xref: /linux/kernel/power/snapshot.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/version.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/bitops.h>
21 #include <linux/spinlock.h>
22 #include <linux/kernel.h>
23 #include <linux/pm.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/memblock.h>
27 #include <linux/nmi.h>
28 #include <linux/syscalls.h>
29 #include <linux/console.h>
30 #include <linux/highmem.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33 #include <linux/compiler.h>
34 #include <linux/ktime.h>
35 #include <linux/set_memory.h>
36 
37 #include <linux/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/io.h>
42 
43 #include "power.h"
44 
45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
46 static bool hibernate_restore_protection;
47 static bool hibernate_restore_protection_active;
48 
49 void enable_restore_image_protection(void)
50 {
51 	hibernate_restore_protection = true;
52 }
53 
54 static inline void hibernate_restore_protection_begin(void)
55 {
56 	hibernate_restore_protection_active = hibernate_restore_protection;
57 }
58 
59 static inline void hibernate_restore_protection_end(void)
60 {
61 	hibernate_restore_protection_active = false;
62 }
63 
64 static inline void hibernate_restore_protect_page(void *page_address)
65 {
66 	if (hibernate_restore_protection_active)
67 		set_memory_ro((unsigned long)page_address, 1);
68 }
69 
70 static inline void hibernate_restore_unprotect_page(void *page_address)
71 {
72 	if (hibernate_restore_protection_active)
73 		set_memory_rw((unsigned long)page_address, 1);
74 }
75 #else
76 static inline void hibernate_restore_protection_begin(void) {}
77 static inline void hibernate_restore_protection_end(void) {}
78 static inline void hibernate_restore_protect_page(void *page_address) {}
79 static inline void hibernate_restore_unprotect_page(void *page_address) {}
80 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
81 
82 static int swsusp_page_is_free(struct page *);
83 static void swsusp_set_page_forbidden(struct page *);
84 static void swsusp_unset_page_forbidden(struct page *);
85 
86 /*
87  * Number of bytes to reserve for memory allocations made by device drivers
88  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
89  * cause image creation to fail (tunable via /sys/power/reserved_size).
90  */
91 unsigned long reserved_size;
92 
93 void __init hibernate_reserved_size_init(void)
94 {
95 	reserved_size = SPARE_PAGES * PAGE_SIZE;
96 }
97 
98 /*
99  * Preferred image size in bytes (tunable via /sys/power/image_size).
100  * When it is set to N, swsusp will do its best to ensure the image
101  * size will not exceed N bytes, but if that is impossible, it will
102  * try to create the smallest image possible.
103  */
104 unsigned long image_size;
105 
106 void __init hibernate_image_size_init(void)
107 {
108 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
109 }
110 
111 /*
112  * List of PBEs needed for restoring the pages that were allocated before
113  * the suspend and included in the suspend image, but have also been
114  * allocated by the "resume" kernel, so their contents cannot be written
115  * directly to their "original" page frames.
116  */
117 struct pbe *restore_pblist;
118 
119 /* struct linked_page is used to build chains of pages */
120 
121 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
122 
123 struct linked_page {
124 	struct linked_page *next;
125 	char data[LINKED_PAGE_DATA_SIZE];
126 } __packed;
127 
128 /*
129  * List of "safe" pages (ie. pages that were not used by the image kernel
130  * before hibernation) that may be used as temporary storage for image kernel
131  * memory contents.
132  */
133 static struct linked_page *safe_pages_list;
134 
135 /* Pointer to an auxiliary buffer (1 page) */
136 static void *buffer;
137 
138 #define PG_ANY		0
139 #define PG_SAFE		1
140 #define PG_UNSAFE_CLEAR	1
141 #define PG_UNSAFE_KEEP	0
142 
143 static unsigned int allocated_unsafe_pages;
144 
145 /**
146  * get_image_page - Allocate a page for a hibernation image.
147  * @gfp_mask: GFP mask for the allocation.
148  * @safe_needed: Get pages that were not used before hibernation (restore only)
149  *
150  * During image restoration, for storing the PBE list and the image data, we can
151  * only use memory pages that do not conflict with the pages used before
152  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
153  * using allocated_unsafe_pages.
154  *
155  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
156  * swsusp_free() can release it.
157  */
158 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
159 {
160 	void *res;
161 
162 	res = (void *)get_zeroed_page(gfp_mask);
163 	if (safe_needed)
164 		while (res && swsusp_page_is_free(virt_to_page(res))) {
165 			/* The page is unsafe, mark it for swsusp_free() */
166 			swsusp_set_page_forbidden(virt_to_page(res));
167 			allocated_unsafe_pages++;
168 			res = (void *)get_zeroed_page(gfp_mask);
169 		}
170 	if (res) {
171 		swsusp_set_page_forbidden(virt_to_page(res));
172 		swsusp_set_page_free(virt_to_page(res));
173 	}
174 	return res;
175 }
176 
177 static void *__get_safe_page(gfp_t gfp_mask)
178 {
179 	if (safe_pages_list) {
180 		void *ret = safe_pages_list;
181 
182 		safe_pages_list = safe_pages_list->next;
183 		memset(ret, 0, PAGE_SIZE);
184 		return ret;
185 	}
186 	return get_image_page(gfp_mask, PG_SAFE);
187 }
188 
189 unsigned long get_safe_page(gfp_t gfp_mask)
190 {
191 	return (unsigned long)__get_safe_page(gfp_mask);
192 }
193 
194 static struct page *alloc_image_page(gfp_t gfp_mask)
195 {
196 	struct page *page;
197 
198 	page = alloc_page(gfp_mask);
199 	if (page) {
200 		swsusp_set_page_forbidden(page);
201 		swsusp_set_page_free(page);
202 	}
203 	return page;
204 }
205 
206 static void recycle_safe_page(void *page_address)
207 {
208 	struct linked_page *lp = page_address;
209 
210 	lp->next = safe_pages_list;
211 	safe_pages_list = lp;
212 }
213 
214 /**
215  * free_image_page - Free a page allocated for hibernation image.
216  * @addr: Address of the page to free.
217  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
218  *
219  * The page to free should have been allocated by get_image_page() (page flags
220  * set by it are affected).
221  */
222 static inline void free_image_page(void *addr, int clear_nosave_free)
223 {
224 	struct page *page;
225 
226 	BUG_ON(!virt_addr_valid(addr));
227 
228 	page = virt_to_page(addr);
229 
230 	swsusp_unset_page_forbidden(page);
231 	if (clear_nosave_free)
232 		swsusp_unset_page_free(page);
233 
234 	__free_page(page);
235 }
236 
237 static inline void free_list_of_pages(struct linked_page *list,
238 				      int clear_page_nosave)
239 {
240 	while (list) {
241 		struct linked_page *lp = list->next;
242 
243 		free_image_page(list, clear_page_nosave);
244 		list = lp;
245 	}
246 }
247 
248 /*
249  * struct chain_allocator is used for allocating small objects out of
250  * a linked list of pages called 'the chain'.
251  *
252  * The chain grows each time when there is no room for a new object in
253  * the current page.  The allocated objects cannot be freed individually.
254  * It is only possible to free them all at once, by freeing the entire
255  * chain.
256  *
257  * NOTE: The chain allocator may be inefficient if the allocated objects
258  * are not much smaller than PAGE_SIZE.
259  */
260 struct chain_allocator {
261 	struct linked_page *chain;	/* the chain */
262 	unsigned int used_space;	/* total size of objects allocated out
263 					   of the current page */
264 	gfp_t gfp_mask;		/* mask for allocating pages */
265 	int safe_needed;	/* if set, only "safe" pages are allocated */
266 };
267 
268 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
269 		       int safe_needed)
270 {
271 	ca->chain = NULL;
272 	ca->used_space = LINKED_PAGE_DATA_SIZE;
273 	ca->gfp_mask = gfp_mask;
274 	ca->safe_needed = safe_needed;
275 }
276 
277 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
278 {
279 	void *ret;
280 
281 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
282 		struct linked_page *lp;
283 
284 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
285 					get_image_page(ca->gfp_mask, PG_ANY);
286 		if (!lp)
287 			return NULL;
288 
289 		lp->next = ca->chain;
290 		ca->chain = lp;
291 		ca->used_space = 0;
292 	}
293 	ret = ca->chain->data + ca->used_space;
294 	ca->used_space += size;
295 	return ret;
296 }
297 
298 /**
299  * Data types related to memory bitmaps.
300  *
301  * Memory bitmap is a structure consiting of many linked lists of
302  * objects.  The main list's elements are of type struct zone_bitmap
303  * and each of them corresonds to one zone.  For each zone bitmap
304  * object there is a list of objects of type struct bm_block that
305  * represent each blocks of bitmap in which information is stored.
306  *
307  * struct memory_bitmap contains a pointer to the main list of zone
308  * bitmap objects, a struct bm_position used for browsing the bitmap,
309  * and a pointer to the list of pages used for allocating all of the
310  * zone bitmap objects and bitmap block objects.
311  *
312  * NOTE: It has to be possible to lay out the bitmap in memory
313  * using only allocations of order 0.  Additionally, the bitmap is
314  * designed to work with arbitrary number of zones (this is over the
315  * top for now, but let's avoid making unnecessary assumptions ;-).
316  *
317  * struct zone_bitmap contains a pointer to a list of bitmap block
318  * objects and a pointer to the bitmap block object that has been
319  * most recently used for setting bits.  Additionally, it contains the
320  * PFNs that correspond to the start and end of the represented zone.
321  *
322  * struct bm_block contains a pointer to the memory page in which
323  * information is stored (in the form of a block of bitmap)
324  * It also contains the pfns that correspond to the start and end of
325  * the represented memory area.
326  *
327  * The memory bitmap is organized as a radix tree to guarantee fast random
328  * access to the bits. There is one radix tree for each zone (as returned
329  * from create_mem_extents).
330  *
331  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
332  * two linked lists for the nodes of the tree, one for the inner nodes and
333  * one for the leave nodes. The linked leave nodes are used for fast linear
334  * access of the memory bitmap.
335  *
336  * The struct rtree_node represents one node of the radix tree.
