1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Number of bytes to reserve for memory allocations made by device drivers 45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 46 * cause image creation to fail (tunable via /sys/power/reserved_size). 47 */ 48 unsigned long reserved_size; 49 50 void __init hibernate_reserved_size_init(void) 51 { 52 reserved_size = SPARE_PAGES * PAGE_SIZE; 53 } 54 55 /* 56 * Preferred image size in bytes (tunable via /sys/power/image_size). 57 * When it is set to N, swsusp will do its best to ensure the image 58 * size will not exceed N bytes, but if that is impossible, it will 59 * try to create the smallest image possible. 60 */ 61 unsigned long image_size; 62 63 void __init hibernate_image_size_init(void) 64 { 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 66 } 67 68 /* List of PBEs needed for restoring the pages that were allocated before 69 * the suspend and included in the suspend image, but have also been 70 * allocated by the "resume" kernel, so their contents cannot be written 71 * directly to their "original" page frames. 72 */ 73 struct pbe *restore_pblist; 74 75 /* Pointer to an auxiliary buffer (1 page) */ 76 static void *buffer; 77 78 /** 79 * @safe_needed - on resume, for storing the PBE list and the image, 80 * we can only use memory pages that do not conflict with the pages 81 * used before suspend. The unsafe pages have PageNosaveFree set 82 * and we count them using unsafe_pages. 83 * 84 * Each allocated image page is marked as PageNosave and PageNosaveFree 85 * so that swsusp_free() can release it. 86 */ 87 88 #define PG_ANY 0 89 #define PG_SAFE 1 90 #define PG_UNSAFE_CLEAR 1 91 #define PG_UNSAFE_KEEP 0 92 93 static unsigned int allocated_unsafe_pages; 94 95 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 96 { 97 void *res; 98 99 res = (void *)get_zeroed_page(gfp_mask); 100 if (safe_needed) 101 while (res && swsusp_page_is_free(virt_to_page(res))) { 102 /* The page is unsafe, mark it for swsusp_free() */ 103 swsusp_set_page_forbidden(virt_to_page(res)); 104 allocated_unsafe_pages++; 105 res = (void *)get_zeroed_page(gfp_mask); 106 } 107 if (res) { 108 swsusp_set_page_forbidden(virt_to_page(res)); 109 swsusp_set_page_free(virt_to_page(res)); 110 } 111 return res; 112 } 113 114 unsigned long get_safe_page(gfp_t gfp_mask) 115 { 116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 117 } 118 119 static struct page *alloc_image_page(gfp_t gfp_mask) 120 { 121 struct page *page; 122 123 page = alloc_page(gfp_mask); 124 if (page) { 125 swsusp_set_page_forbidden(page); 126 swsusp_set_page_free(page); 127 } 128 return page; 129 } 130 131 /** 132 * free_image_page - free page represented by @addr, allocated with 133 * get_image_page (page flags set by it must be cleared) 134 */ 135 136 static inline void free_image_page(void *addr, int clear_nosave_free) 137 { 138 struct page *page; 139 140 BUG_ON(!virt_addr_valid(addr)); 141 142 page = virt_to_page(addr); 143 144 swsusp_unset_page_forbidden(page); 145 if (clear_nosave_free) 146 swsusp_unset_page_free(page); 147 148 __free_page(page); 149 } 150 151 /* struct linked_page is used to build chains of pages */ 152 153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 154 155 struct linked_page { 156 struct linked_page *next; 157 char data[LINKED_PAGE_DATA_SIZE]; 158 } __attribute__((packed)); 159 160 static inline void 161 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 162 { 163 while (list) { 164 struct linked_page *lp = list->next; 165 166 free_image_page(list, clear_page_nosave); 167 list = lp; 168 } 169 } 170 171 /** 172 * struct chain_allocator is used for allocating small objects out of 173 * a linked list of pages called 'the chain'. 174 * 175 * The chain grows each time when there is no room for a new object in 176 * the current page. The allocated objects cannot be freed individually. 177 * It is only possible to free them all at once, by freeing the entire 178 * chain. 179 * 180 * NOTE: The chain allocator may be inefficient if the allocated objects 181 * are not much smaller than PAGE_SIZE. 182 */ 183 184 struct chain_allocator { 185 struct linked_page *chain; /* the chain */ 186 unsigned int used_space; /* total size of objects allocated out 187 * of the current page 188 */ 189 gfp_t gfp_mask; /* mask for allocating pages */ 190 int safe_needed; /* if set, only "safe" pages are allocated */ 191 }; 192 193 static void 194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 195 { 196 ca->chain = NULL; 197 ca->used_space = LINKED_PAGE_DATA_SIZE; 198 ca->gfp_mask = gfp_mask; 199 ca->safe_needed = safe_needed; 200 } 201 202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 203 { 204 void *ret; 205 206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 207 struct linked_page *lp; 208 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 210 if (!lp) 211 return NULL; 212 213 lp->next = ca->chain; 214 ca->chain = lp; 215 ca->used_space = 0; 216 } 217 ret = ca->chain->data + ca->used_space; 218 ca->used_space += size; 219 return ret; 220 } 221 222 /** 223 * Data types related to memory bitmaps. 224 * 225 * Memory bitmap is a structure consiting of many linked lists of 226 * objects. The main list's elements are of type struct zone_bitmap 227 * and each of them corresonds to one zone. For each zone bitmap 228 * object there is a list of objects of type struct bm_block that 229 * represent each blocks of bitmap in which information is stored. 230 * 231 * struct memory_bitmap contains a pointer to the main list of zone 232 * bitmap objects, a struct bm_position used for browsing the bitmap, 233 * and a pointer to the list of pages used for allocating all of the 234 * zone bitmap objects and bitmap block objects. 235 * 236 * NOTE: It has to be possible to lay out the bitmap in memory 237 * using only allocations of order 0. Additionally, the bitmap is 238 * designed to work with arbitrary number of zones (this is over the 239 * top for now, but let's avoid making unnecessary assumptions ;-). 