and it is released. Next, on systems with high memory, it may be 980 * used for marking "safe" highmem pages, but it has to be reinitialized for 981 * this purpose. 982 */ 983 static struct memory_bitmap copy_bm; 984 985 asmlinkage int swsusp_save(void) 986 { 987 unsigned int nr_pages, nr_highmem; 988 989 printk("swsusp: critical section: \n"); 990 991 drain_local_pages(); 992 nr_pages = count_data_pages(); 993 nr_highmem = count_highmem_pages(); 994 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem); 995 996 if (!enough_free_mem(nr_pages, nr_highmem)) { 997 printk(KERN_ERR "swsusp: Not enough free memory\n"); 998 return -ENOMEM; 999 } 1000 1001 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1002 printk(KERN_ERR "swsusp: Memory allocation failed\n"); 1003 return -ENOMEM; 1004 } 1005 1006 /* During allocating of suspend pagedir, new cold pages may appear. 1007 * Kill them. 1008 */ 1009 drain_local_pages(); 1010 copy_data_pages(©_bm, &orig_bm); 1011 1012 /* 1013 * End of critical section. From now on, we can write to memory, 1014 * but we should not touch disk. This specially means we must _not_ 1015 * touch swap space! Except we must write out our image of course. 1016 */ 1017 1018 nr_pages += nr_highmem; 1019 nr_copy_pages = nr_pages; 1020 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1021 1022 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages); 1023 1024 return 0; 1025 } 1026 1027 static void init_header(struct swsusp_info *info) 1028 { 1029 memset(info, 0, sizeof(struct swsusp_info)); 1030 info->version_code = LINUX_VERSION_CODE; 1031 info->num_physpages = num_physpages; 1032 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1033 info->cpus = num_online_cpus(); 1034 info->image_pages = nr_copy_pages; 1035 info->pages = nr_copy_pages + nr_meta_pages + 1; 1036 info->size = info->pages; 1037 info->size <<= PAGE_SHIFT; 1038 } 1039 1040 /** 1041 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1042 * are stored in the array @buf[] (1 page at a time) 1043 */ 1044 1045 static inline void 1046 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1047 { 1048 int j; 1049 1050 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1051 buf[j] = memory_bm_next_pfn(bm); 1052 if (unlikely(buf[j] == BM_END_OF_MAP)) 1053 break; 1054 } 1055 } 1056 1057 /** 1058 * snapshot_read_next - used for reading the system memory snapshot. 1059 * 1060 * On the first call to it @handle should point to a zeroed 1061 * snapshot_handle structure. The structure gets updated and a pointer 1062 * to it should be passed to this function every next time. 1063 * 1064 * The @count parameter should contain the number of bytes the caller 1065 * wants to read from the snapshot. It must not be zero. 1066 * 1067 * On success the function returns a positive number. Then, the caller 1068 * is allowed to read up to the returned number of bytes from the memory 1069 * location computed by the data_of() macro. The number returned 1070 * may be smaller than @count, but this only happens if the read would 1071 * cross a page boundary otherwise. 1072 * 1073 * The function returns 0 to indicate the end of data stream condition, 1074 * and a negative number is returned on error. In such cases the 1075 * structure pointed to by @handle is not updated and should not be used 1076 * any more. 1077 */ 1078 1079 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1080 { 1081 if (handle->cur > nr_meta_pages + nr_copy_pages) 1082 return 0; 1083 1084 if (!buffer) { 1085 /* This makes the buffer be freed by swsusp_free() */ 1086 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1087 if (!buffer) 1088 return -ENOMEM; 1089 } 1090 if (!handle->offset) { 1091 init_header((struct swsusp_info *)buffer); 1092 handle->buffer = buffer; 1093 memory_bm_position_reset(&orig_bm); 1094 memory_bm_position_reset(©_bm); 1095 } 1096 if (handle->prev < handle->cur) { 1097 if (handle->cur <= nr_meta_pages) { 1098 memset(buffer, 0, PAGE_SIZE); 1099 pack_pfns(buffer, &orig_bm); 1100 } else { 1101 struct page *page; 1102 1103 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1104 if (PageHighMem(page)) { 1105 /* Highmem pages are copied to the buffer, 1106 * because we can't return with a kmapped 1107 * highmem page (we may not be called again). 