337  */
338 
339 #define BM_END_OF_MAP	(~0UL)
340 
341 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
342 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
343 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
344 
345 /*
346  * struct rtree_node is a wrapper struct to link the nodes
347  * of the rtree together for easy linear iteration over
348  * bits and easy freeing
349  */
350 struct rtree_node {
351 	struct list_head list;
352 	unsigned long *data;
353 };
354 
355 /*
356  * struct mem_zone_bm_rtree represents a bitmap used for one
357  * populated memory zone.
358  */
359 struct mem_zone_bm_rtree {
360 	struct list_head list;		/* Link Zones together         */
361 	struct list_head nodes;		/* Radix Tree inner nodes      */
362 	struct list_head leaves;	/* Radix Tree leaves           */
363 	unsigned long start_pfn;	/* Zone start page frame       */
364 	unsigned long end_pfn;		/* Zone end page frame + 1     */
365 	struct rtree_node *rtree;	/* Radix Tree Root             */
366 	int levels;			/* Number of Radix Tree Levels */
367 	unsigned int blocks;		/* Number of Bitmap Blocks     */
368 };
369 
370 /* strcut bm_position is used for browsing memory bitmaps */
371 
372 struct bm_position {
373 	struct mem_zone_bm_rtree *zone;
374 	struct rtree_node *node;
375 	unsigned long node_pfn;
376 	int node_bit;
377 };
378 
379 struct memory_bitmap {
380 	struct list_head zones;
381 	struct linked_page *p_list;	/* list of pages used to store zone
382 					   bitmap objects and bitmap block
383 					   objects */
384 	struct bm_position cur;	/* most recently used bit position */
385 };
386 
387 /* Functions that operate on memory bitmaps */
388 
389 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
390 #if BITS_PER_LONG == 32
391 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
392 #else
393 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
394 #endif
395 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
396 
397 /**
398  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
399  *
400  * This function is used to allocate inner nodes as well as the
401  * leave nodes of the radix tree. It also adds the node to the
402  * corresponding linked list passed in by the *list parameter.
403  */
404 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
405 					   struct chain_allocator *ca,
406 					   struct list_head *list)
407 {
408 	struct rtree_node *node;
409 
410 	node = chain_alloc(ca, sizeof(struct rtree_node));
411 	if (!node)
412 		return NULL;
413 
414 	node->data = get_image_page(gfp_mask, safe_needed);
415 	if (!node->data)
416 		return NULL;
417 
418 	list_add_tail(&node->list, list);
419 
420 	return node;
421 }
422 
423 /**
424  * add_rtree_block - Add a new leave node to the radix tree.
425  *
426  * The leave nodes need to be allocated in order to keep the leaves
427  * linked list in order. This is guaranteed by the zone->blocks
428  * counter.
429  */
430 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
431 			   int safe_needed, struct chain_allocator *ca)
432 {
433 	struct rtree_node *node, *block, **dst;
434 	unsigned int levels_needed, block_nr;
435 	int i;
436 
437 	block_nr = zone->blocks;
438 	levels_needed = 0;
439 
440 	/* How many levels do we need for this block nr? */
441 	while (block_nr) {
442 		levels_needed += 1;
443 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
444 	}
445 
446 	/* Make sure the rtree has enough levels */
447 	for (i = zone->levels; i < levels_needed; i++) {
448 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
449 					&zone->nodes);
450 		if (!node)
451 			return -ENOMEM;
452 
453 		node->data[0] = (unsigned long)zone->rtree;
454 		zone->rtree = node;
455 		zone->levels += 1;
456 	}
457 
458 	/* Allocate new block */
459 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
460 	if (!block)
461 		return -ENOMEM;
462 
463 	/* Now walk the rtree to insert the block */
464 	node = zone->rtree;
465 	dst = &zone->rtree;
466 	block_nr = zone->blocks;
467 	for (i = zone->levels; i > 0; i--) {
468 		int index;
469 
470 		if (!node) {
471 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
472 						&zone->nodes);
473 			if (!node)
474 				return -ENOMEM;
475 			*dst = node;
476 		}
477 
478 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
479 		index &= BM_RTREE_LEVEL_MASK;
480 		dst = (struct rtree_node **)&((*dst)->data[index]);
481 		node = *dst;
482 	}
483 
484 	zone->blocks += 1;
485 	*dst = block;
486 
487 	return 0;
488 }
489 
490 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
491 			       int clear_nosave_free);
492 
493 /**
494  * create_zone_bm_rtree - Create a radix tree for one zone.
495  *
496  * Allocated the mem_zone_bm_rtree structure and initializes it.
497  * This function also allocated and builds the radix tree for the
498  * zone.
499  */
500 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
501 						      int safe_needed,
502 						      struct chain_allocator *ca,
503 						      unsigned long start,
504 						      unsigned long end)
505 {
506 	struct mem_zone_bm_rtree *zone;
507 	unsigned int i, nr_blocks;
508 	unsigned long pages;
509 
510 	pages = end - start;
511 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
512 	if (!zone)
513 		return NULL;
514 
515 	INIT_LIST_HEAD(&zone->nodes);
516 	INIT_LIST_HEAD(&zone->leaves);
517 	zone->start_pfn = start;
518 	zone->end_pfn = end;
519 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
520 
521 	for (i = 0; i < nr_blocks; i++) {
522 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
523 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
524 			return NULL;
525 		}
526 	}
527 
528 	return zone;
529 }
530 
531 /**
532  * free_zone_bm_rtree - Free the memory of the radix tree.
533  *
534  * Free all node pages of the radix tree. The mem_zone_bm_rtree
535  * structure itself is not freed here nor are the rtree_node
536  * structs.
537  */
538 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
539 			       int clear_nosave_free)
540 {
541 	struct rtree_node *node;
542 
543 	list_for_each_entry(node, &zone->nodes, list)
544 		free_image_page(node->data, clear_nosave_free);
545 
546 	list_for_each_entry(node, &zone->leaves, list)
547 		free_image_page(node->data, clear_nosave_free);
548 }
549 
550 static void memory_bm_position_reset(struct memory_bitmap *bm)
551 {
552 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
553 				  list);
554 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
555 				  struct rtree_node, list);
556 	bm->cur.node_pfn = 0;
557 	bm->cur.node_bit = 0;
558 }
559 
560 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
561 
562 struct mem_extent {
563 	struct list_head hook;
564 	unsigned long start;
565 	unsigned long end;
566 };
567 
568 /**
569  * free_mem_extents - Free a list of memory extents.
570  * @list: List of extents to free.
571  */
572 static void free_mem_extents(struct list_head *list)
573 {
574 	struct mem_extent *ext, *aux;
575 
576 	list_for_each_entry_safe(ext, aux, list, hook) {
577 		list_del(&ext->hook);
578 		kfree(ext);
579 	}
580 }
581 
582 /**
583  * create_mem_extents - Create a list of memory extents.
584  * @list: List to put the extents into.
585  * @gfp_mask: Mask to use for memory allocations.
586  *
587  * The extents represent contiguous ranges of PFNs.
588  */
589 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
590 {
591 	struct zone *zone;
592 
593 	INIT_LIST_HEAD(list);
594 
595 	for_each_populated_zone(zone) {
596 		unsigned long zone_start, zone_end;
597 		struct mem_extent *ext, *cur, *aux;
598 
599 		zone_start = zone->zone_start_pfn;
600 		zone_end = zone_end_pfn(zone);
601 
602 		list_for_each_entry(ext, list, hook)
603 			if (zone_start <= ext->end)
604 				break;
605 
606 		if (&ext->hook == list || zone_end < ext->start) {
607 			/* New extent is necessary */
608 			struct mem_extent *new_ext;
609 
610 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
611 			if (!new_ext) {
612 				free_mem_extents(list);
613 				return -ENOMEM;
614 			}
615 			new_ext->start = zone_start;
616 			new_ext->end = zone_end;
617 			list_add_tail(&new_ext->hook, &ext->hook);
618 			continue;
619 		}
620 
621 		/* Merge this zone's range of PFNs with the existing one */
622 		if (zone_start < ext->start)
623 			ext->start = zone_start;
624 		if (zone_end > ext->end)
625 			ext->end = zone_end;
626 
627 		/* More merging may be possible */
628 		cur = ext;
629 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
630 			if (zone_end < cur->start)
631 				break;
632 			if (zone_end < cur->end)
633 				ext->end = cur->end;
634 			list_del(&cur->hook);
635 			kfree(cur);
636 		}
637 	}
638 
639 	return 0;
640 }
641 
642 /**
643  * memory_bm_create - Allocate memory for a memory bitmap.
644  */
645 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
646 			    int safe_needed)
647 {
648 	struct chain_allocator ca;
649 	struct list_head mem_extents;
650 	struct mem_extent *ext;
651 	int error;
652 
653 	chain_init(&ca, gfp_mask, safe_needed);
654 	INIT_LIST_HEAD(&bm->zones);
655 
656 	error = create_mem_extents(&mem_extents, gfp_mask);
657 	if (error)
658 		return error;
659 
660 	list_for_each_entry(ext, &mem_extents, hook) {
661 		struct mem_zone_bm_rtree *zone;
662 
663 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
664 					    ext->start, ext->end);
665 		if (!zone) {
666 			error = -ENOMEM;
667 			goto Error;
668 		}
669 		list_add_tail(&zone->list, &bm->zones);
670 	}
671 
672 	bm->p_list = ca.chain;
673 	memory_bm_position_reset(bm);
674  Exit:
675 	free_mem_extents(&mem_extents);
676 	return error;
677 
678  Error:
679 	bm->p_list = ca.chain;
680 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
681 	goto Exit;
682 }
683 
684 /**
685  * memory_bm_free - Free memory occupied by the memory bitmap.
686  * @bm: Memory bitmap.
687  */
688 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
689 {
690 	struct mem_zone_bm_rtree *zone;
691 
692 	list_for_each_entry(zone, &bm->zones, list)
693 		free_zone_bm_rtree(zone, clear_nosave_free);
694 
695 	free_list_of_pages(bm->p_list, clear_nosave_free);
696 
697 	INIT_LIST_HEAD(&bm->zones);
698 }
699 
700 /**
701  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
702  *
703  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
704  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
705  *
706  * Walk the radix tree to find the page containing the bit that represents @pfn
707  * and return the position of the bit in @addr and @bit_nr.