240 * 241 * struct zone_bitmap contains a pointer to a list of bitmap block 242 * objects and a pointer to the bitmap block object that has been 243 * most recently used for setting bits. Additionally, it contains the 244 * pfns that correspond to the start and end of the represented zone. 245 * 246 * struct bm_block contains a pointer to the memory page in which 247 * information is stored (in the form of a block of bitmap) 248 * It also contains the pfns that correspond to the start and end of 249 * the represented memory area. 250 */ 251 252 #define BM_END_OF_MAP (~0UL) 253 254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 255 256 struct bm_block { 257 struct list_head hook; /* hook into a list of bitmap blocks */ 258 unsigned long start_pfn; /* pfn represented by the first bit */ 259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 260 unsigned long *data; /* bitmap representing pages */ 261 }; 262 263 static inline unsigned long bm_block_bits(struct bm_block *bb) 264 { 265 return bb->end_pfn - bb->start_pfn; 266 } 267 268 /* strcut bm_position is used for browsing memory bitmaps */ 269 270 struct bm_position { 271 struct bm_block *block; 272 int bit; 273 }; 274 275 struct memory_bitmap { 276 struct list_head blocks; /* list of bitmap blocks */ 277 struct linked_page *p_list; /* list of pages used to store zone 278 * bitmap objects and bitmap block 279 * objects 280 */ 281 struct bm_position cur; /* most recently used bit position */ 282 }; 283 284 /* Functions that operate on memory bitmaps */ 285 286 static void memory_bm_position_reset(struct memory_bitmap *bm) 287 { 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 289 bm->cur.bit = 0; 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 * @pages - number of pages to track 297 * @list - list to put the allocated blocks into 298 * @ca - chain allocator to be used for allocating memory 299 */ 300 static int create_bm_block_list(unsigned long pages, 301 struct list_head *list, 302 struct chain_allocator *ca) 303 { 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 305 306 while (nr_blocks-- > 0) { 307 struct bm_block *bb; 308 309 bb = chain_alloc(ca, sizeof(struct bm_block)); 310 if (!bb) 311 return -ENOMEM; 312 list_add(&bb->hook, list); 313 } 314 315 return 0; 316 } 317 318 struct mem_extent { 319 struct list_head hook; 320 unsigned long start; 321 unsigned long end; 322 }; 323 324 /** 325 * free_mem_extents - free a list of memory extents 326 * @list - list of extents to empty 327 */ 328 static void free_mem_extents(struct list_head *list) 329 { 330 struct mem_extent *ext, *aux; 331 332 list_for_each_entry_safe(ext, aux, list, hook) { 333 list_del(&ext->hook); 334 kfree(ext); 335 } 336 } 337 338 /** 339 * create_mem_extents - create a list of memory extents representing 340 * contiguous ranges of PFNs 341 * @list - list to put the extents into 342 * @gfp_mask - mask to use for memory allocations 343 */ 344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 345 { 346 struct zone *zone; 347 348 INIT_LIST_HEAD(list); 349 350 for_each_populated_zone(zone) { 351 unsigned long zone_start, zone_end; 352 struct mem_extent *ext, *cur, *aux; 353 354 zone_start = zone->zone_start_pfn; 355 zone_end = zone->zone_start_pfn + zone->spanned_pages; 356 357 list_for_each_entry(ext, list, hook) 358 if (zone_start <= ext->end) 359 break; 360 361 if (&ext->hook == list || zone_end < ext->start) { 362 /* New extent is necessary */ 363 struct mem_extent *new_ext; 364 365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 366 if (!new_ext) { 367 free_mem_extents(list); 368 return -ENOMEM; 369 } 370 new_ext->start = zone_start; 371 new_ext->end = zone_end; 372 list_add_tail(&new_ext->hook, &ext->hook); 373 continue; 374 } 375 376 /* Merge this zone's range of PFNs with the existing one */ 377 if (zone_start < ext->start) 378 ext->start = zone_start; 379 if (zone_end > ext->end) 380 ext->end = zone_end; 381 382 /* More merging may be possible */ 383 cur = ext; 384 list_for_each_entry_safe_continue(cur, aux, list, hook) { 385 if (zone_end < cur->start) 386 break; 387 if (zone_end < cur->end) 388 ext->end = cur->end; 389 list_del(&cur->hook); 390 kfree(cur); 391 } 392 } 393 394 return 0; 395 } 396 397 /** 398 * memory_bm_create - allocate memory for a memory bitmap 399 */ 400 static int 401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 402 { 403 struct chain_allocator ca; 404 struct list_head mem_extents; 405 struct mem_extent *ext; 406 int error; 407 408 chain_init(&ca, gfp_mask, safe_needed); 409 INIT_LIST_HEAD(&bm->blocks); 410 411 error = create_mem_extents(&mem_extents, gfp_mask); 412 if (error) 413 return error; 414 415 list_for_each_entry(ext, &mem_extents, hook) { 416 struct bm_block *bb; 417 unsigned long pfn = ext->start; 418 unsigned long pages = ext->end - ext->start; 419 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 421 422 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 423 if (error) 424 goto Error; 425 426 list_for_each_entry_continue(bb, &bm->blocks, hook) { 427 bb->data = get_image_page(gfp_mask, safe_needed); 428 if (!bb->data) { 429 error = -ENOMEM; 430 goto Error; 431 } 432 433 bb->start_pfn = pfn; 434 if (pages >= BM_BITS_PER_BLOCK) { 435 pfn += BM_BITS_PER_BLOCK; 436 pages -= BM_BITS_PER_BLOCK; 437 } else { 438 /* This is executed only once in the loop */ 439 pfn += pages; 440 } 441 bb->end_pfn = pfn; 442 } 443 } 444 445 bm->p_list = ca.chain; 446 memory_bm_position_reset(bm); 447 Exit: 448 free_mem_extents(&mem_extents); 449 return error; 450 451 Error: 452 bm->p_list = ca.chain; 453 memory_bm_free(bm, PG_UNSAFE_CLEAR); 454 goto Exit; 455 } 456 457 /** 458 * memory_bm_free - free memory occupied by the memory bitmap @bm 459 */ 460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 461 { 462 struct bm_block *bb; 463 464 list_for_each_entry(bb, &bm->blocks, hook) 465 if (bb->data) 466 free_image_page(bb->data, clear_nosave_free); 467 468 free_list_of_pages(bm->p_list, clear_nosave_free); 469 470 INIT_LIST_HEAD(&bm->blocks); 471 } 472 473 /** 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 476 * of @bm->cur_zone_bm are updated. 