1108 */ 1109 void *kaddr; 1110 1111 kaddr = kmap_atomic(page, KM_USER0); 1112 memcpy(buffer, kaddr, PAGE_SIZE); 1113 kunmap_atomic(kaddr, KM_USER0); 1114 handle->buffer = buffer; 1115 } else { 1116 handle->buffer = page_address(page); 1117 } 1118 } 1119 handle->prev = handle->cur; 1120 } 1121 handle->buf_offset = handle->cur_offset; 1122 if (handle->cur_offset + count >= PAGE_SIZE) { 1123 count = PAGE_SIZE - handle->cur_offset; 1124 handle->cur_offset = 0; 1125 handle->cur++; 1126 } else { 1127 handle->cur_offset += count; 1128 } 1129 handle->offset += count; 1130 return count; 1131 } 1132 1133 /** 1134 * mark_unsafe_pages - mark the pages that cannot be used for storing 1135 * the image during resume, because they conflict with the pages that 1136 * had been used before suspend 1137 */ 1138 1139 static int mark_unsafe_pages(struct memory_bitmap *bm) 1140 { 1141 struct zone *zone; 1142 unsigned long pfn, max_zone_pfn; 1143 1144 /* Clear page flags */ 1145 for_each_zone(zone) { 1146 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1147 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1148 if (pfn_valid(pfn)) 1149 ClearPageNosaveFree(pfn_to_page(pfn)); 1150 } 1151 1152 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1153 memory_bm_position_reset(bm); 1154 do { 1155 pfn = memory_bm_next_pfn(bm); 1156 if (likely(pfn != BM_END_OF_MAP)) { 1157 if (likely(pfn_valid(pfn))) 1158 SetPageNosaveFree(pfn_to_page(pfn)); 1159 else 1160 return -EFAULT; 1161 } 1162 } while (pfn != BM_END_OF_MAP); 1163 1164 allocated_unsafe_pages = 0; 1165 1166 return 0; 1167 } 1168 1169 static void 1170 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1171 { 1172 unsigned long pfn; 1173 1174 memory_bm_position_reset(src); 1175 pfn = memory_bm_next_pfn(src); 1176 while (pfn != BM_END_OF_MAP) { 1177 memory_bm_set_bit(dst, pfn); 1178 pfn = memory_bm_next_pfn(src); 1179 } 1180 } 1181 1182 static inline int check_header(struct swsusp_info *info) 1183 { 1184 char *reason = NULL; 1185 1186 if (info->version_code != LINUX_VERSION_CODE) 1187 reason = "kernel version"; 1188 if (info->num_physpages != num_physpages) 1189 reason = "memory size"; 1190 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1191 reason = "system type"; 1192 if (strcmp(info->uts.release,init_utsname()->release)) 1193 reason = "kernel release"; 1194 if (strcmp(info->uts.version,init_utsname()->version)) 1195 reason = "version"; 1196 if (strcmp(info->uts.machine,init_utsname()->machine)) 1197 reason = "machine"; 1198 if (reason) { 1199 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); 1200 return -EPERM; 1201 } 1202 return 0; 1203 } 1204 1205 /** 1206 * load header - check the image header and copy data from it 1207 */ 1208 1209 static int 1210 load_header(struct swsusp_info *info) 1211 { 1212 int error; 1213 1214 restore_pblist = NULL; 1215 error = check_header(info); 1216 if (!error) { 1217 nr_copy_pages = info->image_pages; 1218 nr_meta_pages = info->pages - info->image_pages - 1; 1219 } 1220 return error; 1221 } 1222 1223 /** 1224 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1225 * the corresponding bit in the memory bitmap @bm 1226 */ 1227 1228 static inline void 1229 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1230 { 1231 int j; 1232 1233 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1234 if (unlikely(buf[j] == BM_END_OF_MAP)) 1235 break; 1236 1237 memory_bm_set_bit(bm, buf[j]); 1238 } 1239 } 1240 1241 /* List of "safe" pages that may be used to store data loaded from the suspend 1242 * image 1243 */ 1244 static struct linked_page *safe_pages_list; 1245 1246 #ifdef CONFIG_HIGHMEM 1247 /* struct highmem_pbe is used for creating the list of highmem pages that 1248 * should be restored atomically during the resume from disk, because the page 1249 * frames they have occupied before the suspend are in use. 1250 */ 1251 struct highmem_pbe { 1252 struct page *copy_page; /* data is here now */ 1253 struct page *orig_page; /* data was here before the suspend */ 1254 struct highmem_pbe *next; 1255 }; 1256 1257 /* List of highmem PBEs needed for restoring the highmem pages that were 1258 * allocated before the suspend and included in the suspend image, but have 1259 * also been allocated by the "resume" kernel, so their contents cannot be 1260 * written directly to their "original" page frames. 1261 */ 1262 static struct highmem_pbe *highmem_pblist; 1263 1264 /** 1265 * count_highmem_image_pages - compute the number of highmem pages in the 1266 * suspend image. The bits in the memory bitmap @bm that correspond to the 1267 * image pages are assumed to be set. 1268 */ 1269 1270 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1271 { 1272 unsigned long pfn; 1273 unsigned int cnt = 0; 1274 1275 memory_bm_position_reset(bm); 1276 pfn = memory_bm_next_pfn(bm); 1277 while (pfn != BM_END_OF_MAP) { 1278 if (PageHighMem(pfn_to_page(pfn))) 1279 cnt++; 1280 1281 pfn = memory_bm_next_pfn(bm); 1282 } 1283 return cnt; 1284 } 1285 1286 /** 1287 * prepare_highmem_image - try to allocate as many highmem pages as 1288 * there are highmem image pages (@nr_highmem_p points to the variable 1289 * containing the number of highmem image pages). The pages that are 1290 * "safe" (ie. will not be overwritten when the suspend image is 1291 * restored) have the corresponding bits set in @bm (it must be 1292 * unitialized). 1293 * 1294 * NOTE: This function should not be called if there are no highmem 1295 * image pages. 1296 */ 1297 1298 static unsigned int safe_highmem_pages; 1299 1300 static struct memory_bitmap *safe_highmem_bm; 1301 1302 static int 1303 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1304 { 1305 unsigned int to_alloc; 1306 1307 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1308 return -ENOMEM; 1309 1310 if (get_highmem_buffer(PG_SAFE)) 1311 return -ENOMEM; 1312 1313 to_alloc = count_free_highmem_pages(); 1314 if (to_alloc > *nr_highmem_p) 1315 to_alloc = *nr_highmem_p; 1316 else 1317 *nr_highmem_p = to_alloc; 1318 1319 safe_highmem_pages = 0; 1320 while (to_alloc-- > 0) { 1321 struct page *page; 1322 1323 page = alloc_page(__GFP_HIGHMEM); 1324 if (!PageNosaveFree(page)) { 1325 /* The page is "safe", set its bit the bitmap */ 1326 memory_bm_set_bit(bm, page_to_pfn(page)); 1327 safe_highmem_pages++; 1328 } 1329 /* Mark the page as allocated */ 1330 SetPageNosave(page); 1331 SetPageNosaveFree(page); 1332 } 1333 memory_bm_position_reset(bm); 1334 safe_highmem_bm = bm; 1335 return 0; 1336 } 1337 1338 /** 1339 * get_highmem_page_buffer - for given highmem image page find the buffer 1340 * that suspend_write_next() should set for its caller to write to. 1341 * 1342 * If the page is to be saved to its "original" page frame or a copy of 1343 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1344 * the copy of the page is to be made in normal memory, so the address of 1345 * the copy is returned. 1346 * 1347 * If @buffer is returned, the caller of suspend_write_next() will write 1348 * the page's contents to @buffer, so they will have to be copied to the 1349 * right location on the next call to suspend_write_next() and it is done 1350 * with the help of copy_last_highmem_page(). For this purpose, if 1351 * @buffer is returned, @last_highmem page is set to the page to which 1352 * the data will have to be copied from @buffer. 