708  */
709 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
710 			      void **addr, unsigned int *bit_nr)
711 {
712 	struct mem_zone_bm_rtree *curr, *zone;
713 	struct rtree_node *node;
714 	int i, block_nr;
715 
716 	zone = bm->cur.zone;
717 
718 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
719 		goto zone_found;
720 
721 	zone = NULL;
722 
723 	/* Find the right zone */
724 	list_for_each_entry(curr, &bm->zones, list) {
725 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
726 			zone = curr;
727 			break;
728 		}
729 	}
730 
731 	if (!zone)
732 		return -EFAULT;
733 
734 zone_found:
735 	/*
736 	 * We have found the zone. Now walk the radix tree to find the leaf node
737 	 * for our PFN.
738 	 */
739 	node = bm->cur.node;
740 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
741 		goto node_found;
742 
743 	node      = zone->rtree;
744 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
745 
746 	for (i = zone->levels; i > 0; i--) {
747 		int index;
748 
749 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
750 		index &= BM_RTREE_LEVEL_MASK;
751 		BUG_ON(node->data[index] == 0);
752 		node = (struct rtree_node *)node->data[index];
753 	}
754 
755 node_found:
756 	/* Update last position */
757 	bm->cur.zone = zone;
758 	bm->cur.node = node;
759 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
760 
761 	/* Set return values */
762 	*addr = node->data;
763 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
764 
765 	return 0;
766 }
767 
768 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
769 {
770 	void *addr;
771 	unsigned int bit;
772 	int error;
773 
774 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
775 	BUG_ON(error);
776 	set_bit(bit, addr);
777 }
778 
779 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
780 {
781 	void *addr;
782 	unsigned int bit;
783 	int error;
784 
785 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
786 	if (!error)
787 		set_bit(bit, addr);
788 
789 	return error;
790 }
791 
792 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
793 {
794 	void *addr;
795 	unsigned int bit;
796 	int error;
797 
798 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
799 	BUG_ON(error);
800 	clear_bit(bit, addr);
801 }
802 
803 static void memory_bm_clear_current(struct memory_bitmap *bm)
804 {
805 	int bit;
806 
807 	bit = max(bm->cur.node_bit - 1, 0);
808 	clear_bit(bit, bm->cur.node->data);
809 }
810 
811 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
812 {
813 	void *addr;
814 	unsigned int bit;
815 	int error;
816 
817 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
818 	BUG_ON(error);
819 	return test_bit(bit, addr);
820 }
821 
822 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
823 {
824 	void *addr;
825 	unsigned int bit;
826 
827 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
828 }
829 
830 /*
831  * rtree_next_node - Jump to the next leaf node.
832  *
833  * Set the position to the beginning of the next node in the
834  * memory bitmap. This is either the next node in the current
835  * zone's radix tree or the first node in the radix tree of the
836  * next zone.
837  *
838  * Return true if there is a next node, false otherwise.
839  */
840 static bool rtree_next_node(struct memory_bitmap *bm)
841 {
842 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
843 		bm->cur.node = list_entry(bm->cur.node->list.next,
844 					  struct rtree_node, list);
845 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
846 		bm->cur.node_bit  = 0;
847 		touch_softlockup_watchdog();
848 		return true;
849 	}
850 
851 	/* No more nodes, goto next zone */
852 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
853 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
854 				  struct mem_zone_bm_rtree, list);
855 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
856 					  struct rtree_node, list);
857 		bm->cur.node_pfn = 0;
858 		bm->cur.node_bit = 0;
859 		return true;
860 	}
861 
862 	/* No more zones */
863 	return false;
864 }
865 
866 /**
867  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
868  * @bm: Memory bitmap.
869  *
870  * Starting from the last returned position this function searches for the next
871  * set bit in @bm and returns the PFN represented by it.  If no more bits are
872  * set, BM_END_OF_MAP is returned.
873  *
874  * It is required to run memory_bm_position_reset() before the first call to
875  * this function for the given memory bitmap.
876  */
877 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
878 {
879 	unsigned long bits, pfn, pages;
880 	int bit;
881 
882 	do {
883 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
884 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
885 		bit	  = find_next_bit(bm->cur.node->data, bits,
886 					  bm->cur.node_bit);
887 		if (bit < bits) {
888 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
889 			bm->cur.node_bit = bit + 1;
890 			return pfn;
891 		}
892 	} while (rtree_next_node(bm));
893 
894 	return BM_END_OF_MAP;
895 }
896 
897 /*
898  * This structure represents a range of page frames the contents of which
899  * should not be saved during hibernation.
900  */
901 struct nosave_region {
902 	struct list_head list;
903 	unsigned long start_pfn;
904 	unsigned long end_pfn;
905 };
906 
907 static LIST_HEAD(nosave_regions);
908 
909 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
910 {
911 	struct rtree_node *node;
912 
913 	list_for_each_entry(node, &zone->nodes, list)
914 		recycle_safe_page(node->data);
915 
916 	list_for_each_entry(node, &zone->leaves, list)
917 		recycle_safe_page(node->data);
918 }
919 
920 static void memory_bm_recycle(struct memory_bitmap *bm)
921 {
922 	struct mem_zone_bm_rtree *zone;
923 	struct linked_page *p_list;
924 
925 	list_for_each_entry(zone, &bm->zones, list)
926 		recycle_zone_bm_rtree(zone);
927 
928 	p_list = bm->p_list;
929 	while (p_list) {
930 		struct linked_page *lp = p_list;
931 
932 		p_list = lp->next;
933 		recycle_safe_page(lp);
934 	}
935 }
936 
937 /**
938  * register_nosave_region - Register a region of unsaveable memory.
939  *
940  * Register a range of page frames the contents of which should not be saved
941  * during hibernation (to be used in the early initialization code).
942  */
943 void __init __register_nosave_region(unsigned long start_pfn,
944 				     unsigned long end_pfn, int use_kmalloc)
945 {
946 	struct nosave_region *region;
947 
948 	if (start_pfn >= end_pfn)
949 		return;
950 
951 	if (!list_empty(&nosave_regions)) {
952 		/* Try to extend the previous region (they should be sorted) */
953 		region = list_entry(nosave_regions.prev,
954 					struct nosave_region, list);
955 		if (region->end_pfn == start_pfn) {
956 			region->end_pfn = end_pfn;
957 			goto Report;
958 		}
959 	}
960 	if (use_kmalloc) {
961 		/* During init, this shouldn't fail */
962 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
963 		BUG_ON(!region);
964 	} else {
965 		/* This allocation cannot fail */
966 		region = memblock_alloc(sizeof(struct nosave_region),
967 					SMP_CACHE_BYTES);
968 	}
969 	region->start_pfn = start_pfn;
970 	region->end_pfn = end_pfn;
971 	list_add_tail(&region->list, &nosave_regions);
972  Report:
973 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
974 		(unsigned long long) start_pfn << PAGE_SHIFT,
975 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
976 }
977 
978 /*
979  * Set bits in this map correspond to the page frames the contents of which
980  * should not be saved during the suspend.
981  */
982 static struct memory_bitmap *forbidden_pages_map;
983 
984 /* Set bits in this map correspond to free page frames. */
985 static struct memory_bitmap *free_pages_map;
986 
987 /*
988  * Each page frame allocated for creating the image is marked by setting the
989  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
990  */
991 
992 void swsusp_set_page_free(struct page *page)
993 {
994 	if (free_pages_map)
995 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
996 }
997 
998 static int swsusp_page_is_free(struct page *page)
999 {
1000 	return free_pages_map ?
1001 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1002 }
1003 
1004 void swsusp_unset_page_free(struct page *page)
1005 {
1006 	if (free_pages_map)
1007 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1008 }
1009 
1010 static void swsusp_set_page_forbidden(struct page *page)
1011 {
1012 	if (forbidden_pages_map)
1013 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1014 }
1015 
1016 int swsusp_page_is_forbidden(struct page *page)
1017 {
1018 	return forbidden_pages_map ?
1019 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1020 }
1021 
1022 static void swsusp_unset_page_forbidden(struct page *page)
1023 {
1024 	if (forbidden_pages_map)
1025 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1026 }
1027 
1028 /**
1029  * mark_nosave_pages - Mark pages that should not be saved.
1030  * @bm: Memory bitmap.
1031  *
1032  * Set the bits in @bm that correspond to the page frames the contents of which
1033  * should not be saved.
1034  */
1035 static void mark_nosave_pages(struct memory_bitmap *bm)
1036 {
1037 	struct nosave_region *region;
1038 
1039 	if (list_empty(&nosave_regions))
1040 		return;
1041 
1042 	list_for_each_entry(region, &nosave_regions, list) {
1043 		unsigned long pfn;
1044 
1045 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1046 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1047 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1048 				- 1);
1049 
1050 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1051 			if (pfn_valid(pfn)) {
1052 				/*
1053 				 * It is safe to ignore the result of
1054 				 * mem_bm_set_bit_check() here, since we won't
1055 				 * touch the PFNs for which the error is
1056 				 * returned anyway.
1057 				 */
1058 				mem_bm_set_bit_check(bm, pfn);
1059 			}
1060 	}
1061 }
1062 
1063 /**
1064  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1065  *
1066  * Create bitmaps needed for marking page frames that should not be saved and
1067  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1068  * only modified if everything goes well, because we don't want the bits to be
1069  * touched before both bitmaps are set up.
1070  */
1071 int create_basic_memory_bitmaps(void)
1072 {
1073 	struct memory_bitmap *bm1, *bm2;
1074 	int error = 0;
1075 
1076 	if (forbidden_pages_map && free_pages_map)
1077 		return 0;
1078 	else
1079 		BUG_ON(forbidden_pages_map || free_pages_map);
1080 
1081 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1082 	if (!bm1)
1083 		return -ENOMEM;
1084 
1085 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1086 	if (error)
1087 		goto Free_first_object;
1088 
1089 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1090 	if (!bm2)
1091 		goto Free_first_bitmap;
1092 
1093 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1094 	if (error)
1095 		goto Free_second_object;
1096 
1097 	forbidden_pages_map = bm1;
1098 	free_pages_map = bm2;
1099 	mark_nosave_pages(forbidden_pages_map);
1100 
1101 	pr_debug("Basic memory bitmaps created\n");
1102 
1103 	return 0;
1104 
1105  Free_second_object:
1106 	kfree(bm2);
1107  Free_first_bitmap:
1108  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1109  Free_first_object:
1110 	kfree(bm1);
1111 	return -ENOMEM;
1112 }
1113 
1114 /**
1115  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1116  *
1117  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1118  * auxiliary pointers are necessary so that the bitmaps themselves are not
1119  * referred to while they are being freed.
