xref: /linux/kernel/power/snapshot.c (revision ba2290b1b7505b28912092a0976e071a447ee18c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		set_memory_ro((unsigned long)page_address, 1);
65 }
66 
67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 	if (hibernate_restore_protection_active)
70 		set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
73 static inline void hibernate_restore_protection_begin(void) {}
74 static inline void hibernate_restore_protection_end(void) {}
75 static inline void hibernate_restore_protect_page(void *page_address) {}
76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
78 
79 static int swsusp_page_is_free(struct page *);
80 static void swsusp_set_page_forbidden(struct page *);
81 static void swsusp_unset_page_forbidden(struct page *);
82 
83 /*
84  * Number of bytes to reserve for memory allocations made by device drivers
85  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
86  * cause image creation to fail (tunable via /sys/power/reserved_size).
87  */
88 unsigned long reserved_size;
89 
90 void __init hibernate_reserved_size_init(void)
91 {
92 	reserved_size = SPARE_PAGES * PAGE_SIZE;
93 }
94 
95 /*
96  * Preferred image size in bytes (tunable via /sys/power/image_size).
97  * When it is set to N, swsusp will do its best to ensure the image
98  * size will not exceed N bytes, but if that is impossible, it will
99  * try to create the smallest image possible.
100  */
101 unsigned long image_size;
102 
103 void __init hibernate_image_size_init(void)
104 {
105 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
106 }
107 
108 /*
109  * List of PBEs needed for restoring the pages that were allocated before
110  * the suspend and included in the suspend image, but have also been
111  * allocated by the "resume" kernel, so their contents cannot be written
112  * directly to their "original" page frames.
113  */
114 struct pbe *restore_pblist;
115 
116 /* struct linked_page is used to build chains of pages */
117 
118 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
119 
120 struct linked_page {
121 	struct linked_page *next;
122 	char data[LINKED_PAGE_DATA_SIZE];
123 } __packed;
124 
125 /*
126  * List of "safe" pages (ie. pages that were not used by the image kernel
127  * before hibernation) that may be used as temporary storage for image kernel
128  * memory contents.
129  */
130 static struct linked_page *safe_pages_list;
131 
132 /* Pointer to an auxiliary buffer (1 page) */
133 static void *buffer;
134 
135 #define PG_ANY		0
136 #define PG_SAFE		1
137 #define PG_UNSAFE_CLEAR	1
138 #define PG_UNSAFE_KEEP	0
139 
140 static unsigned int allocated_unsafe_pages;
141 
142 /**
143  * get_image_page - Allocate a page for a hibernation image.
144  * @gfp_mask: GFP mask for the allocation.
145  * @safe_needed: Get pages that were not used before hibernation (restore only)
146  *
147  * During image restoration, for storing the PBE list and the image data, we can
148  * only use memory pages that do not conflict with the pages used before
149  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
150  * using allocated_unsafe_pages.
151  *
152  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
153  * swsusp_free() can release it.
154  */
155 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
156 {
157 	void *res;
158 
159 	res = (void *)get_zeroed_page(gfp_mask);
160 	if (safe_needed)
161 		while (res && swsusp_page_is_free(virt_to_page(res))) {
162 			/* The page is unsafe, mark it for swsusp_free() */
163 			swsusp_set_page_forbidden(virt_to_page(res));
164 			allocated_unsafe_pages++;
165 			res = (void *)get_zeroed_page(gfp_mask);
166 		}
167 	if (res) {
168 		swsusp_set_page_forbidden(virt_to_page(res));
169 		swsusp_set_page_free(virt_to_page(res));
170 	}
171 	return res;
172 }
173 
174 static void *__get_safe_page(gfp_t gfp_mask)
175 {
176 	if (safe_pages_list) {
177 		void *ret = safe_pages_list;
178 
179 		safe_pages_list = safe_pages_list->next;
180 		memset(ret, 0, PAGE_SIZE);
181 		return ret;
182 	}
183 	return get_image_page(gfp_mask, PG_SAFE);
184 }
185 
186 unsigned long get_safe_page(gfp_t gfp_mask)
187 {
188 	return (unsigned long)__get_safe_page(gfp_mask);
189 }
190 
191 static struct page *alloc_image_page(gfp_t gfp_mask)
192 {
193 	struct page *page;
194 
195 	page = alloc_page(gfp_mask);
196 	if (page) {
197 		swsusp_set_page_forbidden(page);
198 		swsusp_set_page_free(page);
199 	}
200 	return page;
201 }
202 
203 static void recycle_safe_page(void *page_address)
204 {
205 	struct linked_page *lp = page_address;
206 
207 	lp->next = safe_pages_list;
208 	safe_pages_list = lp;
209 }
210 
211 /**
212  * free_image_page - Free a page allocated for hibernation image.
213  * @addr: Address of the page to free.
214  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
215  *
216  * The page to free should have been allocated by get_image_page() (page flags
217  * set by it are affected).
218  */
219 static inline void free_image_page(void *addr, int clear_nosave_free)
220 {
221 	struct page *page;
222 
223 	BUG_ON(!virt_addr_valid(addr));
224 
225 	page = virt_to_page(addr);
226 
227 	swsusp_unset_page_forbidden(page);
228 	if (clear_nosave_free)
229 		swsusp_unset_page_free(page);
230 
231 	__free_page(page);
232 }
233 
234 static inline void free_list_of_pages(struct linked_page *list,
235 				      int clear_page_nosave)
236 {
237 	while (list) {
238 		struct linked_page *lp = list->next;
239 
240 		free_image_page(list, clear_page_nosave);
241 		list = lp;
242 	}
243 }
244 
245 /*
246  * struct chain_allocator is used for allocating small objects out of
247  * a linked list of pages called 'the chain'.
248  *
249  * The chain grows each time when there is no room for a new object in
250  * the current page.  The allocated objects cannot be freed individually.
251  * It is only possible to free them all at once, by freeing the entire
252  * chain.
253  *
254  * NOTE: The chain allocator may be inefficient if the allocated objects
255  * are not much smaller than PAGE_SIZE.
256  */
257 struct chain_allocator {
258 	struct linked_page *chain;	/* the chain */
259 	unsigned int used_space;	/* total size of objects allocated out
260 					   of the current page */
261 	gfp_t gfp_mask;		/* mask for allocating pages */
262 	int safe_needed;	/* if set, only "safe" pages are allocated */
263 };
264 
265 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
266 		       int safe_needed)
267 {
268 	ca->chain = NULL;
269 	ca->used_space = LINKED_PAGE_DATA_SIZE;
270 	ca->gfp_mask = gfp_mask;
271 	ca->safe_needed = safe_needed;
272 }
273 
274 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
275 {
276 	void *ret;
277 
278 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
279 		struct linked_page *lp;
280 
281 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
282 					get_image_page(ca->gfp_mask, PG_ANY);
283 		if (!lp)
284 			return NULL;
285 
286 		lp->next = ca->chain;
287 		ca->chain = lp;
288 		ca->used_space = 0;
289 	}
290 	ret = ca->chain->data + ca->used_space;
291 	ca->used_space += size;
292 	return ret;
293 }
294 
295 /**
296  * Data types related to memory bitmaps.
297  *
298  * Memory bitmap is a structure consiting of many linked lists of
299  * objects.  The main list's elements are of type struct zone_bitmap
300  * and each of them corresonds to one zone.  For each zone bitmap
301  * object there is a list of objects of type struct bm_block that
302  * represent each blocks of bitmap in which information is stored.
303  *
304  * struct memory_bitmap contains a pointer to the main list of zone
305  * bitmap objects, a struct bm_position used for browsing the bitmap,
306  * and a pointer to the list of pages used for allocating all of the
307  * zone bitmap objects and bitmap block objects.
308  *
309  * NOTE: It has to be possible to lay out the bitmap in memory
310  * using only allocations of order 0.  Additionally, the bitmap is
311  * designed to work with arbitrary number of zones (this is over the
312  * top for now, but let's avoid making unnecessary assumptions ;-).
313  *
314  * struct zone_bitmap contains a pointer to a list of bitmap block
315  * objects and a pointer to the bitmap block object that has been
316  * most recently used for setting bits.  Additionally, it contains the
317  * PFNs that correspond to the start and end of the represented zone.
318  *
319  * struct bm_block contains a pointer to the memory page in which
320  * information is stored (in the form of a block of bitmap)
321  * It also contains the pfns that correspond to the start and end of
322  * the represented memory area.
323  *
324  * The memory bitmap is organized as a radix tree to guarantee fast random
325  * access to the bits. There is one radix tree for each zone (as returned
326  * from create_mem_extents).
327  *
328  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
329  * two linked lists for the nodes of the tree, one for the inner nodes and
330  * one for the leave nodes. The linked leave nodes are used for fast linear
331  * access of the memory bitmap.
332  *
333  * The struct rtree_node represents one node of the radix tree.
334  */
335 
336 #define BM_END_OF_MAP	(~0UL)
337 
338 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
339 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
340 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
341 
342 /*
343  * struct rtree_node is a wrapper struct to link the nodes
344  * of the rtree together for easy linear iteration over
345  * bits and easy freeing
346  */
347 struct rtree_node {
348 	struct list_head list;
349 	unsigned long *data;
350 };
351 
352 /*
353  * struct mem_zone_bm_rtree represents a bitmap used for one
354  * populated memory zone.
355  */
356 struct mem_zone_bm_rtree {
357 	struct list_head list;		/* Link Zones together         */
358 	struct list_head nodes;		/* Radix Tree inner nodes      */
359 	struct list_head leaves;	/* Radix Tree leaves           */
360 	unsigned long start_pfn;	/* Zone start page frame       */
361 	unsigned long end_pfn;		/* Zone end page frame + 1     */
362 	struct rtree_node *rtree;	/* Radix Tree Root             */
363 	int levels;			/* Number of Radix Tree Levels */
364 	unsigned int blocks;		/* Number of Bitmap Blocks     */
365 };
366 
367 /* strcut bm_position is used for browsing memory bitmaps */
368 
369 struct bm_position {
370 	struct mem_zone_bm_rtree *zone;
371 	struct rtree_node *node;
372 	unsigned long node_pfn;
373 	int node_bit;
374 };
375 
376 struct memory_bitmap {
377 	struct list_head zones;
378 	struct linked_page *p_list;	/* list of pages used to store zone
379 					   bitmap objects and bitmap block
380 					   objects */
381 	struct bm_position cur;	/* most recently used bit position */
382 };
383 
384 /* Functions that operate on memory bitmaps */
385 
386 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
387 #if BITS_PER_LONG == 32
388 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
389 #else
390 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
391 #endif
392 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
393 
394 /**
395  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
396  *
397  * This function is used to allocate inner nodes as well as the
398  * leave nodes of the radix tree. It also adds the node to the
399  * corresponding linked list passed in by the *list parameter.