1353 */ 1354 1355 static struct page *last_highmem_page; 1356 1357 static void * 1358 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1359 { 1360 struct highmem_pbe *pbe; 1361 void *kaddr; 1362 1363 if (PageNosave(page) && PageNosaveFree(page)) { 1364 /* We have allocated the "original" page frame and we can 1365 * use it directly to store the loaded page. 1366 */ 1367 last_highmem_page = page; 1368 return buffer; 1369 } 1370 /* The "original" page frame has not been allocated and we have to 1371 * use a "safe" page frame to store the loaded page. 1372 */ 1373 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1374 if (!pbe) { 1375 swsusp_free(); 1376 return NULL; 1377 } 1378 pbe->orig_page = page; 1379 if (safe_highmem_pages > 0) { 1380 struct page *tmp; 1381 1382 /* Copy of the page will be stored in high memory */ 1383 kaddr = buffer; 1384 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1385 safe_highmem_pages--; 1386 last_highmem_page = tmp; 1387 pbe->copy_page = tmp; 1388 } else { 1389 /* Copy of the page will be stored in normal memory */ 1390 kaddr = safe_pages_list; 1391 safe_pages_list = safe_pages_list->next; 1392 pbe->copy_page = virt_to_page(kaddr); 1393 } 1394 pbe->next = highmem_pblist; 1395 highmem_pblist = pbe; 1396 return kaddr; 1397 } 1398 1399 /** 1400 * copy_last_highmem_page - copy the contents of a highmem image from 1401 * @buffer, where the caller of snapshot_write_next() has place them, 1402 * to the right location represented by @last_highmem_page . 1403 */ 1404 1405 static void copy_last_highmem_page(void) 1406 { 1407 if (last_highmem_page) { 1408 void *dst; 1409 1410 dst = kmap_atomic(last_highmem_page, KM_USER0); 1411 memcpy(dst, buffer, PAGE_SIZE); 1412 kunmap_atomic(dst, KM_USER0); 1413 last_highmem_page = NULL; 1414 } 1415 } 1416 1417 static inline int last_highmem_page_copied(void) 1418 { 1419 return !last_highmem_page; 1420 } 1421 1422 static inline void free_highmem_data(void) 1423 { 1424 if (safe_highmem_bm) 1425 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1426 1427 if (buffer) 1428 free_image_page(buffer, PG_UNSAFE_CLEAR); 1429 } 1430 #else 1431 static inline int get_safe_write_buffer(void) { return 0; } 1432 1433 static unsigned int 1434 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1435 1436 static inline int 1437 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1438 { 1439 return 0; 1440 } 1441 1442 static inline void * 1443 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1444 { 1445 return NULL; 1446 } 1447 1448 static inline void copy_last_highmem_page(void) {} 1449 static inline int last_highmem_page_copied(void) { return 1; } 1450 static inline void free_highmem_data(void) {} 1451 #endif /* CONFIG_HIGHMEM */ 1452 1453 /** 1454 * prepare_image - use the memory bitmap @bm to mark the pages that will 1455 * be overwritten in the process of restoring the system memory state 1456 * from the suspend image ("unsafe" pages) and allocate memory for the 1457 * image. 1458 * 1459 * The idea is to allocate a new memory bitmap first and then allocate 1460 * as many pages as needed for the image data, but not to assign these 1461 * pages to specific tasks initially. Instead, we just mark them as 1462 * allocated and create a lists of "safe" pages that will be used 1463 * later. On systems with high memory a list of "safe" highmem pages is 1464 * also created. 1465 */ 1466 1467 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1468 1469 static int 1470 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1471 { 1472 unsigned int nr_pages, nr_highmem; 1473 struct linked_page *sp_list, *lp; 1474 int error; 1475 1476 /* If there is no highmem, the buffer will not be necessary */ 1477 free_image_page(buffer, PG_UNSAFE_CLEAR); 1478 buffer = NULL; 1479 1480 nr_highmem = count_highmem_image_pages(bm); 1481 error = mark_unsafe_pages(bm); 1482 if (error) 1483 goto Free; 1484 1485 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1486 if (error) 1487 goto Free; 1488 1489 duplicate_memory_bitmap(new_bm, bm); 