1120  */
1121 void free_basic_memory_bitmaps(void)
1122 {
1123 	struct memory_bitmap *bm1, *bm2;
1124 
1125 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1126 		return;
1127 
1128 	bm1 = forbidden_pages_map;
1129 	bm2 = free_pages_map;
1130 	forbidden_pages_map = NULL;
1131 	free_pages_map = NULL;
1132 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1133 	kfree(bm1);
1134 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1135 	kfree(bm2);
1136 
1137 	pr_debug("Basic memory bitmaps freed\n");
1138 }
1139 
1140 void clear_free_pages(void)
1141 {
1142 #ifdef CONFIG_PAGE_POISONING_ZERO
1143 	struct memory_bitmap *bm = free_pages_map;
1144 	unsigned long pfn;
1145 
1146 	if (WARN_ON(!(free_pages_map)))
1147 		return;
1148 
1149 	memory_bm_position_reset(bm);
1150 	pfn = memory_bm_next_pfn(bm);
1151 	while (pfn != BM_END_OF_MAP) {
1152 		if (pfn_valid(pfn))
1153 			clear_highpage(pfn_to_page(pfn));
1154 
1155 		pfn = memory_bm_next_pfn(bm);
1156 	}
1157 	memory_bm_position_reset(bm);
1158 	pr_info("free pages cleared after restore\n");
1159 #endif /* PAGE_POISONING_ZERO */
1160 }
1161 
1162 /**
1163  * snapshot_additional_pages - Estimate the number of extra pages needed.
1164  * @zone: Memory zone to carry out the computation for.
1165  *
1166  * Estimate the number of additional pages needed for setting up a hibernation
1167  * image data structures for @zone (usually, the returned value is greater than
1168  * the exact number).
1169  */
1170 unsigned int snapshot_additional_pages(struct zone *zone)
1171 {
1172 	unsigned int rtree, nodes;
1173 
1174 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1175 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1176 			      LINKED_PAGE_DATA_SIZE);
1177 	while (nodes > 1) {
1178 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1179 		rtree += nodes;
1180 	}
1181 
1182 	return 2 * rtree;
1183 }
1184 
1185 #ifdef CONFIG_HIGHMEM
1186 /**
1187  * count_free_highmem_pages - Compute the total number of free highmem pages.
1188  *
1189  * The returned number is system-wide.
1190  */
1191 static unsigned int count_free_highmem_pages(void)
1192 {
1193 	struct zone *zone;
1194 	unsigned int cnt = 0;
1195 
1196 	for_each_populated_zone(zone)
1197 		if (is_highmem(zone))
1198 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1199 
1200 	return cnt;
1201 }
1202 
1203 /**
1204  * saveable_highmem_page - Check if a highmem page is saveable.
1205  *
1206  * Determine whether a highmem page should be included in a hibernation image.
1207  *
1208  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1209  * and it isn't part of a free chunk of pages.
1210  */
1211 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1212 {
1213 	struct page *page;
1214 
1215 	if (!pfn_valid(pfn))
1216 		return NULL;
1217 
1218 	page = pfn_to_page(pfn);
1219 	if (page_zone(page) != zone)
1220 		return NULL;
1221 
1222 	BUG_ON(!PageHighMem(page));
1223 
1224 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1225 	    PageReserved(page))
1226 		return NULL;
1227 
1228 	if (page_is_guard(page))
1229 		return NULL;
1230 
1231 	return page;
1232 }
1233 
1234 /**
1235  * count_highmem_pages - Compute the total number of saveable highmem pages.
1236  */
1237 static unsigned int count_highmem_pages(void)
1238 {
1239 	struct zone *zone;
1240 	unsigned int n = 0;
1241 
1242 	for_each_populated_zone(zone) {
1243 		unsigned long pfn, max_zone_pfn;
1244 
1245 		if (!is_highmem(zone))
1246 			continue;
1247 
1248 		mark_free_pages(zone);
1249 		max_zone_pfn = zone_end_pfn(zone);
1250 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1251 			if (saveable_highmem_page(zone, pfn))
1252 				n++;
1253 	}
1254 	return n;
1255 }
1256 #else
1257 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1258 {
1259 	return NULL;
1260 }
1261 #endif /* CONFIG_HIGHMEM */
1262 
1263 /**
1264  * saveable_page - Check if the given page is saveable.
1265  *
1266  * Determine whether a non-highmem page should be included in a hibernation
1267  * image.
1268  *
1269  * We should save the page if it isn't Nosave, and is not in the range
1270  * of pages statically defined as 'unsaveable', and it isn't part of
1271  * a free chunk of pages.
1272  */
1273 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1274 {
1275 	struct page *page;
1276 
1277 	if (!pfn_valid(pfn))
1278 		return NULL;
1279 
1280 	page = pfn_to_page(pfn);
1281 	if (page_zone(page) != zone)
1282 		return NULL;
1283 
1284 	BUG_ON(PageHighMem(page));
1285 
1286 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1287 		return NULL;
1288 
1289 	if (PageReserved(page)
1290 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1291 		return NULL;
1292 
1293 	if (page_is_guard(page))
1294 		return NULL;
1295 
1296 	return page;
1297 }
1298 
1299 /**
1300  * count_data_pages - Compute the total number of saveable non-highmem pages.
1301  */
1302 static unsigned int count_data_pages(void)
1303 {
1304 	struct zone *zone;
1305 	unsigned long pfn, max_zone_pfn;
1306 	unsigned int n = 0;
1307 
1308 	for_each_populated_zone(zone) {
1309 		if (is_highmem(zone))
1310 			continue;
1311 
1312 		mark_free_pages(zone);
1313 		max_zone_pfn = zone_end_pfn(zone);
1314 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1315 			if (saveable_page(zone, pfn))
1316 				n++;
1317 	}
1318 	return n;
1319 }
1320 
1321 /*
1322  * This is needed, because copy_page and memcpy are not usable for copying
1323  * task structs.
1324  */
1325 static inline void do_copy_page(long *dst, long *src)
1326 {
1327 	int n;
1328 
1329 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1330 		*dst++ = *src++;
1331 }
1332 
1333 /**
1334  * safe_copy_page - Copy a page in a safe way.
1335  *
1336  * Check if the page we are going to copy is marked as present in the kernel
1337  * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1338  * and in that case kernel_page_present() always returns 'true').
1339  */
1340 static void safe_copy_page(void *dst, struct page *s_page)
1341 {
1342 	if (kernel_page_present(s_page)) {
1343 		do_copy_page(dst, page_address(s_page));
1344 	} else {
1345 		kernel_map_pages(s_page, 1, 1);
1346 		do_copy_page(dst, page_address(s_page));
1347 		kernel_map_pages(s_page, 1, 0);
1348 	}
1349 }
1350 
1351 #ifdef CONFIG_HIGHMEM
1352 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1353 {
1354 	return is_highmem(zone) ?
1355 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1356 }
1357 
1358 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1359 {
1360 	struct page *s_page, *d_page;
1361 	void *src, *dst;
1362 
1363 	s_page = pfn_to_page(src_pfn);
1364 	d_page = pfn_to_page(dst_pfn);
1365 	if (PageHighMem(s_page)) {
1366 		src = kmap_atomic(s_page);
1367 		dst = kmap_atomic(d_page);
1368 		do_copy_page(dst, src);
1369 		kunmap_atomic(dst);
1370 		kunmap_atomic(src);
1371 	} else {
1372 		if (PageHighMem(d_page)) {
1373 			/*
1374 			 * The page pointed to by src may contain some kernel
1375 			 * data modified by kmap_atomic()
1376 			 */
1377 			safe_copy_page(buffer, s_page);
1378 			dst = kmap_atomic(d_page);
1379 			copy_page(dst, buffer);
1380 			kunmap_atomic(dst);
1381 		} else {
1382 			safe_copy_page(page_address(d_page), s_page);
1383 		}
1384 	}
1385 }
1386 #else
1387 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1388 
1389 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1390 {
1391 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1392 				pfn_to_page(src_pfn));
1393 }
1394 #endif /* CONFIG_HIGHMEM */
1395 
1396 static void copy_data_pages(struct memory_bitmap *copy_bm,
1397 			    struct memory_bitmap *orig_bm)
1398 {
1399 	struct zone *zone;
1400 	unsigned long pfn;
1401 
1402 	for_each_populated_zone(zone) {
1403 		unsigned long max_zone_pfn;
1404 
1405 		mark_free_pages(zone);
1406 		max_zone_pfn = zone_end_pfn(zone);
1407 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1408 			if (page_is_saveable(zone, pfn))
1409 				memory_bm_set_bit(orig_bm, pfn);
1410 	}
1411 	memory_bm_position_reset(orig_bm);
1412 	memory_bm_position_reset(copy_bm);
1413 	for(;;) {
1414 		pfn = memory_bm_next_pfn(orig_bm);
1415 		if (unlikely(pfn == BM_END_OF_MAP))
1416 			break;
1417 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1418 	}
1419 }
1420 
1421 /* Total number of image pages */
1422 static unsigned int nr_copy_pages;
1423 /* Number of pages needed for saving the original pfns of the image pages */
1424 static unsigned int nr_meta_pages;
1425 /*
1426  * Numbers of normal and highmem page frames allocated for hibernation image
1427  * before suspending devices.
1428  */
1429 static unsigned int alloc_normal, alloc_highmem;
1430 /*
1431  * Memory bitmap used for marking saveable pages (during hibernation) or
1432  * hibernation image pages (during restore)
1433  */
1434 static struct memory_bitmap orig_bm;
1435 /*
1436  * Memory bitmap used during hibernation for marking allocated page frames that
1437  * will contain copies of saveable pages.  During restore it is initially used
1438  * for marking hibernation image pages, but then the set bits from it are
1439  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1440  * used for marking "safe" highmem pages, but it has to be reinitialized for
1441  * this purpose.
1442  */
1443 static struct memory_bitmap copy_bm;
1444 
1445 /**
1446  * swsusp_free - Free pages allocated for hibernation image.
1447  *
1448  * Image pages are alocated before snapshot creation, so they need to be
1449  * released after resume.