477 */ 478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 479 void **addr, unsigned int *bit_nr) 480 { 481 struct bm_block *bb; 482 483 /* 484 * Check if the pfn corresponds to the current bitmap block and find 485 * the block where it fits if this is not the case. 486 */ 487 bb = bm->cur.block; 488 if (pfn < bb->start_pfn) 489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 490 if (pfn >= bb->start_pfn) 491 break; 492 493 if (pfn >= bb->end_pfn) 494 list_for_each_entry_continue(bb, &bm->blocks, hook) 495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 496 break; 497 498 if (&bb->hook == &bm->blocks) 499 return -EFAULT; 500 501 /* The block has been found */ 502 bm->cur.block = bb; 503 pfn -= bb->start_pfn; 504 bm->cur.bit = pfn + 1; 505 *bit_nr = pfn; 506 *addr = bb->data; 507 return 0; 508 } 509 510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 511 { 512 void *addr; 513 unsigned int bit; 514 int error; 515 516 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 517 BUG_ON(error); 518 set_bit(bit, addr); 519 } 520 521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 if (!error) 529 set_bit(bit, addr); 530 return error; 531 } 532 533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 534 { 535 void *addr; 536 unsigned int bit; 537 int error; 538 539 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 540 BUG_ON(error); 541 clear_bit(bit, addr); 542 } 543 544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 545 { 546 void *addr; 547 unsigned int bit; 548 int error; 549 550 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 551 BUG_ON(error); 552 return test_bit(bit, addr); 553 } 554 555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 556 { 557 void *addr; 558 unsigned int bit; 559 560 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 561 } 562 563 /** 564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 566 * returned. 567 * 568 * It is required to run memory_bm_position_reset() before the first call to 569 * this function. 570 */ 571 572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 573 { 574 struct bm_block *bb; 575 int bit; 576 577 bb = bm->cur.block; 578 do { 579 bit = bm->cur.bit; 580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 581 if (bit < bm_block_bits(bb)) 582 goto Return_pfn; 583 584 bb = list_entry(bb->hook.next, struct bm_block, hook); 585 bm->cur.block = bb; 586 bm->cur.bit = 0; 587 } while (&bb->hook != &bm->blocks); 588 589 memory_bm_position_reset(bm); 590 return BM_END_OF_MAP; 591 592 Return_pfn: 593 bm->cur.bit = bit + 1; 594 return bb->start_pfn + bit; 595 } 596 597 /** 598 * This structure represents a range of page frames the contents of which 599 * should not be saved during the suspend. 600 */ 601 602 struct nosave_region { 603 struct list_head list; 604 unsigned long start_pfn; 605 unsigned long end_pfn; 606 }; 607 608 static LIST_HEAD(nosave_regions); 609 610 /** 611 * register_nosave_region - register a range of page frames the contents 612 * of which should not be saved during the suspend (to be used in the early 613 * initialization code) 614 */ 615 616 void __init 617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 618 int use_kmalloc) 619 { 620 struct nosave_region *region; 621 622 if (start_pfn >= end_pfn) 623 return; 624 625 if (!list_empty(&nosave_regions)) { 626 /* Try to extend the previous region (they should be sorted) */ 627 region = list_entry(nosave_regions.prev, 628 struct nosave_region, list); 629 if (region->end_pfn == start_pfn) { 630 region->end_pfn = end_pfn; 631 goto Report; 632 } 633 } 634 if (use_kmalloc) { 635 /* during init, this shouldn't fail */ 636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 637 BUG_ON(!region); 638 } else 639 /* This allocation cannot fail */ 640 region = alloc_bootmem(sizeof(struct nosave_region)); 641 region->start_pfn = start_pfn; 642 region->end_pfn = end_pfn; 643 list_add_tail(®ion->list, &nosave_regions); 644 Report: 645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 647 } 648 649 /* 650 * Set bits in this map correspond to the page frames the contents of which 651 * should not be saved during the suspend. 652 */ 653 static struct memory_bitmap *forbidden_pages_map; 654 655 /* Set bits in this map correspond to free page frames. */ 656 static struct memory_bitmap *free_pages_map; 657 658 /* 659 * Each page frame allocated for creating the image is marked by setting the 660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 661 */ 662 663 void swsusp_set_page_free(struct page *page) 664 { 665 if (free_pages_map) 666 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 667 } 668 669 static int swsusp_page_is_free(struct page *page) 670 { 671 return free_pages_map ? 672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 673 } 674 675 void swsusp_unset_page_free(struct page *page) 676 { 677 if (free_pages_map) 678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 679 } 680 681 static void swsusp_set_page_forbidden(struct page *page) 682 { 683 if (forbidden_pages_map) 684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 685 } 686 687 int swsusp_page_is_forbidden(struct page *page) 688 { 689 return forbidden_pages_map ? 690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 691 } 692 693 static void swsusp_unset_page_forbidden(struct page *page) 694 { 695 if (forbidden_pages_map) 696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 697 } 698 699 /** 700 * mark_nosave_pages - set bits corresponding to the page frames the 701 * contents of which should not be saved in a given bitmap. 702 */ 703 704 static void mark_nosave_pages(struct memory_bitmap *bm) 705 { 706 struct nosave_region *region; 707 708 if (list_empty(&nosave_regions)) 709 return; 710 711 list_for_each_entry(region, &nosave_regions, list) { 712 unsigned long pfn; 713 714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 715 region->start_pfn << PAGE_SHIFT, 716 region->end_pfn << PAGE_SHIFT); 717 718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 719 if (pfn_valid(pfn)) { 720 /* 721 * It is safe to ignore the result of 722 * mem_bm_set_bit_check() here, since we won't 723 * touch the PFNs for which the error is 724 * returned anyway. 725 */ 726 mem_bm_set_bit_check(bm, pfn); 727 } 728 } 729 } 730 731 /** 732 * create_basic_memory_bitmaps - create bitmaps needed for marking page 733 * frames that should not be saved and free page frames. The pointers 734 * forbidden_pages_map and free_pages_map are only modified if everything 735 * goes well, because we don't want the bits to be used before both bitmaps 736 * are set up. 737 */ 738 739 int create_basic_memory_bitmaps(void) 740 { 741 struct memory_bitmap *bm1, *bm2; 742 int error = 0; 743 744 BUG_ON(forbidden_pages_map || free_pages_map); 745 746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 747 if (!bm1) 748 return -ENOMEM; 749 750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 751 if (error) 752 goto Free_first_object; 753 754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 755 if (!bm2) 756 goto Free_first_bitmap; 757 758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 759 if (error) 760 goto Free_second_object; 761 762 forbidden_pages_map = bm1; 763 free_pages_map = bm2; 764 mark_nosave_pages(forbidden_pages_map); 765 766 pr_debug("PM: Basic memory bitmaps created\n"); 767 768 return 0; 769 770 Free_second_object: 771 kfree(bm2); 772 Free_first_bitmap: 773 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 774 Free_first_object: 775 kfree(bm1); 776 return -ENOMEM; 777 } 778 779 /** 780 * free_basic_memory_bitmaps - free memory bitmaps allocated by 781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 782 * so that the bitmaps themselves are not referred to while they are being 783 * freed. 