400  */
401 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
402 					   struct chain_allocator *ca,
403 					   struct list_head *list)
404 {
405 	struct rtree_node *node;
406 
407 	node = chain_alloc(ca, sizeof(struct rtree_node));
408 	if (!node)
409 		return NULL;
410 
411 	node->data = get_image_page(gfp_mask, safe_needed);
412 	if (!node->data)
413 		return NULL;
414 
415 	list_add_tail(&node->list, list);
416 
417 	return node;
418 }
419 
420 /**
421  * add_rtree_block - Add a new leave node to the radix tree.
422  *
423  * The leave nodes need to be allocated in order to keep the leaves
424  * linked list in order. This is guaranteed by the zone->blocks
425  * counter.
426  */
427 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
428 			   int safe_needed, struct chain_allocator *ca)
429 {
430 	struct rtree_node *node, *block, **dst;
431 	unsigned int levels_needed, block_nr;
432 	int i;
433 
434 	block_nr = zone->blocks;
435 	levels_needed = 0;
436 
437 	/* How many levels do we need for this block nr? */
438 	while (block_nr) {
439 		levels_needed += 1;
440 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
441 	}
442 
443 	/* Make sure the rtree has enough levels */
444 	for (i = zone->levels; i < levels_needed; i++) {
445 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
446 					&zone->nodes);
447 		if (!node)
448 			return -ENOMEM;
449 
450 		node->data[0] = (unsigned long)zone->rtree;
451 		zone->rtree = node;
452 		zone->levels += 1;
453 	}
454 
455 	/* Allocate new block */
456 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
457 	if (!block)
458 		return -ENOMEM;
459 
460 	/* Now walk the rtree to insert the block */
461 	node = zone->rtree;
462 	dst = &zone->rtree;
463 	block_nr = zone->blocks;
464 	for (i = zone->levels; i > 0; i--) {
465 		int index;
466 
467 		if (!node) {
468 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
469 						&zone->nodes);
470 			if (!node)
471 				return -ENOMEM;
472 			*dst = node;
473 		}
474 
475 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
476 		index &= BM_RTREE_LEVEL_MASK;
477 		dst = (struct rtree_node **)&((*dst)->data[index]);
478 		node = *dst;
479 	}
480 
481 	zone->blocks += 1;
482 	*dst = block;
483 
484 	return 0;
485 }
486 
487 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
488 			       int clear_nosave_free);
489 
490 /**
491  * create_zone_bm_rtree - Create a radix tree for one zone.
492  *
493  * Allocated the mem_zone_bm_rtree structure and initializes it.
494  * This function also allocated and builds the radix tree for the
495  * zone.
496  */
497 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
498 						      int safe_needed,
499 						      struct chain_allocator *ca,
500 						      unsigned long start,
501 						      unsigned long end)
502 {
503 	struct mem_zone_bm_rtree *zone;
504 	unsigned int i, nr_blocks;
505 	unsigned long pages;
506 
507 	pages = end - start;
508 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
509 	if (!zone)
510 		return NULL;
511 
512 	INIT_LIST_HEAD(&zone->nodes);
513 	INIT_LIST_HEAD(&zone->leaves);
514 	zone->start_pfn = start;
515 	zone->end_pfn = end;
516 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
517 
518 	for (i = 0; i < nr_blocks; i++) {
519 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
520 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
521 			return NULL;
522 		}
523 	}
524 
525 	return zone;
526 }
527 
528 /**
529  * free_zone_bm_rtree - Free the memory of the radix tree.
530  *
531  * Free all node pages of the radix tree. The mem_zone_bm_rtree
532  * structure itself is not freed here nor are the rtree_node
533  * structs.
534  */
535 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
536 			       int clear_nosave_free)
537 {
538 	struct rtree_node *node;
539 
540 	list_for_each_entry(node, &zone->nodes, list)
541 		free_image_page(node->data, clear_nosave_free);
542 
543 	list_for_each_entry(node, &zone->leaves, list)
544 		free_image_page(node->data, clear_nosave_free);
545 }
546 
547 static void memory_bm_position_reset(struct memory_bitmap *bm)
548 {
549 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
550 				  list);
551 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
552 				  struct rtree_node, list);
553 	bm->cur.node_pfn = 0;
554 	bm->cur.node_bit = 0;
555 }
556 
557 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
558 
559 struct mem_extent {
560 	struct list_head hook;
561 	unsigned long start;
562 	unsigned long end;
563 };
564 
565 /**
566  * free_mem_extents - Free a list of memory extents.
567  * @list: List of extents to free.
568  */
569 static void free_mem_extents(struct list_head *list)
570 {
571 	struct mem_extent *ext, *aux;
572 
573 	list_for_each_entry_safe(ext, aux, list, hook) {
574 		list_del(&ext->hook);
575 		kfree(ext);
576 	}
577 }
578 
579 /**
580  * create_mem_extents - Create a list of memory extents.
581  * @list: List to put the extents into.
582  * @gfp_mask: Mask to use for memory allocations.
583  *
584  * The extents represent contiguous ranges of PFNs.
585  */
586 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
587 {
588 	struct zone *zone;
589 
590 	INIT_LIST_HEAD(list);
591 
592 	for_each_populated_zone(zone) {
593 		unsigned long zone_start, zone_end;
594 		struct mem_extent *ext, *cur, *aux;
595 
596 		zone_start = zone->zone_start_pfn;
597 		zone_end = zone_end_pfn(zone);
598 
599 		list_for_each_entry(ext, list, hook)
600 			if (zone_start <= ext->end)
601 				break;
602 
603 		if (&ext->hook == list || zone_end < ext->start) {
604 			/* New extent is necessary */
605 			struct mem_extent *new_ext;
606 
607 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
608 			if (!new_ext) {
609 				free_mem_extents(list);
610 				return -ENOMEM;
611 			}
612 			new_ext->start = zone_start;
613 			new_ext->end = zone_end;
614 			list_add_tail(&new_ext->hook, &ext->hook);
615 			continue;
616 		}
617 
618 		/* Merge this zone's range of PFNs with the existing one */
619 		if (zone_start < ext->start)
620 			ext->start = zone_start;
621 		if (zone_end > ext->end)
622 			ext->end = zone_end;
623 
624 		/* More merging may be possible */
625 		cur = ext;
626 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
627 			if (zone_end < cur->start)
628 				break;
629 			if (zone_end < cur->end)
630 				ext->end = cur->end;
631 			list_del(&cur->hook);
632 			kfree(cur);
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  * memory_bm_create - Allocate memory for a memory bitmap.
641  */
642 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
643 			    int safe_needed)
644 {
645 	struct chain_allocator ca;
646 	struct list_head mem_extents;
647 	struct mem_extent *ext;
648 	int error;
649 
650 	chain_init(&ca, gfp_mask, safe_needed);
651 	INIT_LIST_HEAD(&bm->zones);
652 
653 	error = create_mem_extents(&mem_extents, gfp_mask);
654 	if (error)
655 		return error;
656 
657 	list_for_each_entry(ext, &mem_extents, hook) {
658 		struct mem_zone_bm_rtree *zone;
659 
660 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
661 					    ext->start, ext->end);
662 		if (!zone) {
663 			error = -ENOMEM;
664 			goto Error;
665 		}
666 		list_add_tail(&zone->list, &bm->zones);
667 	}
668 
669 	bm->p_list = ca.chain;
670 	memory_bm_position_reset(bm);
671  Exit:
672 	free_mem_extents(&mem_extents);
673 	return error;
674 
675  Error:
676 	bm->p_list = ca.chain;
677 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
678 	goto Exit;
679 }
680 
681 /**
682  * memory_bm_free - Free memory occupied by the memory bitmap.
683  * @bm: Memory bitmap.
684  */
685 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
686 {
687 	struct mem_zone_bm_rtree *zone;
688 
689 	list_for_each_entry(zone, &bm->zones, list)
690 		free_zone_bm_rtree(zone, clear_nosave_free);
691 
692 	free_list_of_pages(bm->p_list, clear_nosave_free);
693 
694 	INIT_LIST_HEAD(&bm->zones);
695 }
696 
697 /**
698  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
699  *
700  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
701  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
702  *
703  * Walk the radix tree to find the page containing the bit that represents @pfn
704  * and return the position of the bit in @addr and @bit_nr.
705  */
706 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
707 			      void **addr, unsigned int *bit_nr)
708 {
709 	struct mem_zone_bm_rtree *curr, *zone;
710 	struct rtree_node *node;
711 	int i, block_nr;
712 
713 	zone = bm->cur.zone;
714 
715 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
716 		goto zone_found;
717 
718 	zone = NULL;
719 
720 	/* Find the right zone */
721 	list_for_each_entry(curr, &bm->zones, list) {
722 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
723 			zone = curr;
724 			break;
725 		}
726 	}
727 
728 	if (!zone)
729 		return -EFAULT;
730 
731 zone_found:
732 	/*
733 	 * We have found the zone. Now walk the radix tree to find the leaf node
734 	 * for our PFN.
735 	 */
736 
737 	/*
738 	 * If the zone we wish to scan is the current zone and the
739 	 * pfn falls into the current node then we do not need to walk
740 	 * the tree.