1450  */
1451 void swsusp_free(void)
1452 {
1453 	unsigned long fb_pfn, fr_pfn;
1454 
1455 	if (!forbidden_pages_map || !free_pages_map)
1456 		goto out;
1457 
1458 	memory_bm_position_reset(forbidden_pages_map);
1459 	memory_bm_position_reset(free_pages_map);
1460 
1461 loop:
1462 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1463 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1464 
1465 	/*
1466 	 * Find the next bit set in both bitmaps. This is guaranteed to
1467 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1468 	 */
1469 	do {
1470 		if (fb_pfn < fr_pfn)
1471 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1472 		if (fr_pfn < fb_pfn)
1473 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1474 	} while (fb_pfn != fr_pfn);
1475 
1476 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1477 		struct page *page = pfn_to_page(fr_pfn);
1478 
1479 		memory_bm_clear_current(forbidden_pages_map);
1480 		memory_bm_clear_current(free_pages_map);
1481 		hibernate_restore_unprotect_page(page_address(page));
1482 		__free_page(page);
1483 		goto loop;
1484 	}
1485 
1486 out:
1487 	nr_copy_pages = 0;
1488 	nr_meta_pages = 0;
1489 	restore_pblist = NULL;
1490 	buffer = NULL;
1491 	alloc_normal = 0;
1492 	alloc_highmem = 0;
1493 	hibernate_restore_protection_end();
1494 }
1495 
1496 /* Helper functions used for the shrinking of memory. */
1497 
1498 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1499 
1500 /**
1501  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1502  * @nr_pages: Number of page frames to allocate.
1503  * @mask: GFP flags to use for the allocation.
1504  *
1505  * Return value: Number of page frames actually allocated
1506  */
1507 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1508 {
1509 	unsigned long nr_alloc = 0;
1510 
1511 	while (nr_pages > 0) {
1512 		struct page *page;
1513 
1514 		page = alloc_image_page(mask);
1515 		if (!page)
1516 			break;
1517 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1518 		if (PageHighMem(page))
1519 			alloc_highmem++;
1520 		else
1521 			alloc_normal++;
1522 		nr_pages--;
1523 		nr_alloc++;
1524 	}
1525 
1526 	return nr_alloc;
1527 }
1528 
1529 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1530 					      unsigned long avail_normal)
1531 {
1532 	unsigned long alloc;
1533 
1534 	if (avail_normal <= alloc_normal)
1535 		return 0;
1536 
1537 	alloc = avail_normal - alloc_normal;
1538 	if (nr_pages < alloc)
1539 		alloc = nr_pages;
1540 
1541 	return preallocate_image_pages(alloc, GFP_IMAGE);
1542 }
1543 
1544 #ifdef CONFIG_HIGHMEM
1545 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1546 {
1547 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1548 }
1549 
1550 /**
1551  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1552  */
1553 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1554 {
1555 	x *= multiplier;
1556 	do_div(x, base);
1557 	return (unsigned long)x;
1558 }
1559 
1560 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1561 						  unsigned long highmem,
1562 						  unsigned long total)
1563 {
1564 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1565 
1566 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1567 }
1568 #else /* CONFIG_HIGHMEM */
1569 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1570 {
1571 	return 0;
1572 }
1573 
1574 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1575 							 unsigned long highmem,
1576 							 unsigned long total)
1577 {
1578 	return 0;
1579 }
1580 #endif /* CONFIG_HIGHMEM */
1581 
1582 /**
1583  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1584  */
1585 static unsigned long free_unnecessary_pages(void)
1586 {
1587 	unsigned long save, to_free_normal, to_free_highmem, free;
1588 
1589 	save = count_data_pages();
1590 	if (alloc_normal >= save) {
1591 		to_free_normal = alloc_normal - save;
1592 		save = 0;
1593 	} else {
1594 		to_free_normal = 0;
1595 		save -= alloc_normal;
1596 	}
1597 	save += count_highmem_pages();
1598 	if (alloc_highmem >= save) {
1599 		to_free_highmem = alloc_highmem - save;
1600 	} else {
1601 		to_free_highmem = 0;
1602 		save -= alloc_highmem;
1603 		if (to_free_normal > save)
1604 			to_free_normal -= save;
1605 		else
1606 			to_free_normal = 0;
1607 	}
1608 	free = to_free_normal + to_free_highmem;
1609 
1610 	memory_bm_position_reset(&copy_bm);
1611 
1612 	while (to_free_normal > 0 || to_free_highmem > 0) {
1613 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1614 		struct page *page = pfn_to_page(pfn);
1615 
1616 		if (PageHighMem(page)) {
1617 			if (!to_free_highmem)
1618 				continue;
1619 			to_free_highmem--;
1620 			alloc_highmem--;
1621 		} else {
1622 			if (!to_free_normal)
1623 				continue;
1624 			to_free_normal--;
1625 			alloc_normal--;
1626 		}
1627 		memory_bm_clear_bit(&copy_bm, pfn);
1628 		swsusp_unset_page_forbidden(page);
1629 		swsusp_unset_page_free(page);
1630 		__free_page(page);
1631 	}
1632 
1633 	return free;
1634 }
1635 
1636 /**
1637  * minimum_image_size - Estimate the minimum acceptable size of an image.
1638  * @saveable: Number of saveable pages in the system.
1639  *
1640  * We want to avoid attempting to free too much memory too hard, so estimate the
1641  * minimum acceptable size of a hibernation image to use as the lower limit for
1642  * preallocating memory.
1643  *
1644  * We assume that the minimum image size should be proportional to
1645  *
1646  * [number of saveable pages] - [number of pages that can be freed in theory]
1647  *
1648  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1649  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1650  */
1651 static unsigned long minimum_image_size(unsigned long saveable)
1652 {
1653 	unsigned long size;
1654 
1655 	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1656 		+ global_node_page_state(NR_ACTIVE_ANON)
1657 		+ global_node_page_state(NR_INACTIVE_ANON)
1658 		+ global_node_page_state(NR_ACTIVE_FILE)
1659 		+ global_node_page_state(NR_INACTIVE_FILE);
1660 
1661 	return saveable <= size ? 0 : saveable - size;
1662 }
1663 
1664 /**
1665  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1666  *
1667  * To create a hibernation image it is necessary to make a copy of every page
1668  * frame in use.  We also need a number of page frames to be free during
1669  * hibernation for allocations made while saving the image and for device
1670  * drivers, in case they need to allocate memory from their hibernation
1671  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1672  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1673  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1674  * total number of available page frames and allocate at least
1675  *
1676  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1677  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1678  *
1679  * of them, which corresponds to the maximum size of a hibernation image.
1680  *
1681  * If image_size is set below the number following from the above formula,
1682  * the preallocation of memory is continued until the total number of saveable
1683  * pages in the system is below the requested image size or the minimum
1684  * acceptable image size returned by minimum_image_size(), whichever is greater.
1685  */
1686 int hibernate_preallocate_memory(void)
1687 {
1688 	struct zone *zone;
1689 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1690 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1691 	ktime_t start, stop;
1692 	int error;
1693 
1694 	pr_info("Preallocating image memory... ");
1695 	start = ktime_get();
1696 
1697 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1698 	if (error)
1699 		goto err_out;
1700 
1701 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1702 	if (error)
1703 		goto err_out;
1704 
1705 	alloc_normal = 0;
1706 	alloc_highmem = 0;
1707 
1708 	/* Count the number of saveable data pages. */
1709 	save_highmem = count_highmem_pages();
1710 	saveable = count_data_pages();
1711 
1712 	/*
1713 	 * Compute the total number of page frames we can use (count) and the
1714 	 * number of pages needed for image metadata (size).
1715 	 */
1716 	count = saveable;
1717 	saveable += save_highmem;
1718 	highmem = save_highmem;
1719 	size = 0;
1720 	for_each_populated_zone(zone) {
1721 		size += snapshot_additional_pages(zone);
1722 		if (is_highmem(zone))
1723 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1724 		else
1725 			count += zone_page_state(zone, NR_FREE_PAGES);
1726 	}
1727 	avail_normal = count;
1728 	count += highmem;
1729 	count -= totalreserve_pages;
1730 
1731 	/* Add number of pages required for page keys (s390 only). */
1732 	size += page_key_additional_pages(saveable);
1733 
1734 	/* Compute the maximum number of saveable pages to leave in memory. */
1735 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1736 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1737 	/* Compute the desired number of image pages specified by image_size. */
1738 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1739 	if (size > max_size)
1740 		size = max_size;
1741 	/*
1742 	 * If the desired number of image pages is at least as large as the
1743 	 * current number of saveable pages in memory, allocate page frames for
1744 	 * the image and we're done.
1745 	 */
1746 	if (size >= saveable) {
1747 		pages = preallocate_image_highmem(save_highmem);
1748 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1749 		goto out;
1750 	}
1751 
1752 	/* Estimate the minimum size of the image. */
1753 	pages = minimum_image_size(saveable);
1754 	/*
1755 	 * To avoid excessive pressure on the normal zone, leave room in it to
1756 	 * accommodate an image of the minimum size (unless it's already too
1757 	 * small, in which case don't preallocate pages from it at all).
1758 	 */
1759 	if (avail_normal > pages)
1760 		avail_normal -= pages;
1761 	else
1762 		avail_normal = 0;
1763 	if (size < pages)
1764 		size = min_t(unsigned long, pages, max_size);
1765 
1766 	/*
1767 	 * Let the memory management subsystem know that we're going to need a
1768 	 * large number of page frames to allocate and make it free some memory.
1769 	 * NOTE: If this is not done, performance will be hurt badly in some
1770 	 * test cases.
1771 	 */
1772 	shrink_all_memory(saveable - size);
1773 
1774 	/*
1775 	 * The number of saveable pages in memory was too high, so apply some
1776 	 * pressure to decrease it.  First, make room for the largest possible
1777 	 * image and fail if that doesn't work.  Next, try to decrease the size
1778 	 * of the image as much as indicated by 'size' using allocations from
1779 	 * highmem and non-highmem zones separately.