1490 memory_bm_free(bm, PG_UNSAFE_KEEP); 1491 if (nr_highmem > 0) { 1492 error = prepare_highmem_image(bm, &nr_highmem); 1493 if (error) 1494 goto Free; 1495 } 1496 /* Reserve some safe pages for potential later use. 1497 * 1498 * NOTE: This way we make sure there will be enough safe pages for the 1499 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1500 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1501 */ 1502 sp_list = NULL; 1503 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1504 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1505 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1506 while (nr_pages > 0) { 1507 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1508 if (!lp) { 1509 error = -ENOMEM; 1510 goto Free; 1511 } 1512 lp->next = sp_list; 1513 sp_list = lp; 1514 nr_pages--; 1515 } 1516 /* Preallocate memory for the image */ 1517 safe_pages_list = NULL; 1518 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1519 while (nr_pages > 0) { 1520 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1521 if (!lp) { 1522 error = -ENOMEM; 1523 goto Free; 1524 } 1525 if (!PageNosaveFree(virt_to_page(lp))) { 1526 /* The page is "safe", add it to the list */ 1527 lp->next = safe_pages_list; 1528 safe_pages_list = lp; 1529 } 1530 /* Mark the page as allocated */ 1531 SetPageNosave(virt_to_page(lp)); 1532 SetPageNosaveFree(virt_to_page(lp)); 1533 nr_pages--; 1534 } 1535 /* Free the reserved safe pages so that chain_alloc() can use them */ 1536 while (sp_list) { 1537 lp = sp_list->next; 1538 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1539 sp_list = lp; 1540 } 1541 return 0; 1542 1543 Free: 1544 swsusp_free(); 1545 return error; 1546 } 1547 1548 /** 1549 * get_buffer - compute the address that snapshot_write_next() should 1550 * set for its caller to write to. 1551 */ 1552 1553 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1554 { 1555 struct pbe *pbe; 1556 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1557 1558 if (PageHighMem(page)) 1559 return get_highmem_page_buffer(page, ca); 1560 1561 if (PageNosave(page) && PageNosaveFree(page)) 1562 /* We have allocated the "original" page frame and we can 1563 * use it directly to store the loaded page. 1564 */ 1565 return page_address(page); 1566 1567 /* The "original" page frame has not been allocated and we have to 1568 * use a "safe" page frame to store the loaded page. 1569 */ 1570 pbe = chain_alloc(ca, sizeof(struct pbe)); 1571 if (!pbe) { 1572 swsusp_free(); 1573 return NULL; 1574 } 1575 pbe->orig_address = page_address(page); 1576 pbe->address = safe_pages_list; 1577 safe_pages_list = safe_pages_list->next; 1578 pbe->next = restore_pblist; 1579 restore_pblist = pbe; 1580 return pbe->address; 1581 } 1582 1583 /** 1584 * snapshot_write_next - used for writing the system memory snapshot. 1585 * 1586 * On the first call to it @handle should point to a zeroed 1587 * snapshot_handle structure. The structure gets updated and a pointer 1588 * to it should be passed to this function every next time. 1589 * 1590 * The @count parameter should contain the number of bytes the caller 1591 * wants to write to the image. It must not be zero. 1592 * 1593 * On success the function returns a positive number. Then, the caller 1594 * is allowed to write up to the returned number of bytes to the memory 1595 * location computed by the data_of() macro. The number returned 1596 * may be smaller than @count, but this only happens if the write would 1597 * cross a page boundary otherwise. 