741 	 */
742 	node = bm->cur.node;
743 	if (zone == bm->cur.zone &&
744 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
745 		goto node_found;
746 
747 	node      = zone->rtree;
748 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
749 
750 	for (i = zone->levels; i > 0; i--) {
751 		int index;
752 
753 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
754 		index &= BM_RTREE_LEVEL_MASK;
755 		BUG_ON(node->data[index] == 0);
756 		node = (struct rtree_node *)node->data[index];
757 	}
758 
759 node_found:
760 	/* Update last position */
761 	bm->cur.zone = zone;
762 	bm->cur.node = node;
763 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
764 
765 	/* Set return values */
766 	*addr = node->data;
767 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
768 
769 	return 0;
770 }
771 
772 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
773 {
774 	void *addr;
775 	unsigned int bit;
776 	int error;
777 
778 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
779 	BUG_ON(error);
780 	set_bit(bit, addr);
781 }
782 
783 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
784 {
785 	void *addr;
786 	unsigned int bit;
787 	int error;
788 
789 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
790 	if (!error)
791 		set_bit(bit, addr);
792 
793 	return error;
794 }
795 
796 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
797 {
798 	void *addr;
799 	unsigned int bit;
800 	int error;
801 
802 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
803 	BUG_ON(error);
804 	clear_bit(bit, addr);
805 }
806 
807 static void memory_bm_clear_current(struct memory_bitmap *bm)
808 {
809 	int bit;
810 
811 	bit = max(bm->cur.node_bit - 1, 0);
812 	clear_bit(bit, bm->cur.node->data);
813 }
814 
815 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
816 {
817 	void *addr;
818 	unsigned int bit;
819 	int error;
820 
821 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
822 	BUG_ON(error);
823 	return test_bit(bit, addr);
824 }
825 
826 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
827 {
828 	void *addr;
829 	unsigned int bit;
830 
831 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
832 }
833 
834 /*
835  * rtree_next_node - Jump to the next leaf node.
836  *
837  * Set the position to the beginning of the next node in the
838  * memory bitmap. This is either the next node in the current
839  * zone's radix tree or the first node in the radix tree of the
840  * next zone.
841  *
842  * Return true if there is a next node, false otherwise.
843  */
844 static bool rtree_next_node(struct memory_bitmap *bm)
845 {
846 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
847 		bm->cur.node = list_entry(bm->cur.node->list.next,
848 					  struct rtree_node, list);
849 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
850 		bm->cur.node_bit  = 0;
851 		touch_softlockup_watchdog();
852 		return true;
853 	}
854 
855 	/* No more nodes, goto next zone */
856 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
857 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
858 				  struct mem_zone_bm_rtree, list);
859 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
860 					  struct rtree_node, list);
861 		bm->cur.node_pfn = 0;
862 		bm->cur.node_bit = 0;
863 		return true;
864 	}
865 
866 	/* No more zones */
867 	return false;
868 }
869 
870 /**
871  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
872  * @bm: Memory bitmap.
873  *
874  * Starting from the last returned position this function searches for the next
875  * set bit in @bm and returns the PFN represented by it.  If no more bits are
876  * set, BM_END_OF_MAP is returned.
877  *
878  * It is required to run memory_bm_position_reset() before the first call to
879  * this function for the given memory bitmap.
880  */
881 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
882 {
883 	unsigned long bits, pfn, pages;
884 	int bit;
885 
886 	do {
887 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
888 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
889 		bit	  = find_next_bit(bm->cur.node->data, bits,
890 					  bm->cur.node_bit);
891 		if (bit < bits) {
892 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
893 			bm->cur.node_bit = bit + 1;
894 			return pfn;
895 		}
896 	} while (rtree_next_node(bm));
897 
898 	return BM_END_OF_MAP;
899 }
900 
901 /*
902  * This structure represents a range of page frames the contents of which
903  * should not be saved during hibernation.
904  */
905 struct nosave_region {
906 	struct list_head list;
907 	unsigned long start_pfn;
908 	unsigned long end_pfn;
909 };
910 
911 static LIST_HEAD(nosave_regions);
912 
913 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
914 {
915 	struct rtree_node *node;
916 
917 	list_for_each_entry(node, &zone->nodes, list)
918 		recycle_safe_page(node->data);
919 
920 	list_for_each_entry(node, &zone->leaves, list)
921 		recycle_safe_page(node->data);
922 }
923 
924 static void memory_bm_recycle(struct memory_bitmap *bm)
925 {
926 	struct mem_zone_bm_rtree *zone;
927 	struct linked_page *p_list;
928 
929 	list_for_each_entry(zone, &bm->zones, list)
930 		recycle_zone_bm_rtree(zone);
931 
932 	p_list = bm->p_list;
933 	while (p_list) {
934 		struct linked_page *lp = p_list;
935 
936 		p_list = lp->next;
937 		recycle_safe_page(lp);
938 	}
939 }
940 
941 /**
942  * register_nosave_region - Register a region of unsaveable memory.
943  *
944  * Register a range of page frames the contents of which should not be saved
945  * during hibernation (to be used in the early initialization code).
946  */
947 void __init __register_nosave_region(unsigned long start_pfn,
948 				     unsigned long end_pfn, int use_kmalloc)
949 {
950 	struct nosave_region *region;
951 
952 	if (start_pfn >= end_pfn)
953 		return;
954 
955 	if (!list_empty(&nosave_regions)) {
956 		/* Try to extend the previous region (they should be sorted) */
957 		region = list_entry(nosave_regions.prev,
958 					struct nosave_region, list);
959 		if (region->end_pfn == start_pfn) {
960 			region->end_pfn = end_pfn;
961 			goto Report;
962 		}
963 	}
964 	if (use_kmalloc) {
965 		/* During init, this shouldn't fail */
966 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
967 		BUG_ON(!region);
968 	} else {
969 		/* This allocation cannot fail */
970 		region = memblock_alloc(sizeof(struct nosave_region),
971 					SMP_CACHE_BYTES);
972 		if (!region)
973 			panic("%s: Failed to allocate %zu bytes\n", __func__,
974 			      sizeof(struct nosave_region));
975 	}
976 	region->start_pfn = start_pfn;
977 	region->end_pfn = end_pfn;
978 	list_add_tail(&region->list, &nosave_regions);
979  Report:
980 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
981 		(unsigned long long) start_pfn << PAGE_SHIFT,
982 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
983 }
984 
985 /*
986  * Set bits in this map correspond to the page frames the contents of which
987  * should not be saved during the suspend.
988  */
989 static struct memory_bitmap *forbidden_pages_map;
990 
991 /* Set bits in this map correspond to free page frames. */
992 static struct memory_bitmap *free_pages_map;
993 
994 /*
995  * Each page frame allocated for creating the image is marked by setting the
996  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
997  */
998 
999 void swsusp_set_page_free(struct page *page)
1000 {
1001 	if (free_pages_map)
1002 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1003 }
1004 
1005 static int swsusp_page_is_free(struct page *page)
1006 {
1007 	return free_pages_map ?
1008 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1009 }
1010 
1011 void swsusp_unset_page_free(struct page *page)
1012 {
1013 	if (free_pages_map)
1014 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1015 }
1016 
1017 static void swsusp_set_page_forbidden(struct page *page)
1018 {
1019 	if (forbidden_pages_map)
1020 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1021 }
1022 
1023 int swsusp_page_is_forbidden(struct page *page)
1024 {
1025 	return forbidden_pages_map ?
1026 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1027 }
1028 
1029 static void swsusp_unset_page_forbidden(struct page *page)
1030 {
1031 	if (forbidden_pages_map)
1032 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1033 }
1034 
1035 /**
1036  * mark_nosave_pages - Mark pages that should not be saved.
1037  * @bm: Memory bitmap.
1038  *
1039  * Set the bits in @bm that correspond to the page frames the contents of which
1040  * should not be saved.
1041  */
1042 static void mark_nosave_pages(struct memory_bitmap *bm)
1043 {
1044 	struct nosave_region *region;
1045 
1046 	if (list_empty(&nosave_regions))
1047 		return;
1048 
1049 	list_for_each_entry(region, &nosave_regions, list) {
1050 		unsigned long pfn;
1051 
1052 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1053 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1054 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1055 				- 1);
1056 
1057 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1058 			if (pfn_valid(pfn)) {
1059 				/*
1060 				 * It is safe to ignore the result of
1061 				 * mem_bm_set_bit_check() here, since we won't
1062 				 * touch the PFNs for which the error is
1063 				 * returned anyway.
1064 				 */
1065 				mem_bm_set_bit_check(bm, pfn);
1066 			}
1067 	}
1068 }
1069 
1070 /**
1071  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1072  *
1073  * Create bitmaps needed for marking page frames that should not be saved and
1074  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1075  * only modified if everything goes well, because we don't want the bits to be
1076  * touched before both bitmaps are set up.
1077  */
1078 int create_basic_memory_bitmaps(void)
1079 {
1080 	struct memory_bitmap *bm1, *bm2;
1081 	int error = 0;
1082 
1083 	if (forbidden_pages_map && free_pages_map)
1084 		return 0;
1085 	else
1086 		BUG_ON(forbidden_pages_map || free_pages_map);
1087 
1088 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089 	if (!bm1)
1090 		return -ENOMEM;
1091 
1092 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1093 	if (error)
1094 		goto Free_first_object;
1095 
1096 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1097 	if (!bm2)
1098 		goto Free_first_bitmap;
1099 
1100 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1101 	if (error)
1102 		goto Free_second_object;
1103 
1104 	forbidden_pages_map = bm1;
1105 	free_pages_map = bm2;
1106 	mark_nosave_pages(forbidden_pages_map);
1107 
1108 	pr_debug("Basic memory bitmaps created\n");
1109 
1110 	return 0;
1111 
1112  Free_second_object:
1113 	kfree(bm2);
1114  Free_first_bitmap:
1115  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1116  Free_first_object:
1117 	kfree(bm1);
1118 	return -ENOMEM;
1119 }
1120 
1121 /**
1122  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1123  *
1124  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1125  * auxiliary pointers are necessary so that the bitmaps themselves are not
1126  * referred to while they are being freed.