1780 	 */
1781 	pages_highmem = preallocate_image_highmem(highmem / 2);
1782 	alloc = count - max_size;
1783 	if (alloc > pages_highmem)
1784 		alloc -= pages_highmem;
1785 	else
1786 		alloc = 0;
1787 	pages = preallocate_image_memory(alloc, avail_normal);
1788 	if (pages < alloc) {
1789 		/* We have exhausted non-highmem pages, try highmem. */
1790 		alloc -= pages;
1791 		pages += pages_highmem;
1792 		pages_highmem = preallocate_image_highmem(alloc);
1793 		if (pages_highmem < alloc)
1794 			goto err_out;
1795 		pages += pages_highmem;
1796 		/*
1797 		 * size is the desired number of saveable pages to leave in
1798 		 * memory, so try to preallocate (all memory - size) pages.
1799 		 */
1800 		alloc = (count - pages) - size;
1801 		pages += preallocate_image_highmem(alloc);
1802 	} else {
1803 		/*
1804 		 * There are approximately max_size saveable pages at this point
1805 		 * and we want to reduce this number down to size.
1806 		 */
1807 		alloc = max_size - size;
1808 		size = preallocate_highmem_fraction(alloc, highmem, count);
1809 		pages_highmem += size;
1810 		alloc -= size;
1811 		size = preallocate_image_memory(alloc, avail_normal);
1812 		pages_highmem += preallocate_image_highmem(alloc - size);
1813 		pages += pages_highmem + size;
1814 	}
1815 
1816 	/*
1817 	 * We only need as many page frames for the image as there are saveable
1818 	 * pages in memory, but we have allocated more.  Release the excessive
1819 	 * ones now.
1820 	 */
1821 	pages -= free_unnecessary_pages();
1822 
1823  out:
1824 	stop = ktime_get();
1825 	pr_cont("done (allocated %lu pages)\n", pages);
1826 	swsusp_show_speed(start, stop, pages, "Allocated");
1827 
1828 	return 0;
1829 
1830  err_out:
1831 	pr_cont("\n");
1832 	swsusp_free();
1833 	return -ENOMEM;
1834 }
1835 
1836 #ifdef CONFIG_HIGHMEM
1837 /**
1838  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1839  *
1840  * Compute the number of non-highmem pages that will be necessary for creating
1841  * copies of highmem pages.
1842  */
1843 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1844 {
1845 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1846 
1847 	if (free_highmem >= nr_highmem)
1848 		nr_highmem = 0;
1849 	else
1850 		nr_highmem -= free_highmem;
1851 
1852 	return nr_highmem;
1853 }
1854 #else
1855 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1856 #endif /* CONFIG_HIGHMEM */
1857 
1858 /**
1859  * enough_free_mem - Check if there is enough free memory for the image.
1860  */
1861 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1862 {
1863 	struct zone *zone;
1864 	unsigned int free = alloc_normal;
1865 
1866 	for_each_populated_zone(zone)
1867 		if (!is_highmem(zone))
1868 			free += zone_page_state(zone, NR_FREE_PAGES);
1869 
1870 	nr_pages += count_pages_for_highmem(nr_highmem);
1871 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1872 		 nr_pages, PAGES_FOR_IO, free);
1873 
1874 	return free > nr_pages + PAGES_FOR_IO;
1875 }
1876 
1877 #ifdef CONFIG_HIGHMEM
1878 /**
1879  * get_highmem_buffer - Allocate a buffer for highmem pages.
1880  *
1881  * If there are some highmem pages in the hibernation image, we may need a
1882  * buffer to copy them and/or load their data.
1883  */
1884 static inline int get_highmem_buffer(int safe_needed)
1885 {
1886 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1887 	return buffer ? 0 : -ENOMEM;
1888 }
1889 
1890 /**
1891  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1892  *
1893  * Try to allocate as many pages as needed, but if the number of free highmem
1894  * pages is less than that, allocate them all.
1895  */
1896 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1897 					       unsigned int nr_highmem)
1898 {
1899 	unsigned int to_alloc = count_free_highmem_pages();
1900 
1901 	if (to_alloc > nr_highmem)
1902 		to_alloc = nr_highmem;
1903 
1904 	nr_highmem -= to_alloc;
1905 	while (to_alloc-- > 0) {
1906 		struct page *page;
1907 
1908 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1909 		memory_bm_set_bit(bm, page_to_pfn(page));
1910 	}
1911 	return nr_highmem;
1912 }
1913 #else
1914 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1915 
1916 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1917 					       unsigned int n) { return 0; }
1918 #endif /* CONFIG_HIGHMEM */
1919 
1920 /**
1921  * swsusp_alloc - Allocate memory for hibernation image.
1922  *
1923  * We first try to allocate as many highmem pages as there are
1924  * saveable highmem pages in the system.  If that fails, we allocate
1925  * non-highmem pages for the copies of the remaining highmem ones.
1926  *
1927  * In this approach it is likely that the copies of highmem pages will
1928  * also be located in the high memory, because of the way in which
1929  * copy_data_pages() works.
1930  */
1931 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1932 			unsigned int nr_pages, unsigned int nr_highmem)
1933 {
1934 	if (nr_highmem > 0) {
1935 		if (get_highmem_buffer(PG_ANY))
1936 			goto err_out;
1937 		if (nr_highmem > alloc_highmem) {
1938 			nr_highmem -= alloc_highmem;
1939 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1940 		}
1941 	}
1942 	if (nr_pages > alloc_normal) {
1943 		nr_pages -= alloc_normal;
1944 		while (nr_pages-- > 0) {
1945 			struct page *page;
1946 
1947 			page = alloc_image_page(GFP_ATOMIC);
1948 			if (!page)
1949 				goto err_out;
1950 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1951 		}
1952 	}
1953 
1954 	return 0;
1955 
1956  err_out:
1957 	swsusp_free();
1958 	return -ENOMEM;
1959 }
1960 
1961 asmlinkage __visible int swsusp_save(void)
1962 {
1963 	unsigned int nr_pages, nr_highmem;
1964 
1965 	pr_info("Creating hibernation image:\n");
1966 
1967 	drain_local_pages(NULL);
1968 	nr_pages = count_data_pages();
1969 	nr_highmem = count_highmem_pages();
1970 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1971 
1972 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1973 		pr_err("Not enough free memory\n");
1974 		return -ENOMEM;
1975 	}
1976 
1977 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1978 		pr_err("Memory allocation failed\n");
1979 		return -ENOMEM;
1980 	}
1981 
1982 	/*
1983 	 * During allocating of suspend pagedir, new cold pages may appear.
1984 	 * Kill them.
1985 	 */
1986 	drain_local_pages(NULL);
1987 	copy_data_pages(&copy_bm, &orig_bm);
1988 
1989 	/*
1990 	 * End of critical section. From now on, we can write to memory,
1991 	 * but we should not touch disk. This specially means we must _not_
1992 	 * touch swap space! Except we must write out our image of course.
1993 	 */
1994 
1995 	nr_pages += nr_highmem;
1996 	nr_copy_pages = nr_pages;
1997 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1998 
1999 	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2000 
2001 	return 0;
2002 }
2003 
2004 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2005 static int init_header_complete(struct swsusp_info *info)
2006 {
2007 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2008 	info->version_code = LINUX_VERSION_CODE;
2009 	return 0;
2010 }
2011 
2012 static char *check_image_kernel(struct swsusp_info *info)
2013 {
2014 	if (info->version_code != LINUX_VERSION_CODE)
2015 		return "kernel version";
2016 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2017 		return "system type";
2018 	if (strcmp(info->uts.release,init_utsname()->release))
2019 		return "kernel release";
2020 	if (strcmp(info->uts.version,init_utsname()->version))
2021 		return "version";
2022 	if (strcmp(info->uts.machine,init_utsname()->machine))
2023 		return "machine";
2024 	return NULL;
2025 }
2026 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2027 
2028 unsigned long snapshot_get_image_size(void)
2029 {
2030 	return nr_copy_pages + nr_meta_pages + 1;
2031 }
2032 
2033 static int init_header(struct swsusp_info *info)
2034 {
2035 	memset(info, 0, sizeof(struct swsusp_info));
2036 	info->num_physpages = get_num_physpages();
2037 	info->image_pages = nr_copy_pages;
2038 	info->pages = snapshot_get_image_size();
2039 	info->size = info->pages;
2040 	info->size <<= PAGE_SHIFT;
2041 	return init_header_complete(info);
2042 }
2043 
2044 /**
2045  * pack_pfns - Prepare PFNs for saving.
2046  * @bm: Memory bitmap.
2047  * @buf: Memory buffer to store the PFNs in.
2048  *
2049  * PFNs corresponding to set bits in @bm are stored in the area of memory
2050  * pointed to by @buf (1 page at a time).
2051  */
2052 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2053 {
2054 	int j;
2055 
2056 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2057 		buf[j] = memory_bm_next_pfn(bm);
2058 		if (unlikely(buf[j] == BM_END_OF_MAP))
2059 			break;
2060 		/* Save page key for data page (s390 only). */
2061 		page_key_read(buf + j);
2062 	}
2063 }
2064 
2065 /**
2066  * snapshot_read_next - Get the address to read the next image page from.
2067  * @handle: Snapshot handle to be used for the reading.
2068  *
2069  * On the first call, @handle should point to a zeroed snapshot_handle
2070  * structure.  The structure gets populated then and a pointer to it should be
2071  * passed to this function every next time.
2072  *
2073  * On success, the function returns a positive number.  Then, the caller
2074  * is allowed to read up to the returned number of bytes from the memory
2075  * location computed by the data_of() macro.
2076  *
2077  * The function returns 0 to indicate the end of the data stream condition,
2078  * and negative numbers are returned on errors.  If that happens, the structure
2079  * pointed to by @handle is not updated and should not be used any more.
2080  */
2081 int snapshot_read_next(struct snapshot_handle *handle)
2082 {
2083 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2084 		return 0;
2085 
2086 	if (!buffer) {
2087 		/* This makes the buffer be freed by swsusp_free() */
2088 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2089 		if (!buffer)
2090 			return -ENOMEM;
2091 	}
2092 	if (!handle->cur) {
2093 		int error;
2094 
2095 		error = init_header((struct swsusp_info *)buffer);
2096 		if (error)
2097 			return error;
2098 		handle->buffer = buffer;
2099 		memory_bm_position_reset(&orig_bm);
2100 		memory_bm_position_reset(&copy_bm);
2101 	} else if (handle->cur <= nr_meta_pages) {
2102 		clear_page(buffer);
2103 		pack_pfns(buffer, &orig_bm);
2104 	} else {
2105 		struct page *page;
2106 
2107 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2108 		if (PageHighMem(page)) {
2109 			/*
2110 			 * Highmem pages are copied to the buffer,
2111 			 * because we can't return with a kmapped
2112 			 * highmem page (we may not be called again).