784 */ 785 786 void free_basic_memory_bitmaps(void) 787 { 788 struct memory_bitmap *bm1, *bm2; 789 790 BUG_ON(!(forbidden_pages_map && free_pages_map)); 791 792 bm1 = forbidden_pages_map; 793 bm2 = free_pages_map; 794 forbidden_pages_map = NULL; 795 free_pages_map = NULL; 796 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 797 kfree(bm1); 798 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 799 kfree(bm2); 800 801 pr_debug("PM: Basic memory bitmaps freed\n"); 802 } 803 804 /** 805 * snapshot_additional_pages - estimate the number of additional pages 806 * be needed for setting up the suspend image data structures for given 807 * zone (usually the returned value is greater than the exact number) 808 */ 809 810 unsigned int snapshot_additional_pages(struct zone *zone) 811 { 812 unsigned int res; 813 814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 815 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 816 return 2 * res; 817 } 818 819 #ifdef CONFIG_HIGHMEM 820 /** 821 * count_free_highmem_pages - compute the total number of free highmem 822 * pages, system-wide. 823 */ 824 825 static unsigned int count_free_highmem_pages(void) 826 { 827 struct zone *zone; 828 unsigned int cnt = 0; 829 830 for_each_populated_zone(zone) 831 if (is_highmem(zone)) 832 cnt += zone_page_state(zone, NR_FREE_PAGES); 833 834 return cnt; 835 } 836 837 /** 838 * saveable_highmem_page - Determine whether a highmem page should be 839 * included in the suspend image. 840 * 841 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 842 * and it isn't a part of a free chunk of pages. 843 */ 844 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 845 { 846 struct page *page; 847 848 if (!pfn_valid(pfn)) 849 return NULL; 850 851 page = pfn_to_page(pfn); 852 if (page_zone(page) != zone) 853 return NULL; 854 855 BUG_ON(!PageHighMem(page)); 856 857 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 858 PageReserved(page)) 859 return NULL; 860 861 if (page_is_guard(page)) 862 return NULL; 863 864 return page; 865 } 866 867 /** 868 * count_highmem_pages - compute the total number of saveable highmem 869 * pages. 870 */ 871 872 static unsigned int count_highmem_pages(void) 873 { 874 struct zone *zone; 875 unsigned int n = 0; 876 877 for_each_populated_zone(zone) { 878 unsigned long pfn, max_zone_pfn; 879 880 if (!is_highmem(zone)) 881 continue; 882 883 mark_free_pages(zone); 884 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 885 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 886 if (saveable_highmem_page(zone, pfn)) 887 n++; 888 } 889 return n; 890 } 891 #else 892 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 893 { 894 return NULL; 895 } 896 #endif /* CONFIG_HIGHMEM */ 897 898 /** 899 * saveable_page - Determine whether a non-highmem page should be included 900 * in the suspend image. 901 * 902 * We should save the page if it isn't Nosave, and is not in the range 903 * of pages statically defined as 'unsaveable', and it isn't a part of 904 * a free chunk of pages. 905 */ 906 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 907 { 908 struct page *page; 909 910 if (!pfn_valid(pfn)) 911 return NULL; 912 913 page = pfn_to_page(pfn); 914 if (page_zone(page) != zone) 915 return NULL; 916 917 BUG_ON(PageHighMem(page)); 918 919 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 920 return NULL; 921 922 if (PageReserved(page) 923 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 924 return NULL; 925 926 if (page_is_guard(page)) 927 return NULL; 928 929 return page; 930 } 931 932 /** 933 * count_data_pages - compute the total number of saveable non-highmem 934 * pages. 935 */ 936 937 static unsigned int count_data_pages(void) 938 { 939 struct zone *zone; 940 unsigned long pfn, max_zone_pfn; 941 unsigned int n = 0; 942 943 for_each_populated_zone(zone) { 944 if (is_highmem(zone)) 945 continue; 946 947 mark_free_pages(zone); 948 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 949 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 950 if (saveable_page(zone, pfn)) 951 n++; 952 } 953 return n; 954 } 955 956 /* This is needed, because copy_page and memcpy are not usable for copying 957 * task structs. 958 */ 959 static inline void do_copy_page(long *dst, long *src) 960 { 961 int n; 962 963 for (n = PAGE_SIZE / sizeof(long); n; n--) 964 *dst++ = *src++; 965 } 966 967 968 /** 969 * safe_copy_page - check if the page we are going to copy is marked as 970 * present in the kernel page tables (this always is the case if 971 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 972 * kernel_page_present() always returns 'true'). 973 */ 974 static void safe_copy_page(void *dst, struct page *s_page) 975 { 976 if (kernel_page_present(s_page)) { 977 do_copy_page(dst, page_address(s_page)); 978 } else { 979 kernel_map_pages(s_page, 1, 1); 980 do_copy_page(dst, page_address(s_page)); 981 kernel_map_pages(s_page, 1, 0); 982 } 983 } 984 985 986 #ifdef CONFIG_HIGHMEM 987 static inline struct page * 988 page_is_saveable(struct zone *zone, unsigned long pfn) 989 { 990 return is_highmem(zone) ? 991 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 992 } 993 994 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 995 { 996 struct page *s_page, *d_page; 997 void *src, *dst; 998 999 s_page = pfn_to_page(src_pfn); 1000 d_page = pfn_to_page(dst_pfn); 1001 if (PageHighMem(s_page)) { 1002 src = kmap_atomic(s_page, KM_USER0); 1003 dst = kmap_atomic(d_page, KM_USER1); 1004 do_copy_page(dst, src); 1005 kunmap_atomic(dst, KM_USER1); 1006 kunmap_atomic(src, KM_USER0); 1007 } else { 1008 if (PageHighMem(d_page)) { 1009 /* Page pointed to by src may contain some kernel 1010 * data modified by kmap_atomic() 1011 */ 1012 safe_copy_page(buffer, s_page); 1013 dst = kmap_atomic(d_page, KM_USER0); 1014 copy_page(dst, buffer); 1015 kunmap_atomic(dst, KM_USER0); 1016 } else { 1017 safe_copy_page(page_address(d_page), s_page); 1018 } 1019 } 1020 } 1021 #else 1022 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1023 1024 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1025 { 1026 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1027 pfn_to_page(src_pfn)); 1028 } 1029 #endif /* CONFIG_HIGHMEM */ 1030 1031 static void 1032 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1033 { 1034 struct zone *zone; 1035 unsigned long pfn; 1036 1037 for_each_populated_zone(zone) { 1038 unsigned long max_zone_pfn; 1039 1040 mark_free_pages(zone); 1041 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1042 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1043 if (page_is_saveable(zone, pfn)) 1044 memory_bm_set_bit(orig_bm, pfn); 1045 } 1046 memory_bm_position_reset(orig_bm); 1047 memory_bm_position_reset(copy_bm); 1048 for(;;) { 1049 pfn = memory_bm_next_pfn(orig_bm); 1050 if (unlikely(pfn == BM_END_OF_MAP)) 1051 break; 1052 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1053 } 1054 } 1055 1056 /* Total number of image pages */ 1057 static unsigned int nr_copy_pages; 1058 /* Number of pages needed for saving the original pfns of the image pages */ 1059 static unsigned int nr_meta_pages; 1060 /* 1061 * Numbers of normal and highmem page frames allocated for hibernation image 1062 * before suspending devices. 1063 */ 1064 unsigned int alloc_normal, alloc_highmem; 1065 /* 1066 * Memory bitmap used for marking saveable pages (during hibernation) or 1067 * hibernation image pages (during restore) 1068 */ 1069 static struct memory_bitmap orig_bm; 1070 /* 1071 * Memory bitmap used during hibernation for marking allocated page frames that 1072 * will contain copies of saveable pages. During restore it is initially used 1073 * for marking hibernation image pages, but then the set bits from it are 1074 * duplicated in @orig_bm and it is released. On highmem systems it is next 1075 * used for marking "safe" highmem pages, but it has to be reinitialized for 1076 * this purpose. 1077 */ 1078 static struct memory_bitmap copy_bm; 1079 1080 /** 1081 * swsusp_free - free pages allocated for the suspend. 1082 * 1083 * Suspend pages are alocated before the atomic copy is made, so we 1084 * need to release them after the resume. 1085 */ 1086 1087 void swsusp_free(void) 1088 { 1089 struct zone *zone; 1090 unsigned long pfn, max_zone_pfn; 1091 1092 for_each_populated_zone(zone) { 1093 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1094 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1095 if (pfn_valid(pfn)) { 1096 struct page *page = pfn_to_page(pfn); 1097 1098 if (swsusp_page_is_forbidden(page) && 1099 swsusp_page_is_free(page)) { 1100 swsusp_unset_page_forbidden(page); 1101 swsusp_unset_page_free(page); 1102 __free_page(page); 1103 } 1104 } 1105 } 1106 nr_copy_pages = 0; 1107 nr_meta_pages = 0; 1108 restore_pblist = NULL; 1109 buffer = NULL; 1110 alloc_normal = 0; 1111 alloc_highmem = 0; 1112 } 1113 1114 /* Helper functions used for the shrinking of memory. */ 1115 1116 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1117 1118 /** 1119 * preallocate_image_pages - Allocate a number of pages for hibernation image 1120 * @nr_pages: Number of page frames to allocate. 1121 * @mask: GFP flags to use for the allocation. 1122 * 1123 * Return value: Number of page frames actually allocated 1124 */ 1125 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1126 { 1127 unsigned long nr_alloc = 0; 1128 1129 while (nr_pages > 0) { 1130 struct page *page; 1131 1132 page = alloc_image_page(mask); 1133 if (!page) 1134 break; 1135 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1136 if (PageHighMem(page)) 1137 alloc_highmem++; 1138 else 1139 alloc_normal++; 1140 nr_pages--; 1141 nr_alloc++; 1142 } 1143 1144 return nr_alloc; 1145 } 1146 1147 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1148 unsigned long avail_normal) 1149 { 1150 unsigned long alloc; 1151 1152 if (avail_normal <= alloc_normal) 1153 return 0; 1154 1155 alloc = avail_normal - alloc_normal; 1156 if (nr_pages < alloc) 1157 alloc = nr_pages; 1158 1159 return preallocate_image_pages(alloc, GFP_IMAGE); 1160 } 1161 1162 #ifdef CONFIG_HIGHMEM 1163 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1164 { 1165 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1166 } 1167 1168 /** 1169 * __fraction - Compute (an approximation of) x * (multiplier / base) 1170 */ 1171 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1172 { 1173 x *= multiplier; 1174 do_div(x, base); 1175 return (unsigned long)x; 1176 } 1177 1178 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1179 unsigned long highmem, 1180 unsigned long total) 1181 { 1182 unsigned long alloc = __fraction(nr_pages, highmem, total); 1183 1184 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1185 } 1186 #else /* CONFIG_HIGHMEM */ 1187 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1188 { 1189 return 0; 1190 } 1191 1192 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1193 unsigned long highmem, 1194 unsigned long total) 1195 { 1196 return 0; 1197 } 1198 #endif /* CONFIG_HIGHMEM */ 1199 1200 /** 1201 * free_unnecessary_pages - Release preallocated pages not needed for the image 1202 */ 1203 static void free_unnecessary_pages(void) 1204 { 1205 unsigned long save, to_free_normal, to_free_highmem; 1206 1207 save = count_data_pages(); 1208 if (alloc_normal >= save) { 1209 to_free_normal = alloc_normal - save; 1210 save = 0; 1211 } else { 1212 to_free_normal = 0; 1213 save -= alloc_normal; 1214 } 1215 save += count_highmem_pages(); 1216 if (alloc_highmem >= save) { 1217 to_free_highmem = alloc_highmem - save; 1218 } else { 1219 to_free_highmem = 0; 1220 save -= alloc_highmem; 1221 if (to_free_normal > save) 1222 to_free_normal -= save; 1223 else 1224 to_free_normal = 0; 1225 } 1226 1227 memory_bm_position_reset(©_bm); 1228 1229 while (to_free_normal > 0 || to_free_highmem > 0) { 1230 unsigned long pfn = memory_bm_next_pfn(©_bm); 1231 struct page *page = pfn_to_page(pfn); 1232 1233 if (PageHighMem(page)) { 1234 if (!to_free_highmem) 1235 continue; 1236 to_free_highmem--; 1237 alloc_highmem--; 1238 } else { 1239 if (!to_free_normal) 1240 continue; 1241 to_free_normal--; 1242 alloc_normal--; 1243 } 1244 memory_bm_clear_bit(©_bm, pfn); 1245 swsusp_unset_page_forbidden(page); 1246 swsusp_unset_page_free(page); 1247 __free_page(page); 1248 } 1249 } 1250 1251 /** 1252 * minimum_image_size - Estimate the minimum acceptable size of an image 1253 * @saveable: Number of saveable pages in the system. 1254 * 1255 * We want to avoid attempting to free too much memory too hard, so estimate the 1256 * minimum acceptable size of a hibernation image to use as the lower limit for 1257 * preallocating memory. 