1127  */
1128 void free_basic_memory_bitmaps(void)
1129 {
1130 	struct memory_bitmap *bm1, *bm2;
1131 
1132 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1133 		return;
1134 
1135 	bm1 = forbidden_pages_map;
1136 	bm2 = free_pages_map;
1137 	forbidden_pages_map = NULL;
1138 	free_pages_map = NULL;
1139 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1140 	kfree(bm1);
1141 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1142 	kfree(bm2);
1143 
1144 	pr_debug("Basic memory bitmaps freed\n");
1145 }
1146 
1147 void clear_free_pages(void)
1148 {
1149 	struct memory_bitmap *bm = free_pages_map;
1150 	unsigned long pfn;
1151 
1152 	if (WARN_ON(!(free_pages_map)))
1153 		return;
1154 
1155 	if (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) || want_init_on_free()) {
1156 		memory_bm_position_reset(bm);
1157 		pfn = memory_bm_next_pfn(bm);
1158 		while (pfn != BM_END_OF_MAP) {
1159 			if (pfn_valid(pfn))
1160 				clear_highpage(pfn_to_page(pfn));
1161 
1162 			pfn = memory_bm_next_pfn(bm);
1163 		}
1164 		memory_bm_position_reset(bm);
1165 		pr_info("free pages cleared after restore\n");
1166 	}
1167 }
1168 
1169 /**
1170  * snapshot_additional_pages - Estimate the number of extra pages needed.
1171  * @zone: Memory zone to carry out the computation for.
1172  *
1173  * Estimate the number of additional pages needed for setting up a hibernation
1174  * image data structures for @zone (usually, the returned value is greater than
1175  * the exact number).
1176  */
1177 unsigned int snapshot_additional_pages(struct zone *zone)
1178 {
1179 	unsigned int rtree, nodes;
1180 
1181 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1182 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1183 			      LINKED_PAGE_DATA_SIZE);
1184 	while (nodes > 1) {
1185 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1186 		rtree += nodes;
1187 	}
1188 
1189 	return 2 * rtree;
1190 }
1191 
1192 #ifdef CONFIG_HIGHMEM
1193 /**
1194  * count_free_highmem_pages - Compute the total number of free highmem pages.
1195  *
1196  * The returned number is system-wide.
1197  */
1198 static unsigned int count_free_highmem_pages(void)
1199 {
1200 	struct zone *zone;
1201 	unsigned int cnt = 0;
1202 
1203 	for_each_populated_zone(zone)
1204 		if (is_highmem(zone))
1205 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1206 
1207 	return cnt;
1208 }
1209 
1210 /**
1211  * saveable_highmem_page - Check if a highmem page is saveable.
1212  *
1213  * Determine whether a highmem page should be included in a hibernation image.
1214  *
1215  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1216  * and it isn't part of a free chunk of pages.
1217  */
1218 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1219 {
1220 	struct page *page;
1221 
1222 	if (!pfn_valid(pfn))
1223 		return NULL;
1224 
1225 	page = pfn_to_online_page(pfn);
1226 	if (!page || page_zone(page) != zone)
1227 		return NULL;
1228 
1229 	BUG_ON(!PageHighMem(page));
1230 
1231 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1232 		return NULL;
1233 
1234 	if (PageReserved(page) || PageOffline(page))
1235 		return NULL;
1236 
1237 	if (page_is_guard(page))
1238 		return NULL;
1239 
1240 	return page;
1241 }
1242 
1243 /**
1244  * count_highmem_pages - Compute the total number of saveable highmem pages.
1245  */
1246 static unsigned int count_highmem_pages(void)
1247 {
1248 	struct zone *zone;
1249 	unsigned int n = 0;
1250 
1251 	for_each_populated_zone(zone) {
1252 		unsigned long pfn, max_zone_pfn;
1253 
1254 		if (!is_highmem(zone))
1255 			continue;
1256 
1257 		mark_free_pages(zone);
1258 		max_zone_pfn = zone_end_pfn(zone);
1259 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1260 			if (saveable_highmem_page(zone, pfn))
1261 				n++;
1262 	}
1263 	return n;
1264 }
1265 #else
1266 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1267 {
1268 	return NULL;
1269 }
1270 #endif /* CONFIG_HIGHMEM */
1271 
1272 /**
1273  * saveable_page - Check if the given page is saveable.
1274  *
1275  * Determine whether a non-highmem page should be included in a hibernation
1276  * image.
1277  *
1278  * We should save the page if it isn't Nosave, and is not in the range
1279  * of pages statically defined as 'unsaveable', and it isn't part of
1280  * a free chunk of pages.
1281  */
1282 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1283 {
1284 	struct page *page;
1285 
1286 	if (!pfn_valid(pfn))
1287 		return NULL;
1288 
1289 	page = pfn_to_online_page(pfn);
1290 	if (!page || page_zone(page) != zone)
1291 		return NULL;
1292 
1293 	BUG_ON(PageHighMem(page));
1294 
1295 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1296 		return NULL;
1297 
1298 	if (PageOffline(page))
1299 		return NULL;
1300 
1301 	if (PageReserved(page)
1302 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1303 		return NULL;
1304 
1305 	if (page_is_guard(page))
1306 		return NULL;
1307 
1308 	return page;
1309 }
1310 
1311 /**
1312  * count_data_pages - Compute the total number of saveable non-highmem pages.
1313  */
1314 static unsigned int count_data_pages(void)
1315 {
1316 	struct zone *zone;
1317 	unsigned long pfn, max_zone_pfn;
1318 	unsigned int n = 0;
1319 
1320 	for_each_populated_zone(zone) {
1321 		if (is_highmem(zone))
1322 			continue;
1323 
1324 		mark_free_pages(zone);
1325 		max_zone_pfn = zone_end_pfn(zone);
1326 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1327 			if (saveable_page(zone, pfn))
1328 				n++;
1329 	}
1330 	return n;
1331 }
1332 
1333 /*
1334  * This is needed, because copy_page and memcpy are not usable for copying
1335  * task structs.
1336  */
1337 static inline void do_copy_page(long *dst, long *src)
1338 {
1339 	int n;
1340 
1341 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1342 		*dst++ = *src++;
1343 }
1344 
1345 /**
1346  * safe_copy_page - Copy a page in a safe way.
1347  *
1348  * Check if the page we are going to copy is marked as present in the kernel
1349  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1350  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1351  * always returns 'true'.
1352  */
1353 static void safe_copy_page(void *dst, struct page *s_page)
1354 {
1355 	if (kernel_page_present(s_page)) {
1356 		do_copy_page(dst, page_address(s_page));
1357 	} else {
1358 		kernel_map_pages(s_page, 1, 1);
1359 		do_copy_page(dst, page_address(s_page));
1360 		kernel_map_pages(s_page, 1, 0);
1361 	}
1362 }
1363 
1364 #ifdef CONFIG_HIGHMEM
1365 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1366 {
1367 	return is_highmem(zone) ?
1368 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1369 }
1370 
1371 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1372 {
1373 	struct page *s_page, *d_page;
1374 	void *src, *dst;
1375 
1376 	s_page = pfn_to_page(src_pfn);
1377 	d_page = pfn_to_page(dst_pfn);
1378 	if (PageHighMem(s_page)) {
1379 		src = kmap_atomic(s_page);
1380 		dst = kmap_atomic(d_page);
1381 		do_copy_page(dst, src);
1382 		kunmap_atomic(dst);
1383 		kunmap_atomic(src);
1384 	} else {
1385 		if (PageHighMem(d_page)) {
1386 			/*
1387 			 * The page pointed to by src may contain some kernel
1388 			 * data modified by kmap_atomic()
1389 			 */
1390 			safe_copy_page(buffer, s_page);
1391 			dst = kmap_atomic(d_page);
1392 			copy_page(dst, buffer);
1393 			kunmap_atomic(dst);
1394 		} else {
1395 			safe_copy_page(page_address(d_page), s_page);
1396 		}
1397 	}
1398 }
1399 #else
1400 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1401 
1402 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1403 {
1404 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1405 				pfn_to_page(src_pfn));
1406 }
1407 #endif /* CONFIG_HIGHMEM */
1408 
1409 static void copy_data_pages(struct memory_bitmap *copy_bm,
1410 			    struct memory_bitmap *orig_bm)
1411 {
1412 	struct zone *zone;
1413 	unsigned long pfn;
1414 
1415 	for_each_populated_zone(zone) {
1416 		unsigned long max_zone_pfn;
1417 
1418 		mark_free_pages(zone);
1419 		max_zone_pfn = zone_end_pfn(zone);
1420 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1421 			if (page_is_saveable(zone, pfn))
1422 				memory_bm_set_bit(orig_bm, pfn);
1423 	}
1424 	memory_bm_position_reset(orig_bm);
1425 	memory_bm_position_reset(copy_bm);
1426 	for(;;) {
1427 		pfn = memory_bm_next_pfn(orig_bm);
1428 		if (unlikely(pfn == BM_END_OF_MAP))
1429 			break;
1430 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1431 	}
1432 }
1433 
1434 /* Total number of image pages */
1435 static unsigned int nr_copy_pages;
1436 /* Number of pages needed for saving the original pfns of the image pages */
1437 static unsigned int nr_meta_pages;
1438 /*
1439  * Numbers of normal and highmem page frames allocated for hibernation image
1440  * before suspending devices.
1441  */
1442 static unsigned int alloc_normal, alloc_highmem;
1443 /*
1444  * Memory bitmap used for marking saveable pages (during hibernation) or
1445  * hibernation image pages (during restore)
1446  */
1447 static struct memory_bitmap orig_bm;
1448 /*
1449  * Memory bitmap used during hibernation for marking allocated page frames that
1450  * will contain copies of saveable pages.  During restore it is initially used
1451  * for marking hibernation image pages, but then the set bits from it are
1452  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1453  * used for marking "safe" highmem pages, but it has to be reinitialized for
1454  * this purpose.
1455  */
1456 static struct memory_bitmap copy_bm;
1457 
1458 /**
1459  * swsusp_free - Free pages allocated for hibernation image.
1460  *
1461  * Image pages are alocated before snapshot creation, so they need to be
1462  * released after resume.