2113 			 */
2114 			void *kaddr;
2115 
2116 			kaddr = kmap_atomic(page);
2117 			copy_page(buffer, kaddr);
2118 			kunmap_atomic(kaddr);
2119 			handle->buffer = buffer;
2120 		} else {
2121 			handle->buffer = page_address(page);
2122 		}
2123 	}
2124 	handle->cur++;
2125 	return PAGE_SIZE;
2126 }
2127 
2128 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2129 				    struct memory_bitmap *src)
2130 {
2131 	unsigned long pfn;
2132 
2133 	memory_bm_position_reset(src);
2134 	pfn = memory_bm_next_pfn(src);
2135 	while (pfn != BM_END_OF_MAP) {
2136 		memory_bm_set_bit(dst, pfn);
2137 		pfn = memory_bm_next_pfn(src);
2138 	}
2139 }
2140 
2141 /**
2142  * mark_unsafe_pages - Mark pages that were used before hibernation.
2143  *
2144  * Mark the pages that cannot be used for storing the image during restoration,
2145  * because they conflict with the pages that had been used before hibernation.
2146  */
2147 static void mark_unsafe_pages(struct memory_bitmap *bm)
2148 {
2149 	unsigned long pfn;
2150 
2151 	/* Clear the "free"/"unsafe" bit for all PFNs */
2152 	memory_bm_position_reset(free_pages_map);
2153 	pfn = memory_bm_next_pfn(free_pages_map);
2154 	while (pfn != BM_END_OF_MAP) {
2155 		memory_bm_clear_current(free_pages_map);
2156 		pfn = memory_bm_next_pfn(free_pages_map);
2157 	}
2158 
2159 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2160 	duplicate_memory_bitmap(free_pages_map, bm);
2161 
2162 	allocated_unsafe_pages = 0;
2163 }
2164 
2165 static int check_header(struct swsusp_info *info)
2166 {
2167 	char *reason;
2168 
2169 	reason = check_image_kernel(info);
2170 	if (!reason && info->num_physpages != get_num_physpages())
2171 		reason = "memory size";
2172 	if (reason) {
2173 		pr_err("Image mismatch: %s\n", reason);
2174 		return -EPERM;
2175 	}
2176 	return 0;
2177 }
2178 
2179 /**
2180  * load header - Check the image header and copy the data from it.
2181  */
2182 static int load_header(struct swsusp_info *info)
2183 {
2184 	int error;
2185 
2186 	restore_pblist = NULL;
2187 	error = check_header(info);
2188 	if (!error) {
2189 		nr_copy_pages = info->image_pages;
2190 		nr_meta_pages = info->pages - info->image_pages - 1;
2191 	}
2192 	return error;
2193 }
2194 
2195 /**
2196  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2197  * @bm: Memory bitmap.
2198  * @buf: Area of memory containing the PFNs.
2199  *
2200  * For each element of the array pointed to by @buf (1 page at a time), set the
2201  * corresponding bit in @bm.
2202  */
2203 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2204 {
2205 	int j;
2206 
2207 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2208 		if (unlikely(buf[j] == BM_END_OF_MAP))
2209 			break;
2210 
2211 		/* Extract and buffer page key for data page (s390 only). */
2212 		page_key_memorize(buf + j);
2213 
2214 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2215 			memory_bm_set_bit(bm, buf[j]);
2216 		else
2217 			return -EFAULT;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 #ifdef CONFIG_HIGHMEM
2224 /*
2225  * struct highmem_pbe is used for creating the list of highmem pages that
2226  * should be restored atomically during the resume from disk, because the page
2227  * frames they have occupied before the suspend are in use.
2228  */
2229 struct highmem_pbe {
2230 	struct page *copy_page;	/* data is here now */
2231 	struct page *orig_page;	/* data was here before the suspend */
2232 	struct highmem_pbe *next;
2233 };
2234 
2235 /*
2236  * List of highmem PBEs needed for restoring the highmem pages that were
2237  * allocated before the suspend and included in the suspend image, but have
2238  * also been allocated by the "resume" kernel, so their contents cannot be
2239  * written directly to their "original" page frames.
2240  */
2241 static struct highmem_pbe *highmem_pblist;
2242 
2243 /**
2244  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2245  * @bm: Memory bitmap.
2246  *
2247  * The bits in @bm that correspond to image pages are assumed to be set.
2248  */
2249 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2250 {
2251 	unsigned long pfn;
2252 	unsigned int cnt = 0;
2253 
2254 	memory_bm_position_reset(bm);
2255 	pfn = memory_bm_next_pfn(bm);
2256 	while (pfn != BM_END_OF_MAP) {
2257 		if (PageHighMem(pfn_to_page(pfn)))
2258 			cnt++;
2259 
2260 		pfn = memory_bm_next_pfn(bm);
2261 	}
2262 	return cnt;
2263 }
2264 
2265 static unsigned int safe_highmem_pages;
2266 
2267 static struct memory_bitmap *safe_highmem_bm;
2268 
2269 /**
2270  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2271  * @bm: Pointer to an uninitialized memory bitmap structure.
2272  * @nr_highmem_p: Pointer to the number of highmem image pages.
2273  *
2274  * Try to allocate as many highmem pages as there are highmem image pages
2275  * (@nr_highmem_p points to the variable containing the number of highmem image
2276  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2277  * hibernation image is restored entirely) have the corresponding bits set in
2278  * @bm (it must be unitialized).
2279  *
2280  * NOTE: This function should not be called if there are no highmem image pages.
2281  */
2282 static int prepare_highmem_image(struct memory_bitmap *bm,
2283 				 unsigned int *nr_highmem_p)
2284 {
2285 	unsigned int to_alloc;
2286 
2287 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2288 		return -ENOMEM;
2289 
2290 	if (get_highmem_buffer(PG_SAFE))
2291 		return -ENOMEM;
2292 
2293 	to_alloc = count_free_highmem_pages();
2294 	if (to_alloc > *nr_highmem_p)
2295 		to_alloc = *nr_highmem_p;
2296 	else
2297 		*nr_highmem_p = to_alloc;
2298 
2299 	safe_highmem_pages = 0;
2300 	while (to_alloc-- > 0) {
2301 		struct page *page;
2302 
2303 		page = alloc_page(__GFP_HIGHMEM);
2304 		if (!swsusp_page_is_free(page)) {
2305 			/* The page is "safe", set its bit the bitmap */
2306 			memory_bm_set_bit(bm, page_to_pfn(page));
2307 			safe_highmem_pages++;
2308 		}
2309 		/* Mark the page as allocated */
2310 		swsusp_set_page_forbidden(page);
2311 		swsusp_set_page_free(page);
2312 	}
2313 	memory_bm_position_reset(bm);
2314 	safe_highmem_bm = bm;
2315 	return 0;
2316 }
2317 
2318 static struct page *last_highmem_page;
2319 
2320 /**
2321  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2322  *
2323  * For a given highmem image page get a buffer that suspend_write_next() should
2324  * return to its caller to write to.
2325  *
2326  * If the page is to be saved to its "original" page frame or a copy of
2327  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2328  * the copy of the page is to be made in normal memory, so the address of
2329  * the copy is returned.
2330  *
2331  * If @buffer is returned, the caller of suspend_write_next() will write
2332  * the page's contents to @buffer, so they will have to be copied to the
2333  * right location on the next call to suspend_write_next() and it is done
2334  * with the help of copy_last_highmem_page().  For this purpose, if
2335  * @buffer is returned, @last_highmem_page is set to the page to which
2336  * the data will have to be copied from @buffer.
2337  */
2338 static void *get_highmem_page_buffer(struct page *page,
2339 				     struct chain_allocator *ca)
2340 {
2341 	struct highmem_pbe *pbe;
2342 	void *kaddr;
2343 
2344 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2345 		/*
2346 		 * We have allocated the "original" page frame and we can
2347 		 * use it directly to store the loaded page.
2348 		 */
2349 		last_highmem_page = page;
2350 		return buffer;
2351 	}
2352 	/*
2353 	 * The "original" page frame has not been allocated and we have to
2354 	 * use a "safe" page frame to store the loaded page.
2355 	 */
2356 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2357 	if (!pbe) {
2358 		swsusp_free();
2359 		return ERR_PTR(-ENOMEM);
2360 	}
2361 	pbe->orig_page = page;
2362 	if (safe_highmem_pages > 0) {
2363 		struct page *tmp;
2364 
2365 		/* Copy of the page will be stored in high memory */
2366 		kaddr = buffer;
2367 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2368 		safe_highmem_pages--;
2369 		last_highmem_page = tmp;
2370 		pbe->copy_page = tmp;
2371 	} else {
2372 		/* Copy of the page will be stored in normal memory */
2373 		kaddr = safe_pages_list;
2374 		safe_pages_list = safe_pages_list->next;
2375 		pbe->copy_page = virt_to_page(kaddr);
2376 	}
2377 	pbe->next = highmem_pblist;
2378 	highmem_pblist = pbe;
2379 	return kaddr;
2380 }
2381 
2382 /**
2383  * copy_last_highmem_page - Copy most the most recent highmem image page.
2384  *
2385  * Copy the contents of a highmem image from @buffer, where the caller of
2386  * snapshot_write_next() has stored them, to the right location represented by
2387  * @last_highmem_page .