1258 * 1259 * We assume that the minimum image size should be proportional to 1260 * 1261 * [number of saveable pages] - [number of pages that can be freed in theory] 1262 * 1263 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1264 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1265 * minus mapped file pages. 1266 */ 1267 static unsigned long minimum_image_size(unsigned long saveable) 1268 { 1269 unsigned long size; 1270 1271 size = global_page_state(NR_SLAB_RECLAIMABLE) 1272 + global_page_state(NR_ACTIVE_ANON) 1273 + global_page_state(NR_INACTIVE_ANON) 1274 + global_page_state(NR_ACTIVE_FILE) 1275 + global_page_state(NR_INACTIVE_FILE) 1276 - global_page_state(NR_FILE_MAPPED); 1277 1278 return saveable <= size ? 0 : saveable - size; 1279 } 1280 1281 /** 1282 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1283 * 1284 * To create a hibernation image it is necessary to make a copy of every page 1285 * frame in use. We also need a number of page frames to be free during 1286 * hibernation for allocations made while saving the image and for device 1287 * drivers, in case they need to allocate memory from their hibernation 1288 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1289 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1290 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1291 * total number of available page frames and allocate at least 1292 * 1293 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1294 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1295 * 1296 * of them, which corresponds to the maximum size of a hibernation image. 1297 * 1298 * If image_size is set below the number following from the above formula, 1299 * the preallocation of memory is continued until the total number of saveable 1300 * pages in the system is below the requested image size or the minimum 1301 * acceptable image size returned by minimum_image_size(), whichever is greater. 1302 */ 1303 int hibernate_preallocate_memory(void) 1304 { 1305 struct zone *zone; 1306 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1307 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1308 struct timeval start, stop; 1309 int error; 1310 1311 printk(KERN_INFO "PM: Preallocating image memory... "); 1312 do_gettimeofday(&start); 1313 1314 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1315 if (error) 1316 goto err_out; 1317 1318 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1319 if (error) 1320 goto err_out; 1321 1322 alloc_normal = 0; 1323 alloc_highmem = 0; 1324 1325 /* Count the number of saveable data pages. */ 1326 save_highmem = count_highmem_pages(); 1327 saveable = count_data_pages(); 1328 1329 /* 1330 * Compute the total number of page frames we can use (count) and the 1331 * number of pages needed for image metadata (size). 1332 */ 1333 count = saveable; 1334 saveable += save_highmem; 1335 highmem = save_highmem; 1336 size = 0; 1337 for_each_populated_zone(zone) { 1338 size += snapshot_additional_pages(zone); 1339 if (is_highmem(zone)) 1340 highmem += zone_page_state(zone, NR_FREE_PAGES); 1341 else 1342 count += zone_page_state(zone, NR_FREE_PAGES); 1343 } 1344 avail_normal = count; 1345 count += highmem; 1346 count -= totalreserve_pages; 1347 1348 /* Add number of pages required for page keys (s390 only). */ 1349 size += page_key_additional_pages(saveable); 1350 1351 /* Compute the maximum number of saveable pages to leave in memory. */ 1352 max_size = (count - (size + PAGES_FOR_IO)) / 2 1353 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1354 /* Compute the desired number of image pages specified by image_size. */ 1355 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1356 if (size > max_size) 1357 size = max_size; 1358 /* 1359 * If the desired number of image pages is at least as large as the 1360 * current number of saveable pages in memory, allocate page frames for 1361 * the image and we're done. 1362 */ 1363 if (size >= saveable) { 1364 pages = preallocate_image_highmem(save_highmem); 1365 pages += preallocate_image_memory(saveable - pages, avail_normal); 1366 goto out; 1367 } 1368 1369 /* Estimate the minimum size of the image. */ 1370 pages = minimum_image_size(saveable); 1371 /* 1372 * To avoid excessive pressure on the normal zone, leave room in it to 1373 * accommodate an image of the minimum size (unless it's already too 1374 * small, in which case don't preallocate pages from it at all). 1375 */ 1376 if (avail_normal > pages) 1377 avail_normal -= pages; 1378 else 1379 avail_normal = 0; 1380 if (size < pages) 1381 size = min_t(unsigned long, pages, max_size); 1382 1383 /* 1384 * Let the memory management subsystem know that we're going to need a 1385 * large number of page frames to allocate and make it free some memory. 1386 * NOTE: If this is not done, performance will be hurt badly in some 1387 * test cases. 1388 */ 1389 shrink_all_memory(saveable - size); 1390 1391 /* 1392 * The number of saveable pages in memory was too high, so apply some 1393 * pressure to decrease it. First, make room for the largest possible 1394 * image and fail if that doesn't work. Next, try to decrease the size 1395 * of the image as much as indicated by 'size' using allocations from 1396 * highmem and non-highmem zones separately. 1397 */ 1398 pages_highmem = preallocate_image_highmem(highmem / 2); 1399 alloc = (count - max_size) - pages_highmem; 1400 pages = preallocate_image_memory(alloc, avail_normal); 1401 if (pages < alloc) { 1402 /* We have exhausted non-highmem pages, try highmem. */ 1403 alloc -= pages; 1404 pages += pages_highmem; 1405 pages_highmem = preallocate_image_highmem(alloc); 1406 if (pages_highmem < alloc) 1407 goto err_out; 1408 pages += pages_highmem; 1409 /* 1410 * size is the desired number of saveable pages to leave in 1411 * memory, so try to preallocate (all memory - size) pages. 1412 */ 1413 alloc = (count - pages) - size; 1414 pages += preallocate_image_highmem(alloc); 1415 } else { 1416 /* 1417 * There are approximately max_size saveable pages at this point 1418 * and we want to reduce this number down to size. 1419 */ 1420 alloc = max_size - size; 1421 size = preallocate_highmem_fraction(alloc, highmem, count); 1422 pages_highmem += size; 1423 alloc -= size; 1424 size = preallocate_image_memory(alloc, avail_normal); 1425 pages_highmem += preallocate_image_highmem(alloc - size); 1426 pages += pages_highmem + size; 1427 } 1428 1429 /* 1430 * We only need as many page frames for the image as there are saveable 1431 * pages in memory, but we have allocated more. Release the excessive 1432 * ones now. 1433 */ 1434 free_unnecessary_pages(); 1435 1436 out: 1437 do_gettimeofday(&stop); 1438 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1439 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1440 1441 return 0; 1442 1443 err_out: 1444 printk(KERN_CONT "\n"); 1445 swsusp_free(); 1446 return -ENOMEM; 1447 } 1448 1449 #ifdef CONFIG_HIGHMEM 1450 /** 1451 * count_pages_for_highmem - compute the number of non-highmem pages 1452 * that will be necessary for creating copies of highmem pages. 