1463  */
1464 void swsusp_free(void)
1465 {
1466 	unsigned long fb_pfn, fr_pfn;
1467 
1468 	if (!forbidden_pages_map || !free_pages_map)
1469 		goto out;
1470 
1471 	memory_bm_position_reset(forbidden_pages_map);
1472 	memory_bm_position_reset(free_pages_map);
1473 
1474 loop:
1475 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1476 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1477 
1478 	/*
1479 	 * Find the next bit set in both bitmaps. This is guaranteed to
1480 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1481 	 */
1482 	do {
1483 		if (fb_pfn < fr_pfn)
1484 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1485 		if (fr_pfn < fb_pfn)
1486 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1487 	} while (fb_pfn != fr_pfn);
1488 
1489 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1490 		struct page *page = pfn_to_page(fr_pfn);
1491 
1492 		memory_bm_clear_current(forbidden_pages_map);
1493 		memory_bm_clear_current(free_pages_map);
1494 		hibernate_restore_unprotect_page(page_address(page));
1495 		__free_page(page);
1496 		goto loop;
1497 	}
1498 
1499 out:
1500 	nr_copy_pages = 0;
1501 	nr_meta_pages = 0;
1502 	restore_pblist = NULL;
1503 	buffer = NULL;
1504 	alloc_normal = 0;
1505 	alloc_highmem = 0;
1506 	hibernate_restore_protection_end();
1507 }
1508 
1509 /* Helper functions used for the shrinking of memory. */
1510 
1511 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1512 
1513 /**
1514  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1515  * @nr_pages: Number of page frames to allocate.
1516  * @mask: GFP flags to use for the allocation.
1517  *
1518  * Return value: Number of page frames actually allocated
1519  */
1520 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1521 {
1522 	unsigned long nr_alloc = 0;
1523 
1524 	while (nr_pages > 0) {
1525 		struct page *page;
1526 
1527 		page = alloc_image_page(mask);
1528 		if (!page)
1529 			break;
1530 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1531 		if (PageHighMem(page))
1532 			alloc_highmem++;
1533 		else
1534 			alloc_normal++;
1535 		nr_pages--;
1536 		nr_alloc++;
1537 	}
1538 
1539 	return nr_alloc;
1540 }
1541 
1542 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1543 					      unsigned long avail_normal)
1544 {
1545 	unsigned long alloc;
1546 
1547 	if (avail_normal <= alloc_normal)
1548 		return 0;
1549 
1550 	alloc = avail_normal - alloc_normal;
1551 	if (nr_pages < alloc)
1552 		alloc = nr_pages;
1553 
1554 	return preallocate_image_pages(alloc, GFP_IMAGE);
1555 }
1556 
1557 #ifdef CONFIG_HIGHMEM
1558 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1559 {
1560 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1561 }
1562 
1563 /**
1564  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1565  */
1566 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1567 {
1568 	return div64_u64(x * multiplier, base);
1569 }
1570 
1571 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1572 						  unsigned long highmem,
1573 						  unsigned long total)
1574 {
1575 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1576 
1577 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1578 }
1579 #else /* CONFIG_HIGHMEM */
1580 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1581 {
1582 	return 0;
1583 }
1584 
1585 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1586 							 unsigned long highmem,
1587 							 unsigned long total)
1588 {
1589 	return 0;
1590 }
1591 #endif /* CONFIG_HIGHMEM */
1592 
1593 /**
1594  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1595  */
1596 static unsigned long free_unnecessary_pages(void)
1597 {
1598 	unsigned long save, to_free_normal, to_free_highmem, free;
1599 
1600 	save = count_data_pages();
1601 	if (alloc_normal >= save) {
1602 		to_free_normal = alloc_normal - save;
1603 		save = 0;
1604 	} else {
1605 		to_free_normal = 0;
1606 		save -= alloc_normal;
1607 	}
1608 	save += count_highmem_pages();
1609 	if (alloc_highmem >= save) {
1610 		to_free_highmem = alloc_highmem - save;
1611 	} else {
1612 		to_free_highmem = 0;
1613 		save -= alloc_highmem;
1614 		if (to_free_normal > save)
1615 			to_free_normal -= save;
1616 		else
1617 			to_free_normal = 0;
1618 	}
1619 	free = to_free_normal + to_free_highmem;
1620 
1621 	memory_bm_position_reset(&copy_bm);
1622 
1623 	while (to_free_normal > 0 || to_free_highmem > 0) {
1624 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1625 		struct page *page = pfn_to_page(pfn);
1626 
1627 		if (PageHighMem(page)) {
1628 			if (!to_free_highmem)
1629 				continue;
1630 			to_free_highmem--;
1631 			alloc_highmem--;
1632 		} else {
1633 			if (!to_free_normal)
1634 				continue;
1635 			to_free_normal--;
1636 			alloc_normal--;
1637 		}
1638 		memory_bm_clear_bit(&copy_bm, pfn);
1639 		swsusp_unset_page_forbidden(page);
1640 		swsusp_unset_page_free(page);
1641 		__free_page(page);
1642 	}
1643 
1644 	return free;
1645 }
1646 
1647 /**
1648  * minimum_image_size - Estimate the minimum acceptable size of an image.
1649  * @saveable: Number of saveable pages in the system.
1650  *
1651  * We want to avoid attempting to free too much memory too hard, so estimate the
1652  * minimum acceptable size of a hibernation image to use as the lower limit for
1653  * preallocating memory.
1654  *
1655  * We assume that the minimum image size should be proportional to
1656  *
1657  * [number of saveable pages] - [number of pages that can be freed in theory]
1658  *
1659  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1660  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1661  */
1662 static unsigned long minimum_image_size(unsigned long saveable)
1663 {
1664 	unsigned long size;
1665 
1666 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1667 		+ global_node_page_state(NR_ACTIVE_ANON)
1668 		+ global_node_page_state(NR_INACTIVE_ANON)
1669 		+ global_node_page_state(NR_ACTIVE_FILE)
1670 		+ global_node_page_state(NR_INACTIVE_FILE);
1671 
1672 	return saveable <= size ? 0 : saveable - size;
1673 }
1674 
1675 /**
1676  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1677  *
1678  * To create a hibernation image it is necessary to make a copy of every page
1679  * frame in use.  We also need a number of page frames to be free during
1680  * hibernation for allocations made while saving the image and for device
1681  * drivers, in case they need to allocate memory from their hibernation
1682  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1683  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1684  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1685  * total number of available page frames and allocate at least
1686  *
1687  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1688  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1689  *
1690  * of them, which corresponds to the maximum size of a hibernation image.
1691  *
1692  * If image_size is set below the number following from the above formula,
1693  * the preallocation of memory is continued until the total number of saveable
1694  * pages in the system is below the requested image size or the minimum
1695  * acceptable image size returned by minimum_image_size(), whichever is greater.
1696  */
1697 int hibernate_preallocate_memory(void)
1698 {
1699 	struct zone *zone;
1700 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1701 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1702 	ktime_t start, stop;
1703 	int error;
1704 
1705 	pr_info("Preallocating image memory\n");
1706 	start = ktime_get();
1707 
1708 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1709 	if (error) {
1710 		pr_err("Cannot allocate original bitmap\n");
1711 		goto err_out;
1712 	}
1713 
1714 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1715 	if (error) {
1716 		pr_err("Cannot allocate copy bitmap\n");
1717 		goto err_out;
1718 	}
1719 
1720 	alloc_normal = 0;
1721 	alloc_highmem = 0;
1722 
1723 	/* Count the number of saveable data pages. */
1724 	save_highmem = count_highmem_pages();
1725 	saveable = count_data_pages();
1726 
1727 	/*
1728 	 * Compute the total number of page frames we can use (count) and the
1729 	 * number of pages needed for image metadata (size).
1730 	 */
1731 	count = saveable;
1732 	saveable += save_highmem;
1733 	highmem = save_highmem;
1734 	size = 0;
1735 	for_each_populated_zone(zone) {
1736 		size += snapshot_additional_pages(zone);
1737 		if (is_highmem(zone))
1738 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1739 		else
1740 			count += zone_page_state(zone, NR_FREE_PAGES);
1741 	}
1742 	avail_normal = count;
1743 	count += highmem;
1744 	count -= totalreserve_pages;
1745 
1746 	/* Compute the maximum number of saveable pages to leave in memory. */
1747 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1748 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1749 	/* Compute the desired number of image pages specified by image_size. */
1750 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1751 	if (size > max_size)
1752 		size = max_size;
1753 	/*
1754 	 * If the desired number of image pages is at least as large as the
1755 	 * current number of saveable pages in memory, allocate page frames for
1756 	 * the image and we're done.
1757 	 */
1758 	if (size >= saveable) {
1759 		pages = preallocate_image_highmem(save_highmem);
1760 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1761 		goto out;
1762 	}
1763 
1764 	/* Estimate the minimum size of the image. */
1765 	pages = minimum_image_size(saveable);
1766 	/*
1767 	 * To avoid excessive pressure on the normal zone, leave room in it to
1768 	 * accommodate an image of the minimum size (unless it's already too
1769 	 * small, in which case don't preallocate pages from it at all).
1770 	 */
1771 	if (avail_normal > pages)
1772 		avail_normal -= pages;
1773 	else
1774 		avail_normal = 0;
1775 	if (size < pages)
1776 		size = min_t(unsigned long, pages, max_size);
1777 
1778 	/*
1779 	 * Let the memory management subsystem know that we're going to need a
1780 	 * large number of page frames to allocate and make it free some memory.
1781 	 * NOTE: If this is not done, performance will be hurt badly in some
1782 	 * test cases.
1783 	 */
1784 	shrink_all_memory(saveable - size);
1785 
1786 	/*
1787 	 * The number of saveable pages in memory was too high, so apply some
1788 	 * pressure to decrease it.  First, make room for the largest possible
1789 	 * image and fail if that doesn't work.  Next, try to decrease the size
1790 	 * of the image as much as indicated by 'size' using allocations from
1791 	 * highmem and non-highmem zones separately.