1598 * 1599 * The function returns 0 to indicate the "end of file" condition, 1600 * and a negative number is returned on error. In such cases the 1601 * structure pointed to by @handle is not updated and should not be used 1602 * any more. 1603 */ 1604 1605 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1606 { 1607 static struct chain_allocator ca; 1608 int error = 0; 1609 1610 /* Check if we have already loaded the entire image */ 1611 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1612 return 0; 1613 1614 if (handle->offset == 0) { 1615 if (!buffer) 1616 /* This makes the buffer be freed by swsusp_free() */ 1617 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1618 1619 if (!buffer) 1620 return -ENOMEM; 1621 1622 handle->buffer = buffer; 1623 } 1624 handle->sync_read = 1; 1625 if (handle->prev < handle->cur) { 1626 if (handle->prev == 0) { 1627 error = load_header(buffer); 1628 if (error) 1629 return error; 1630 1631 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1632 if (error) 1633 return error; 1634 1635 } else if (handle->prev <= nr_meta_pages) { 1636 unpack_orig_pfns(buffer, ©_bm); 1637 if (handle->prev == nr_meta_pages) { 1638 error = prepare_image(&orig_bm, ©_bm); 1639 if (error) 1640 return error; 1641 1642 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1643 memory_bm_position_reset(&orig_bm); 1644 restore_pblist = NULL; 1645 handle->buffer = get_buffer(&orig_bm, &ca); 1646 handle->sync_read = 0; 1647 if (!handle->buffer) 1648 return -ENOMEM; 1649 } 1650 } else { 1651 copy_last_highmem_page(); 1652 handle->buffer = get_buffer(&orig_bm, &ca); 1653 if (handle->buffer != buffer) 1654 handle->sync_read = 0; 1655 } 1656 handle->prev = handle->cur; 1657 } 1658 handle->buf_offset = handle->cur_offset; 1659 if (handle->cur_offset + count >= PAGE_SIZE) { 1660 count = PAGE_SIZE - handle->cur_offset; 1661 handle->cur_offset = 0; 1662 handle->cur++; 1663 } else { 1664 handle->cur_offset += count; 1665 } 1666 handle->offset += count; 1667 return count; 1668 } 1669 1670 /** 1671 * snapshot_write_finalize - must be called after the last call to 1672 * snapshot_write_next() in case the last page in the image happens 1673 * to be a highmem page and its contents should be stored in the 1674 * highmem. Additionally, it releases the memory that will not be 1675 * used any more. 1676 */ 1677 1678 void snapshot_write_finalize(struct snapshot_handle *handle) 1679 { 1680 copy_last_highmem_page(); 1681 /* Free only if we have loaded the image entirely */ 1682 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1683 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1684 free_highmem_data(); 1685 } 1686 } 1687 1688 int snapshot_image_loaded(struct snapshot_handle *handle) 1689 { 1690 return !(!nr_copy_pages || !last_highmem_page_copied() || 1691 handle->cur <= nr_meta_pages + nr_copy_pages); 1692 } 1693 1694 #ifdef CONFIG_HIGHMEM 1695 /* Assumes that @buf is ready and points to a "safe" page */ 1696 static inline void 1697 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1698 { 1699 void *kaddr1, *kaddr2; 1700 1701 kaddr1 = kmap_atomic(p1, KM_USER0); 1702 kaddr2 = kmap_atomic(p2, KM_USER1); 1703 memcpy(buf, kaddr1, PAGE_SIZE); 1704 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1705 memcpy(kaddr2, buf, PAGE_SIZE); 1706 kunmap_atomic(kaddr1, KM_USER0); 1707 kunmap_atomic(kaddr2, KM_USER1); 1708 } 1709 1710 /** 1711 * restore_highmem - for each highmem page that was allocated before 1712 * the suspend and included in the suspend image, and also has been 1713 * allocated by the "resume" kernel swap its current (ie. "before 1714 * resume") contents with the previous (ie. "before suspend") one. 1715 * 1716 * If the resume eventually fails, we can call this function once 1717 * again and restore the "before resume" highmem state. 1718 */ 1719 1720 int restore_highmem(void) 1721 { 1722 struct highmem_pbe *pbe = highmem_pblist; 1723 void *buf; 1724 1725 if (!pbe) 1726 return 0; 1727 1728 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1729 if (!buf) 1730 return -ENOMEM; 1731 1732 while (pbe) { 1733 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1734 pbe = pbe->next; 1735 } 1736 free_image_page(buf, PG_UNSAFE_CLEAR); 1737 return 0; 1738 } 1739 #endif /* CONFIG_HIGHMEM */ 1740