1453 */ 1454 1455 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1456 { 1457 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1458 1459 if (free_highmem >= nr_highmem) 1460 nr_highmem = 0; 1461 else 1462 nr_highmem -= free_highmem; 1463 1464 return nr_highmem; 1465 } 1466 #else 1467 static unsigned int 1468 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1469 #endif /* CONFIG_HIGHMEM */ 1470 1471 /** 1472 * enough_free_mem - Make sure we have enough free memory for the 1473 * snapshot image. 1474 */ 1475 1476 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1477 { 1478 struct zone *zone; 1479 unsigned int free = alloc_normal; 1480 1481 for_each_populated_zone(zone) 1482 if (!is_highmem(zone)) 1483 free += zone_page_state(zone, NR_FREE_PAGES); 1484 1485 nr_pages += count_pages_for_highmem(nr_highmem); 1486 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1487 nr_pages, PAGES_FOR_IO, free); 1488 1489 return free > nr_pages + PAGES_FOR_IO; 1490 } 1491 1492 #ifdef CONFIG_HIGHMEM 1493 /** 1494 * get_highmem_buffer - if there are some highmem pages in the suspend 1495 * image, we may need the buffer to copy them and/or load their data. 1496 */ 1497 1498 static inline int get_highmem_buffer(int safe_needed) 1499 { 1500 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1501 return buffer ? 0 : -ENOMEM; 1502 } 1503 1504 /** 1505 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1506 * Try to allocate as many pages as needed, but if the number of free 1507 * highmem pages is lesser than that, allocate them all. 1508 */ 1509 1510 static inline unsigned int 1511 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1512 { 1513 unsigned int to_alloc = count_free_highmem_pages(); 1514 1515 if (to_alloc > nr_highmem) 1516 to_alloc = nr_highmem; 1517 1518 nr_highmem -= to_alloc; 1519 while (to_alloc-- > 0) { 1520 struct page *page; 1521 1522 page = alloc_image_page(__GFP_HIGHMEM); 1523 memory_bm_set_bit(bm, page_to_pfn(page)); 1524 } 1525 return nr_highmem; 1526 } 1527 #else 1528 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1529 1530 static inline unsigned int 1531 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1532 #endif /* CONFIG_HIGHMEM */ 1533 1534 /** 1535 * swsusp_alloc - allocate memory for the suspend image 1536 * 1537 * We first try to allocate as many highmem pages as there are 1538 * saveable highmem pages in the system. If that fails, we allocate 1539 * non-highmem pages for the copies of the remaining highmem ones. 1540 * 1541 * In this approach it is likely that the copies of highmem pages will 1542 * also be located in the high memory, because of the way in which 1543 * copy_data_pages() works. 1544 */ 1545 1546 static int 1547 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1548 unsigned int nr_pages, unsigned int nr_highmem) 1549 { 1550 if (nr_highmem > 0) { 1551 if (get_highmem_buffer(PG_ANY)) 1552 goto err_out; 1553 if (nr_highmem > alloc_highmem) { 1554 nr_highmem -= alloc_highmem; 1555 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1556 } 1557 } 1558 if (nr_pages > alloc_normal) { 1559 nr_pages -= alloc_normal; 1560 while (nr_pages-- > 0) { 1561 struct page *page; 1562 1563 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1564 if (!page) 1565 goto err_out; 1566 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1567 } 1568 } 1569 1570 return 0; 1571 1572 err_out: 1573 swsusp_free(); 1574 return -ENOMEM; 1575 } 1576 1577 asmlinkage int swsusp_save(void) 1578 { 1579 unsigned int nr_pages, nr_highmem; 1580 1581 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1582 1583 drain_local_pages(NULL); 1584 nr_pages = count_data_pages(); 1585 nr_highmem = count_highmem_pages(); 1586 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1587 1588 if (!enough_free_mem(nr_pages, nr_highmem)) { 1589 printk(KERN_ERR "PM: Not enough free memory\n"); 1590 return -ENOMEM; 1591 } 1592 1593 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1594 printk(KERN_ERR "PM: Memory allocation failed\n"); 1595 return -ENOMEM; 1596 } 1597 1598 /* During allocating of suspend pagedir, new cold pages may appear. 1599 * Kill them. 1600 */ 1601 drain_local_pages(NULL); 1602 copy_data_pages(©_bm, &orig_bm); 1603 1604 /* 1605 * End of critical section. From now on, we can write to memory, 1606 * but we should not touch disk. This specially means we must _not_ 1607 * touch swap space! Except we must write out our image of course. 1608 */ 1609 1610 nr_pages += nr_highmem; 1611 nr_copy_pages = nr_pages; 1612 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1613 1614 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1615 nr_pages); 1616 1617 return 0; 1618 } 1619 1620 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1621 static int init_header_complete(struct swsusp_info *info) 1622 { 1623 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1624 info->version_code = LINUX_VERSION_CODE; 1625 return 0; 1626 } 1627 1628 static char *check_image_kernel(struct swsusp_info *info) 1629 { 1630 if (info->version_code != LINUX_VERSION_CODE) 1631 return "kernel version"; 1632 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1633 return "system type"; 1634 if (strcmp(info->uts.release,init_utsname()->release)) 1635 return "kernel release"; 1636 if (strcmp(info->uts.version,init_utsname()->version)) 1637 return "version"; 1638 if (strcmp(info->uts.machine,init_utsname()->machine)) 1639 return "machine"; 1640 return NULL; 1641 } 1642 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1643 1644 unsigned long snapshot_get_image_size(void) 1645 { 1646 return nr_copy_pages + nr_meta_pages + 1; 1647 } 1648 1649 static int init_header(struct swsusp_info *info) 1650 { 1651 memset(info, 0, sizeof(struct swsusp_info)); 1652 info->num_physpages = num_physpages; 1653 info->image_pages = nr_copy_pages; 1654 info->pages = snapshot_get_image_size(); 1655 info->size = info->pages; 1656 info->size <<= PAGE_SHIFT; 1657 return init_header_complete(info); 1658 } 1659 1660 /** 1661 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1662 * are stored in the array @buf[] (1 page at a time) 1663 */ 1664 1665 static inline void 1666 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1667 { 1668 int j; 1669 1670 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1671 buf[j] = memory_bm_next_pfn(bm); 1672 if (unlikely(buf[j] == BM_END_OF_MAP)) 1673 break; 1674 /* Save page key for data page (s390 only). */ 1675 page_key_read(buf + j); 1676 } 1677 } 1678 1679 /** 1680 * snapshot_read_next - used for reading the system memory snapshot. 