1792 	 */
1793 	pages_highmem = preallocate_image_highmem(highmem / 2);
1794 	alloc = count - max_size;
1795 	if (alloc > pages_highmem)
1796 		alloc -= pages_highmem;
1797 	else
1798 		alloc = 0;
1799 	pages = preallocate_image_memory(alloc, avail_normal);
1800 	if (pages < alloc) {
1801 		/* We have exhausted non-highmem pages, try highmem. */
1802 		alloc -= pages;
1803 		pages += pages_highmem;
1804 		pages_highmem = preallocate_image_highmem(alloc);
1805 		if (pages_highmem < alloc) {
1806 			pr_err("Image allocation is %lu pages short\n",
1807 				alloc - pages_highmem);
1808 			goto err_out;
1809 		}
1810 		pages += pages_highmem;
1811 		/*
1812 		 * size is the desired number of saveable pages to leave in
1813 		 * memory, so try to preallocate (all memory - size) pages.
1814 		 */
1815 		alloc = (count - pages) - size;
1816 		pages += preallocate_image_highmem(alloc);
1817 	} else {
1818 		/*
1819 		 * There are approximately max_size saveable pages at this point
1820 		 * and we want to reduce this number down to size.
1821 		 */
1822 		alloc = max_size - size;
1823 		size = preallocate_highmem_fraction(alloc, highmem, count);
1824 		pages_highmem += size;
1825 		alloc -= size;
1826 		size = preallocate_image_memory(alloc, avail_normal);
1827 		pages_highmem += preallocate_image_highmem(alloc - size);
1828 		pages += pages_highmem + size;
1829 	}
1830 
1831 	/*
1832 	 * We only need as many page frames for the image as there are saveable
1833 	 * pages in memory, but we have allocated more.  Release the excessive
1834 	 * ones now.
1835 	 */
1836 	pages -= free_unnecessary_pages();
1837 
1838  out:
1839 	stop = ktime_get();
1840 	pr_info("Allocated %lu pages for snapshot\n", pages);
1841 	swsusp_show_speed(start, stop, pages, "Allocated");
1842 
1843 	return 0;
1844 
1845  err_out:
1846 	swsusp_free();
1847 	return -ENOMEM;
1848 }
1849 
1850 #ifdef CONFIG_HIGHMEM
1851 /**
1852  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1853  *
1854  * Compute the number of non-highmem pages that will be necessary for creating
1855  * copies of highmem pages.
1856  */
1857 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1858 {
1859 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1860 
1861 	if (free_highmem >= nr_highmem)
1862 		nr_highmem = 0;
1863 	else
1864 		nr_highmem -= free_highmem;
1865 
1866 	return nr_highmem;
1867 }
1868 #else
1869 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1870 #endif /* CONFIG_HIGHMEM */
1871 
1872 /**
1873  * enough_free_mem - Check if there is enough free memory for the image.
1874  */
1875 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1876 {
1877 	struct zone *zone;
1878 	unsigned int free = alloc_normal;
1879 
1880 	for_each_populated_zone(zone)
1881 		if (!is_highmem(zone))
1882 			free += zone_page_state(zone, NR_FREE_PAGES);
1883 
1884 	nr_pages += count_pages_for_highmem(nr_highmem);
1885 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1886 		 nr_pages, PAGES_FOR_IO, free);
1887 
1888 	return free > nr_pages + PAGES_FOR_IO;
1889 }
1890 
1891 #ifdef CONFIG_HIGHMEM
1892 /**
1893  * get_highmem_buffer - Allocate a buffer for highmem pages.
1894  *
1895  * If there are some highmem pages in the hibernation image, we may need a
1896  * buffer to copy them and/or load their data.
1897  */
1898 static inline int get_highmem_buffer(int safe_needed)
1899 {
1900 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1901 	return buffer ? 0 : -ENOMEM;
1902 }
1903 
1904 /**
1905  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1906  *
1907  * Try to allocate as many pages as needed, but if the number of free highmem
1908  * pages is less than that, allocate them all.
1909  */
1910 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1911 					       unsigned int nr_highmem)
1912 {
1913 	unsigned int to_alloc = count_free_highmem_pages();
1914 
1915 	if (to_alloc > nr_highmem)
1916 		to_alloc = nr_highmem;
1917 
1918 	nr_highmem -= to_alloc;
1919 	while (to_alloc-- > 0) {
1920 		struct page *page;
1921 
1922 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1923 		memory_bm_set_bit(bm, page_to_pfn(page));
1924 	}
1925 	return nr_highmem;
1926 }
1927 #else
1928 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1929 
1930 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1931 					       unsigned int n) { return 0; }
1932 #endif /* CONFIG_HIGHMEM */
1933 
1934 /**
1935  * swsusp_alloc - Allocate memory for hibernation image.
1936  *
1937  * We first try to allocate as many highmem pages as there are
1938  * saveable highmem pages in the system.  If that fails, we allocate
1939  * non-highmem pages for the copies of the remaining highmem ones.
1940  *
1941  * In this approach it is likely that the copies of highmem pages will
1942  * also be located in the high memory, because of the way in which
1943  * copy_data_pages() works.
1944  */
1945 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1946 			unsigned int nr_pages, unsigned int nr_highmem)
1947 {
1948 	if (nr_highmem > 0) {
1949 		if (get_highmem_buffer(PG_ANY))
1950 			goto err_out;
1951 		if (nr_highmem > alloc_highmem) {
1952 			nr_highmem -= alloc_highmem;
1953 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1954 		}
1955 	}
1956 	if (nr_pages > alloc_normal) {
1957 		nr_pages -= alloc_normal;
1958 		while (nr_pages-- > 0) {
1959 			struct page *page;
1960 
1961 			page = alloc_image_page(GFP_ATOMIC);
1962 			if (!page)
1963 				goto err_out;
1964 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1965 		}
1966 	}
1967 
1968 	return 0;
1969 
1970  err_out:
1971 	swsusp_free();
1972 	return -ENOMEM;
1973 }
1974 
1975 asmlinkage __visible int swsusp_save(void)
1976 {
1977 	unsigned int nr_pages, nr_highmem;
1978 
1979 	pr_info("Creating image:\n");
1980 
1981 	drain_local_pages(NULL);
1982 	nr_pages = count_data_pages();
1983 	nr_highmem = count_highmem_pages();
1984 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1985 
1986 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1987 		pr_err("Not enough free memory\n");
1988 		return -ENOMEM;
1989 	}
1990 
1991 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1992 		pr_err("Memory allocation failed\n");
1993 		return -ENOMEM;
1994 	}
1995 
1996 	/*
1997 	 * During allocating of suspend pagedir, new cold pages may appear.
1998 	 * Kill them.
1999 	 */
2000 	drain_local_pages(NULL);
2001 	copy_data_pages(&copy_bm, &orig_bm);
2002 
2003 	/*
2004 	 * End of critical section. From now on, we can write to memory,
2005 	 * but we should not touch disk. This specially means we must _not_
2006 	 * touch swap space! Except we must write out our image of course.
2007 	 */
2008 
2009 	nr_pages += nr_highmem;
2010 	nr_copy_pages = nr_pages;
2011 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2012 
2013 	pr_info("Image created (%d pages copied)\n", nr_pages);
2014 
2015 	return 0;
2016 }
2017 
2018 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2019 static int init_header_complete(struct swsusp_info *info)
2020 {
2021 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2022 	info->version_code = LINUX_VERSION_CODE;
2023 	return 0;
2024 }
2025 
2026 static const char *check_image_kernel(struct swsusp_info *info)
2027 {
2028 	if (info->version_code != LINUX_VERSION_CODE)
2029 		return "kernel version";
2030 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2031 		return "system type";
2032 	if (strcmp(info->uts.release,init_utsname()->release))
2033 		return "kernel release";
2034 	if (strcmp(info->uts.version,init_utsname()->version))
2035 		return "version";
2036 	if (strcmp(info->uts.machine,init_utsname()->machine))
2037 		return "machine";
2038 	return NULL;
2039 }
2040 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2041 
2042 unsigned long snapshot_get_image_size(void)
2043 {
2044 	return nr_copy_pages + nr_meta_pages + 1;
2045 }
2046 
2047 static int init_header(struct swsusp_info *info)
2048 {
2049 	memset(info, 0, sizeof(struct swsusp_info));
2050 	info->num_physpages = get_num_physpages();
2051 	info->image_pages = nr_copy_pages;
2052 	info->pages = snapshot_get_image_size();
2053 	info->size = info->pages;
2054 	info->size <<= PAGE_SHIFT;
2055 	return init_header_complete(info);
2056 }
2057 
2058 /**
2059  * pack_pfns - Prepare PFNs for saving.
2060  * @bm: Memory bitmap.
2061  * @buf: Memory buffer to store the PFNs in.
2062  *
2063  * PFNs corresponding to set bits in @bm are stored in the area of memory
2064  * pointed to by @buf (1 page at a time).
2065  */
2066 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2067 {
2068 	int j;
2069 
2070 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2071 		buf[j] = memory_bm_next_pfn(bm);
2072 		if (unlikely(buf[j] == BM_END_OF_MAP))
2073 			break;
2074 	}
2075 }
2076 
2077 /**
2078  * snapshot_read_next - Get the address to read the next image page from.
2079  * @handle: Snapshot handle to be used for the reading.
2080  *
2081  * On the first call, @handle should point to a zeroed snapshot_handle
2082  * structure.  The structure gets populated then and a pointer to it should be
2083  * passed to this function every next time.
2084  *
2085  * On success, the function returns a positive number.  Then, the caller
2086  * is allowed to read up to the returned number of bytes from the memory
2087  * location computed by the data_of() macro.
2088  *
2089  * The function returns 0 to indicate the end of the data stream condition,
2090  * and negative numbers are returned on errors.  If that happens, the structure
2091  * pointed to by @handle is not updated and should not be used any more.
2092  */
2093 int snapshot_read_next(struct snapshot_handle *handle)
2094 {
2095 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2096 		return 0;
2097 
2098 	if (!buffer) {
2099 		/* This makes the buffer be freed by swsusp_free() */
2100 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2101 		if (!buffer)
2102 			return -ENOMEM;
2103 	}
2104 	if (!handle->cur) {
2105 		int error;
2106 
2107 		error = init_header((struct swsusp_info *)buffer);
2108 		if (error)
2109 			return error;
2110 		handle->buffer = buffer;
2111 		memory_bm_position_reset(&orig_bm);
2112 		memory_bm_position_reset(&copy_bm);
2113 	} else if (handle->cur <= nr_meta_pages) {
2114 		clear_page(buffer);
2115 		pack_pfns(buffer, &orig_bm);
2116 	} else {
2117 		struct page *page;
2118 
2119 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2120 		if (PageHighMem(page)) {
2121 			/*
2122 			 * Highmem pages are copied to the buffer,
2123 			 * because we can't return with a kmapped
2124 			 * highmem page (we may not be called again).