2388  */
2389 static void copy_last_highmem_page(void)
2390 {
2391 	if (last_highmem_page) {
2392 		void *dst;
2393 
2394 		dst = kmap_atomic(last_highmem_page);
2395 		copy_page(dst, buffer);
2396 		kunmap_atomic(dst);
2397 		last_highmem_page = NULL;
2398 	}
2399 }
2400 
2401 static inline int last_highmem_page_copied(void)
2402 {
2403 	return !last_highmem_page;
2404 }
2405 
2406 static inline void free_highmem_data(void)
2407 {
2408 	if (safe_highmem_bm)
2409 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2410 
2411 	if (buffer)
2412 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2413 }
2414 #else
2415 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2416 
2417 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2418 					unsigned int *nr_highmem_p) { return 0; }
2419 
2420 static inline void *get_highmem_page_buffer(struct page *page,
2421 					    struct chain_allocator *ca)
2422 {
2423 	return ERR_PTR(-EINVAL);
2424 }
2425 
2426 static inline void copy_last_highmem_page(void) {}
2427 static inline int last_highmem_page_copied(void) { return 1; }
2428 static inline void free_highmem_data(void) {}
2429 #endif /* CONFIG_HIGHMEM */
2430 
2431 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2432 
2433 /**
2434  * prepare_image - Make room for loading hibernation image.
2435  * @new_bm: Unitialized memory bitmap structure.
2436  * @bm: Memory bitmap with unsafe pages marked.
2437  *
2438  * Use @bm to mark the pages that will be overwritten in the process of
2439  * restoring the system memory state from the suspend image ("unsafe" pages)
2440  * and allocate memory for the image.
2441  *
2442  * The idea is to allocate a new memory bitmap first and then allocate
2443  * as many pages as needed for image data, but without specifying what those
2444  * pages will be used for just yet.  Instead, we mark them all as allocated and
2445  * create a lists of "safe" pages to be used later.  On systems with high
2446  * memory a list of "safe" highmem pages is created too.
2447  */
2448 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2449 {
2450 	unsigned int nr_pages, nr_highmem;
2451 	struct linked_page *lp;
2452 	int error;
2453 
2454 	/* If there is no highmem, the buffer will not be necessary */
2455 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2456 	buffer = NULL;
2457 
2458 	nr_highmem = count_highmem_image_pages(bm);
2459 	mark_unsafe_pages(bm);
2460 
2461 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2462 	if (error)
2463 		goto Free;
2464 
2465 	duplicate_memory_bitmap(new_bm, bm);
2466 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2467 	if (nr_highmem > 0) {
2468 		error = prepare_highmem_image(bm, &nr_highmem);
2469 		if (error)
2470 			goto Free;
2471 	}
2472 	/*
2473 	 * Reserve some safe pages for potential later use.
2474 	 *
2475 	 * NOTE: This way we make sure there will be enough safe pages for the
2476 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2477 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2478 	 *
2479 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2480 	 */
2481 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2482 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2483 	while (nr_pages > 0) {
2484 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2485 		if (!lp) {
2486 			error = -ENOMEM;
2487 			goto Free;
2488 		}
2489 		lp->next = safe_pages_list;
2490 		safe_pages_list = lp;
2491 		nr_pages--;
2492 	}
2493 	/* Preallocate memory for the image */
2494 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2495 	while (nr_pages > 0) {
2496 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2497 		if (!lp) {
2498 			error = -ENOMEM;
2499 			goto Free;
2500 		}
2501 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2502 			/* The page is "safe", add it to the list */
2503 			lp->next = safe_pages_list;
2504 			safe_pages_list = lp;
2505 		}
2506 		/* Mark the page as allocated */
2507 		swsusp_set_page_forbidden(virt_to_page(lp));
2508 		swsusp_set_page_free(virt_to_page(lp));
2509 		nr_pages--;
2510 	}
2511 	return 0;
2512 
2513  Free:
2514 	swsusp_free();
2515 	return error;
2516 }
2517 
2518 /**
2519  * get_buffer - Get the address to store the next image data page.
2520  *
2521  * Get the address that snapshot_write_next() should return to its caller to
2522  * write to.
2523  */
2524 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2525 {
2526 	struct pbe *pbe;
2527 	struct page *page;
2528 	unsigned long pfn = memory_bm_next_pfn(bm);
2529 
2530 	if (pfn == BM_END_OF_MAP)
2531 		return ERR_PTR(-EFAULT);
2532 
2533 	page = pfn_to_page(pfn);
2534 	if (PageHighMem(page))
2535 		return get_highmem_page_buffer(page, ca);
2536 
2537 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2538 		/*
2539 		 * We have allocated the "original" page frame and we can
2540 		 * use it directly to store the loaded page.
2541 		 */
2542 		return page_address(page);
2543 
2544 	/*
2545 	 * The "original" page frame has not been allocated and we have to
2546 	 * use a "safe" page frame to store the loaded page.
2547 	 */
2548 	pbe = chain_alloc(ca, sizeof(struct pbe));
2549 	if (!pbe) {
2550 		swsusp_free();
2551 		return ERR_PTR(-ENOMEM);
2552 	}
2553 	pbe->orig_address = page_address(page);
2554 	pbe->address = safe_pages_list;
2555 	safe_pages_list = safe_pages_list->next;
2556 	pbe->next = restore_pblist;
2557 	restore_pblist = pbe;
2558 	return pbe->address;
2559 }
2560 
2561 /**
2562  * snapshot_write_next - Get the address to store the next image page.
2563  * @handle: Snapshot handle structure to guide the writing.
2564  *
2565  * On the first call, @handle should point to a zeroed snapshot_handle
2566  * structure.  The structure gets populated then and a pointer to it should be
2567  * passed to this function every next time.
2568  *
2569  * On success, the function returns a positive number.  Then, the caller
2570  * is allowed to write up to the returned number of bytes to the memory
2571  * location computed by the data_of() macro.
2572  *
2573  * The function returns 0 to indicate the "end of file" condition.  Negative
2574  * numbers are returned on errors, in which cases the structure pointed to by
2575  * @handle is not updated and should not be used any more.
2576  */
2577 int snapshot_write_next(struct snapshot_handle *handle)
2578 {
2579 	static struct chain_allocator ca;
2580 	int error = 0;
2581 
2582 	/* Check if we have already loaded the entire image */
2583 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2584 		return 0;
2585 
2586 	handle->sync_read = 1;
2587 
2588 	if (!handle->cur) {
2589 		if (!buffer)
2590 			/* This makes the buffer be freed by swsusp_free() */
2591 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2592 
2593 		if (!buffer)
2594 			return -ENOMEM;
2595 
2596 		handle->buffer = buffer;
2597 	} else if (handle->cur == 1) {
2598 		error = load_header(buffer);
2599 		if (error)
2600 			return error;
2601 
2602 		safe_pages_list = NULL;
2603 
2604 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2605 		if (error)
2606 			return error;
2607 
2608 		/* Allocate buffer for page keys. */
2609 		error = page_key_alloc(nr_copy_pages);
2610 		if (error)
2611 			return error;
2612 
2613 		hibernate_restore_protection_begin();
2614 	} else if (handle->cur <= nr_meta_pages + 1) {
2615 		error = unpack_orig_pfns(buffer, &copy_bm);
2616 		if (error)
2617 			return error;
2618 
2619 		if (handle->cur == nr_meta_pages + 1) {
2620 			error = prepare_image(&orig_bm, &copy_bm);
2621 			if (error)
2622 				return error;
2623 
2624 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2625 			memory_bm_position_reset(&orig_bm);
2626 			restore_pblist = NULL;
2627 			handle->buffer = get_buffer(&orig_bm, &ca);
2628 			handle->sync_read = 0;
2629 			if (IS_ERR(handle->buffer))
2630 				return PTR_ERR(handle->buffer);
2631 		}
2632 	} else {
2633 		copy_last_highmem_page();
2634 		/* Restore page key for data page (s390 only). */
2635 		page_key_write(handle->buffer);
2636 		hibernate_restore_protect_page(handle->buffer);
2637 		handle->buffer = get_buffer(&orig_bm, &ca);
2638 		if (IS_ERR(handle->buffer))
2639 			return PTR_ERR(handle->buffer);
2640 		if (handle->buffer != buffer)
2641 			handle->sync_read = 0;
2642 	}
2643 	handle->cur++;
2644 	return PAGE_SIZE;
2645 }
2646 
2647 /**
2648  * snapshot_write_finalize - Complete the loading of a hibernation image.
2649  *
2650  * Must be called after the last call to snapshot_write_next() in case the last
2651  * page in the image happens to be a highmem page and its contents should be
2652  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2653  * necessary any more.
2654  */
2655 void snapshot_write_finalize(struct snapshot_handle *handle)
2656 {
2657 	copy_last_highmem_page();
2658 	/* Restore page key for data page (s390 only). */
2659 	page_key_write(handle->buffer);
2660 	page_key_free();
2661 	hibernate_restore_protect_page(handle->buffer);
2662 	/* Do that only if we have loaded the image entirely */
2663 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2664 		memory_bm_recycle(&orig_bm);
2665 		free_highmem_data();
2666 	}
2667 }
2668 
2669 int snapshot_image_loaded(struct snapshot_handle *handle)
2670 {
2671 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2672 			handle->cur <= nr_meta_pages + nr_copy_pages);
2673 }
2674 
2675 #ifdef CONFIG_HIGHMEM
2676 /* Assumes that @buf is ready and points to a "safe" page */
2677 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2678 				       void *buf)
2679 {
2680 	void *kaddr1, *kaddr2;
2681 
2682 	kaddr1 = kmap_atomic(p1);
2683 	kaddr2 = kmap_atomic(p2);
2684 	copy_page(buf, kaddr1);
2685 	copy_page(kaddr1, kaddr2);
2686 	copy_page(kaddr2, buf);
2687 	kunmap_atomic(kaddr2);
2688 	kunmap_atomic(kaddr1);
2689 }
2690 
2691 /**
2692  * restore_highmem - Put highmem image pages into their original locations.
2693  *
2694  * For each highmem page that was in use before hibernation and is included in
2695  * the image, and also has been allocated by the "restore" kernel, swap its
2696  * current contents with the previous (ie. "before hibernation") ones.
2697  *
2698  * If the restore eventually fails, we can call this function once again and
2699  * restore the highmem state as seen by the restore kernel.
2700  */
2701 int restore_highmem(void)
2702 {
2703 	struct highmem_pbe *pbe = highmem_pblist;
2704 	void *buf;
2705 
2706 	if (!pbe)
2707 		return 0;
2708 
2709 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2710 	if (!buf)
2711 		return -ENOMEM;
2712 
2713 	while (pbe) {
2714 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2715 		pbe = pbe->next;
2716 	}
2717 	free_image_page(buf, PG_UNSAFE_CLEAR);
2718 	return 0;
2719 }
2720 #endif /* CONFIG_HIGHMEM */
2721