2125 			 */
2126 			void *kaddr;
2127 
2128 			kaddr = kmap_atomic(page);
2129 			copy_page(buffer, kaddr);
2130 			kunmap_atomic(kaddr);
2131 			handle->buffer = buffer;
2132 		} else {
2133 			handle->buffer = page_address(page);
2134 		}
2135 	}
2136 	handle->cur++;
2137 	return PAGE_SIZE;
2138 }
2139 
2140 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2141 				    struct memory_bitmap *src)
2142 {
2143 	unsigned long pfn;
2144 
2145 	memory_bm_position_reset(src);
2146 	pfn = memory_bm_next_pfn(src);
2147 	while (pfn != BM_END_OF_MAP) {
2148 		memory_bm_set_bit(dst, pfn);
2149 		pfn = memory_bm_next_pfn(src);
2150 	}
2151 }
2152 
2153 /**
2154  * mark_unsafe_pages - Mark pages that were used before hibernation.
2155  *
2156  * Mark the pages that cannot be used for storing the image during restoration,
2157  * because they conflict with the pages that had been used before hibernation.
2158  */
2159 static void mark_unsafe_pages(struct memory_bitmap *bm)
2160 {
2161 	unsigned long pfn;
2162 
2163 	/* Clear the "free"/"unsafe" bit for all PFNs */
2164 	memory_bm_position_reset(free_pages_map);
2165 	pfn = memory_bm_next_pfn(free_pages_map);
2166 	while (pfn != BM_END_OF_MAP) {
2167 		memory_bm_clear_current(free_pages_map);
2168 		pfn = memory_bm_next_pfn(free_pages_map);
2169 	}
2170 
2171 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2172 	duplicate_memory_bitmap(free_pages_map, bm);
2173 
2174 	allocated_unsafe_pages = 0;
2175 }
2176 
2177 static int check_header(struct swsusp_info *info)
2178 {
2179 	const char *reason;
2180 
2181 	reason = check_image_kernel(info);
2182 	if (!reason && info->num_physpages != get_num_physpages())
2183 		reason = "memory size";
2184 	if (reason) {
2185 		pr_err("Image mismatch: %s\n", reason);
2186 		return -EPERM;
2187 	}
2188 	return 0;
2189 }
2190 
2191 /**
2192  * load header - Check the image header and copy the data from it.
2193  */
2194 static int load_header(struct swsusp_info *info)
2195 {
2196 	int error;
2197 
2198 	restore_pblist = NULL;
2199 	error = check_header(info);
2200 	if (!error) {
2201 		nr_copy_pages = info->image_pages;
2202 		nr_meta_pages = info->pages - info->image_pages - 1;
2203 	}
2204 	return error;
2205 }
2206 
2207 /**
2208  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2209  * @bm: Memory bitmap.
2210  * @buf: Area of memory containing the PFNs.
2211  *
2212  * For each element of the array pointed to by @buf (1 page at a time), set the
2213  * corresponding bit in @bm.
2214  */
2215 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2216 {
2217 	int j;
2218 
2219 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2220 		if (unlikely(buf[j] == BM_END_OF_MAP))
2221 			break;
2222 
2223 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2224 			memory_bm_set_bit(bm, buf[j]);
2225 		else
2226 			return -EFAULT;
2227 	}
2228 
2229 	return 0;
2230 }
2231 
2232 #ifdef CONFIG_HIGHMEM
2233 /*
2234  * struct highmem_pbe is used for creating the list of highmem pages that
2235  * should be restored atomically during the resume from disk, because the page
2236  * frames they have occupied before the suspend are in use.
2237  */
2238 struct highmem_pbe {
2239 	struct page *copy_page;	/* data is here now */
2240 	struct page *orig_page;	/* data was here before the suspend */
2241 	struct highmem_pbe *next;
2242 };
2243 
2244 /*
2245  * List of highmem PBEs needed for restoring the highmem pages that were
2246  * allocated before the suspend and included in the suspend image, but have
2247  * also been allocated by the "resume" kernel, so their contents cannot be
2248  * written directly to their "original" page frames.
2249  */
2250 static struct highmem_pbe *highmem_pblist;
2251 
2252 /**
2253  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2254  * @bm: Memory bitmap.
2255  *
2256  * The bits in @bm that correspond to image pages are assumed to be set.
2257  */
2258 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2259 {
2260 	unsigned long pfn;
2261 	unsigned int cnt = 0;
2262 
2263 	memory_bm_position_reset(bm);
2264 	pfn = memory_bm_next_pfn(bm);
2265 	while (pfn != BM_END_OF_MAP) {
2266 		if (PageHighMem(pfn_to_page(pfn)))
2267 			cnt++;
2268 
2269 		pfn = memory_bm_next_pfn(bm);
2270 	}
2271 	return cnt;
2272 }
2273 
2274 static unsigned int safe_highmem_pages;
2275 
2276 static struct memory_bitmap *safe_highmem_bm;
2277 
2278 /**
2279  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2280  * @bm: Pointer to an uninitialized memory bitmap structure.
2281  * @nr_highmem_p: Pointer to the number of highmem image pages.
2282  *
2283  * Try to allocate as many highmem pages as there are highmem image pages
2284  * (@nr_highmem_p points to the variable containing the number of highmem image
2285  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2286  * hibernation image is restored entirely) have the corresponding bits set in
2287  * @bm (it must be unitialized).
2288  *
2289  * NOTE: This function should not be called if there are no highmem image pages.
2290  */
2291 static int prepare_highmem_image(struct memory_bitmap *bm,
2292 				 unsigned int *nr_highmem_p)
2293 {
2294 	unsigned int to_alloc;
2295 
2296 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2297 		return -ENOMEM;
2298 
2299 	if (get_highmem_buffer(PG_SAFE))
2300 		return -ENOMEM;
2301 
2302 	to_alloc = count_free_highmem_pages();
2303 	if (to_alloc > *nr_highmem_p)
2304 		to_alloc = *nr_highmem_p;
2305 	else
2306 		*nr_highmem_p = to_alloc;
2307 
2308 	safe_highmem_pages = 0;
2309 	while (to_alloc-- > 0) {
2310 		struct page *page;
2311 
2312 		page = alloc_page(__GFP_HIGHMEM);
2313 		if (!swsusp_page_is_free(page)) {
2314 			/* The page is "safe", set its bit the bitmap */
2315 			memory_bm_set_bit(bm, page_to_pfn(page));
2316 			safe_highmem_pages++;
2317 		}
2318 		/* Mark the page as allocated */
2319 		swsusp_set_page_forbidden(page);
2320 		swsusp_set_page_free(page);
2321 	}
2322 	memory_bm_position_reset(bm);
2323 	safe_highmem_bm = bm;
2324 	return 0;
2325 }
2326 
2327 static struct page *last_highmem_page;
2328 
2329 /**
2330  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2331  *
2332  * For a given highmem image page get a buffer that suspend_write_next() should
2333  * return to its caller to write to.
2334  *
2335  * If the page is to be saved to its "original" page frame or a copy of
2336  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2337  * the copy of the page is to be made in normal memory, so the address of
2338  * the copy is returned.
2339  *
2340  * If @buffer is returned, the caller of suspend_write_next() will write
2341  * the page's contents to @buffer, so they will have to be copied to the
2342  * right location on the next call to suspend_write_next() and it is done
2343  * with the help of copy_last_highmem_page().  For this purpose, if
2344  * @buffer is returned, @last_highmem_page is set to the page to which
2345  * the data will have to be copied from @buffer.
2346  */
2347 static void *get_highmem_page_buffer(struct page *page,
2348 				     struct chain_allocator *ca)
2349 {
2350 	struct highmem_pbe *pbe;
2351 	void *kaddr;
2352 
2353 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2354 		/*
2355 		 * We have allocated the "original" page frame and we can
2356 		 * use it directly to store the loaded page.
2357 		 */
2358 		last_highmem_page = page;
2359 		return buffer;
2360 	}
2361 	/*
2362 	 * The "original" page frame has not been allocated and we have to
2363 	 * use a "safe" page frame to store the loaded page.
2364 	 */
2365 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2366 	if (!pbe) {
2367 		swsusp_free();
2368 		return ERR_PTR(-ENOMEM);
2369 	}
2370 	pbe->orig_page = page;
2371 	if (safe_highmem_pages > 0) {
2372 		struct page *tmp;
2373 
2374 		/* Copy of the page will be stored in high memory */
2375 		kaddr = buffer;
2376 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2377 		safe_highmem_pages--;
2378 		last_highmem_page = tmp;
2379 		pbe->copy_page = tmp;
2380 	} else {
2381 		/* Copy of the page will be stored in normal memory */
2382 		kaddr = safe_pages_list;
2383 		safe_pages_list = safe_pages_list->next;
2384 		pbe->copy_page = virt_to_page(kaddr);
2385 	}
2386 	pbe->next = highmem_pblist;
2387 	highmem_pblist = pbe;
2388 	return kaddr;
2389 }
2390 
2391 /**
2392  * copy_last_highmem_page - Copy most the most recent highmem image page.
2393  *
2394  * Copy the contents of a highmem image from @buffer, where the caller of
2395  * snapshot_write_next() has stored them, to the right location represented by
2396  * @last_highmem_page .
2397  */
2398 static void copy_last_highmem_page(void)
2399 {
2400 	if (last_highmem_page) {
2401 		void *dst;
2402 
2403 		dst = kmap_atomic(last_highmem_page);
2404 		copy_page(dst, buffer);
2405 		kunmap_atomic(dst);
2406 		last_highmem_page = NULL;
2407 	}
2408 }
2409 
2410 static inline int last_highmem_page_copied(void)
2411 {
2412 	return !last_highmem_page;
2413 }
2414 
2415 static inline void free_highmem_data(void)
2416 {
2417 	if (safe_highmem_bm)
2418 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2419 
2420 	if (buffer)
2421 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2422 }
2423 #else
2424 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2425 
2426 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2427 					unsigned int *nr_highmem_p) { return 0; }
2428 
2429 static inline void *get_highmem_page_buffer(struct page *page,
2430 					    struct chain_allocator *ca)
2431 {
2432 	return ERR_PTR(-EINVAL);
2433 }
2434 
2435 static inline void copy_last_highmem_page(void) {}
2436 static inline int last_highmem_page_copied(void) { return 1; }
2437 static inline void free_highmem_data(void) {}
2438 #endif /* CONFIG_HIGHMEM */
2439 
2440 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2441 
2442 /**
2443  * prepare_image - Make room for loading hibernation image.
2444  * @new_bm: Unitialized memory bitmap structure.
2445  * @bm: Memory bitmap with unsafe pages marked.
2446  *
2447  * Use @bm to mark the pages that will be overwritten in the process of
2448  * restoring the system memory state from the suspend image ("unsafe" pages)
2449  * and allocate memory for the image.
2450  *
2451  * The idea is to allocate a new memory bitmap first and then allocate
2452  * as many pages as needed for image data, but without specifying what those
2453  * pages will be used for just yet.  Instead, we mark them all as allocated and
2454  * create a lists of "safe" pages to be used later.  On systems with high
2455  * memory a list of "safe" highmem pages is created too.
2456  */
2457 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2458 {
2459 	unsigned int nr_pages, nr_highmem;
2460 	struct linked_page *lp;
2461 	int error;
2462 
2463 	/* If there is no highmem, the buffer will not be necessary */
2464 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2465 	buffer = NULL;
2466 
2467 	nr_highmem = count_highmem_image_pages(bm);
2468 	mark_unsafe_pages(bm);
2469 
2470 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2471 	if (error)
2472 		goto Free;
2473 
2474 	duplicate_memory_bitmap(new_bm, bm);
2475 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2476 	if (nr_highmem > 0) {
2477 		error = prepare_highmem_image(bm, &nr_highmem);
2478 		if (error)
2479 			goto Free;
2480 	}
2481 	/*
2482 	 * Reserve some safe pages for potential later use.
2483 	 *
2484 	 * NOTE: This way we make sure there will be enough safe pages for the
2485 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2486 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2487 	 *
2488 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2489 	 */
2490 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2491 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2492 	while (nr_pages > 0) {
2493 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2494 		if (!lp) {
2495 			error = -ENOMEM;
2496 			goto Free;
2497 		}
2498 		lp->next = safe_pages_list;
2499 		safe_pages_list = lp;
2500 		nr_pages--;
2501 	}
2502 	/* Preallocate memory for the image */
2503 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2504 	while (nr_pages > 0) {
2505 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2506 		if (!lp) {
2507 			error = -ENOMEM;
2508 			goto Free;
2509 		}
2510 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2511 			/* The page is "safe", add it to the list */
2512 			lp->next = safe_pages_list;
2513 			safe_pages_list = lp;
2514 		}
2515 		/* Mark the page as allocated */
2516 		swsusp_set_page_forbidden(virt_to_page(lp));
2517 		swsusp_set_page_free(virt_to_page(lp));
2518 		nr_pages--;
2519 	}
2520 	return 0;
2521 
2522  Free:
2523 	swsusp_free();
2524 	return error;
2525 }
2526 
2527 /**
2528  * get_buffer - Get the address to store the next image data page.
2529  *
2530  * Get the address that snapshot_write_next() should return to its caller to
2531  * write to.
2532  */
2533 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2534 {
2535 	struct pbe *pbe;
2536 	struct page *page;
2537 	unsigned long pfn = memory_bm_next_pfn(bm);
2538 
2539 	if (pfn == BM_END_OF_MAP)
2540 		return ERR_PTR(-EFAULT);
2541 
2542 	page = pfn_to_page(pfn);
2543 	if (PageHighMem(page))
2544 		return get_highmem_page_buffer(page, ca);
2545 
2546 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2547 		/*
2548 		 * We have allocated the "original" page frame and we can
2549 		 * use it directly to store the loaded page.
2550 		 */
2551 		return page_address(page);
2552 
2553 	/*
2554 	 * The "original" page frame has not been allocated and we have to
2555 	 * use a "safe" page frame to store the loaded page.
2556 	 */
2557 	pbe = chain_alloc(ca, sizeof(struct pbe));
2558 	if (!pbe) {
2559 		swsusp_free();
2560 		return ERR_PTR(-ENOMEM);
2561 	}
2562 	pbe->orig_address = page_address(page);
2563 	pbe->address = safe_pages_list;
2564 	safe_pages_list = safe_pages_list->next;
2565 	pbe->next = restore_pblist;
2566 	restore_pblist = pbe;
2567 	return pbe->address;
2568 }
2569 
2570 /**
2571  * snapshot_write_next - Get the address to store the next image page.
2572  * @handle: Snapshot handle structure to guide the writing.
2573  *
2574  * On the first call, @handle should point to a zeroed snapshot_handle
2575  * structure.  The structure gets populated then and a pointer to it should be
2576  * passed to this function every next time.
2577  *
2578  * On success, the function returns a positive number.  Then, the caller
2579  * is allowed to write up to the returned number of bytes to the memory
2580  * location computed by the data_of() macro.
2581  *
2582  * The function returns 0 to indicate the "end of file" condition.  Negative
2583  * numbers are returned on errors, in which cases the structure pointed to by
2584  * @handle is not updated and should not be used any more.
2585  */
2586 int snapshot_write_next(struct snapshot_handle *handle)
2587 {
2588 	static struct chain_allocator ca;
2589 	int error = 0;
2590 
2591 	/* Check if we have already loaded the entire image */
2592 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2593 		return 0;
2594 
2595 	handle->sync_read = 1;
2596 
2597 	if (!handle->cur) {
2598 		if (!buffer)
2599 			/* This makes the buffer be freed by swsusp_free() */
2600 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2601 
2602 		if (!buffer)
2603 			return -ENOMEM;
2604 
2605 		handle->buffer = buffer;
2606 	} else if (handle->cur == 1) {
2607 		error = load_header(buffer);
2608 		if (error)
2609 			return error;
2610 
2611 		safe_pages_list = NULL;
2612 
2613 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2614 		if (error)
2615 			return error;
2616 
2617 		hibernate_restore_protection_begin();
2618 	} else if (handle->cur <= nr_meta_pages + 1) {
2619 		error = unpack_orig_pfns(buffer, &copy_bm);
2620 		if (error)
2621 			return error;
2622 
2623 		if (handle->cur == nr_meta_pages + 1) {
2624 			error = prepare_image(&orig_bm, &copy_bm);
2625 			if (error)
2626 				return error;
2627 
2628 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2629 			memory_bm_position_reset(&orig_bm);
2630 			restore_pblist = NULL;
2631 			handle->buffer = get_buffer(&orig_bm, &ca);
2632 			handle->sync_read = 0;
2633 			if (IS_ERR(handle->buffer))
2634 				return PTR_ERR(handle->buffer);
2635 		}
2636 	} else {
2637 		copy_last_highmem_page();
2638 		hibernate_restore_protect_page(handle->buffer);
2639 		handle->buffer = get_buffer(&orig_bm, &ca);
2640 		if (IS_ERR(handle->buffer))
2641 			return PTR_ERR(handle->buffer);
2642 		if (handle->buffer != buffer)
2643 			handle->sync_read = 0;
2644 	}
2645 	handle->cur++;
2646 	return PAGE_SIZE;
2647 }
2648 
2649 /**
2650  * snapshot_write_finalize - Complete the loading of a hibernation image.
2651  *
2652  * Must be called after the last call to snapshot_write_next() in case the last
2653  * page in the image happens to be a highmem page and its contents should be
2654  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2655  * necessary any more.
2656  */
2657 void snapshot_write_finalize(struct snapshot_handle *handle)
2658 {
2659 	copy_last_highmem_page();
2660 	hibernate_restore_protect_page(handle->buffer);
2661 	/* Do that only if we have loaded the image entirely */
2662 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663 		memory_bm_recycle(&orig_bm);
2664 		free_highmem_data();
2665 	}
2666 }
2667 
2668 int snapshot_image_loaded(struct snapshot_handle *handle)
2669 {
2670 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671 			handle->cur <= nr_meta_pages + nr_copy_pages);
2672 }
2673 
2674 #ifdef CONFIG_HIGHMEM
2675 /* Assumes that @buf is ready and points to a "safe" page */
2676 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677 				       void *buf)
2678 {
2679 	void *kaddr1, *kaddr2;
2680 
2681 	kaddr1 = kmap_atomic(p1);
2682 	kaddr2 = kmap_atomic(p2);
2683 	copy_page(buf, kaddr1);
2684 	copy_page(kaddr1, kaddr2);
2685 	copy_page(kaddr2, buf);
2686 	kunmap_atomic(kaddr2);
2687 	kunmap_atomic(kaddr1);
2688 }
2689 
2690 /**
2691  * restore_highmem - Put highmem image pages into their original locations.
2692  *
2693  * For each highmem page that was in use before hibernation and is included in
2694  * the image, and also has been allocated by the "restore" kernel, swap its
2695  * current contents with the previous (ie. "before hibernation") ones.
2696  *
2697  * If the restore eventually fails, we can call this function once again and
2698  * restore the highmem state as seen by the restore kernel.
2699  */
2700 int restore_highmem(void)
2701 {
2702 	struct highmem_pbe *pbe = highmem_pblist;
2703 	void *buf;
2704 
2705 	if (!pbe)
2706 		return 0;
2707 
2708 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709 	if (!buf)
2710 		return -ENOMEM;
2711 
2712 	while (pbe) {
2713 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714 		pbe = pbe->next;
2715 	}
2716 	free_image_page(buf, PG_UNSAFE_CLEAR);
2717 	return 0;
2718 }
2719 #endif /* CONFIG_HIGHMEM */
2720