1681 * 1682 * On the first call to it @handle should point to a zeroed 1683 * snapshot_handle structure. The structure gets updated and a pointer 1684 * to it should be passed to this function every next time. 1685 * 1686 * On success the function returns a positive number. Then, the caller 1687 * is allowed to read up to the returned number of bytes from the memory 1688 * location computed by the data_of() macro. 1689 * 1690 * The function returns 0 to indicate the end of data stream condition, 1691 * and a negative number is returned on error. In such cases the 1692 * structure pointed to by @handle is not updated and should not be used 1693 * any more. 1694 */ 1695 1696 int snapshot_read_next(struct snapshot_handle *handle) 1697 { 1698 if (handle->cur > nr_meta_pages + nr_copy_pages) 1699 return 0; 1700 1701 if (!buffer) { 1702 /* This makes the buffer be freed by swsusp_free() */ 1703 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1704 if (!buffer) 1705 return -ENOMEM; 1706 } 1707 if (!handle->cur) { 1708 int error; 1709 1710 error = init_header((struct swsusp_info *)buffer); 1711 if (error) 1712 return error; 1713 handle->buffer = buffer; 1714 memory_bm_position_reset(&orig_bm); 1715 memory_bm_position_reset(©_bm); 1716 } else if (handle->cur <= nr_meta_pages) { 1717 clear_page(buffer); 1718 pack_pfns(buffer, &orig_bm); 1719 } else { 1720 struct page *page; 1721 1722 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1723 if (PageHighMem(page)) { 1724 /* Highmem pages are copied to the buffer, 1725 * because we can't return with a kmapped 1726 * highmem page (we may not be called again). 1727 */ 1728 void *kaddr; 1729 1730 kaddr = kmap_atomic(page, KM_USER0); 1731 copy_page(buffer, kaddr); 1732 kunmap_atomic(kaddr, KM_USER0); 1733 handle->buffer = buffer; 1734 } else { 1735 handle->buffer = page_address(page); 1736 } 1737 } 1738 handle->cur++; 1739 return PAGE_SIZE; 1740 } 1741 1742 /** 1743 * mark_unsafe_pages - mark the pages that cannot be used for storing 1744 * the image during resume, because they conflict with the pages that 1745 * had been used before suspend 1746 */ 1747 1748 static int mark_unsafe_pages(struct memory_bitmap *bm) 1749 { 1750 struct zone *zone; 1751 unsigned long pfn, max_zone_pfn; 1752 1753 /* Clear page flags */ 1754 for_each_populated_zone(zone) { 1755 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1756 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1757 if (pfn_valid(pfn)) 1758 swsusp_unset_page_free(pfn_to_page(pfn)); 1759 } 1760 1761 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1762 memory_bm_position_reset(bm); 1763 do { 1764 pfn = memory_bm_next_pfn(bm); 1765 if (likely(pfn != BM_END_OF_MAP)) { 1766 if (likely(pfn_valid(pfn))) 1767 swsusp_set_page_free(pfn_to_page(pfn)); 1768 else 1769 return -EFAULT; 1770 } 1771 } while (pfn != BM_END_OF_MAP); 1772 1773 allocated_unsafe_pages = 0; 1774 1775 return 0; 1776 } 1777 1778 static void 1779 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1780 { 1781 unsigned long pfn; 1782 1783 memory_bm_position_reset(src); 1784 pfn = memory_bm_next_pfn(src); 1785 while (pfn != BM_END_OF_MAP) { 1786 memory_bm_set_bit(dst, pfn); 1787 pfn = memory_bm_next_pfn(src); 1788 } 1789 } 1790 1791 static int check_header(struct swsusp_info *info) 1792 { 1793 char *reason; 1794 1795 reason = check_image_kernel(info); 1796 if (!reason && info->num_physpages != num_physpages) 1797 reason = "memory size"; 1798 if (reason) { 1799 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1800 return -EPERM; 1801 } 1802 return 0; 1803 } 1804 1805 /** 1806 * load header - check the image header and copy data from it 1807 */ 1808 1809 static int 1810 load_header(struct swsusp_info *info) 1811 { 1812 int error; 1813 1814 restore_pblist = NULL; 1815 error = check_header(info); 1816 if (!error) { 1817 nr_copy_pages = info->image_pages; 1818 nr_meta_pages = info->pages - info->image_pages - 1; 1819 } 1820 return error; 1821 } 1822 1823 /** 1824 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1825 * the corresponding bit in the memory bitmap @bm 1826 */ 1827 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1828 { 1829 int j; 1830 1831 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1832 if (unlikely(buf[j] == BM_END_OF_MAP)) 1833 break; 1834 1835 /* Extract and buffer page key for data page (s390 only). */ 1836 page_key_memorize(buf + j); 1837 1838 if (memory_bm_pfn_present(bm, buf[j])) 1839 memory_bm_set_bit(bm, buf[j]); 1840 else 1841 return -EFAULT; 1842 } 1843 1844 return 0; 1845 } 1846 1847 /* List of "safe" pages that may be used to store data loaded from the suspend 1848 * image 1849 */ 1850 static struct linked_page *safe_pages_list; 1851 1852 #ifdef CONFIG_HIGHMEM 1853 /* struct highmem_pbe is used for creating the list of highmem pages that 1854 * should be restored atomically during the resume from disk, because the page 1855 * frames they have occupied before the suspend are in use. 1856 */ 1857 struct highmem_pbe { 1858 struct page *copy_page; /* data is here now */ 1859 struct page *orig_page; /* data was here before the suspend */ 1860 struct highmem_pbe *next; 1861 }; 1862 1863 /* List of highmem PBEs needed for restoring the highmem pages that were 1864 * allocated before the suspend and included in the suspend image, but have 1865 * also been allocated by the "resume" kernel, so their contents cannot be 1866 * written directly to their "original" page frames. 1867 */ 1868 static struct highmem_pbe *highmem_pblist; 1869 1870 /** 1871 * count_highmem_image_pages - compute the number of highmem pages in the 1872 * suspend image. The bits in the memory bitmap @bm that correspond to the 1873 * image pages are assumed to be set. 1874 */ 1875 1876 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1877 { 1878 unsigned long pfn; 1879 unsigned int cnt = 0; 1880 1881 memory_bm_position_reset(bm); 1882 pfn = memory_bm_next_pfn(bm); 1883 while (pfn != BM_END_OF_MAP) { 1884 if (PageHighMem(pfn_to_page(pfn))) 1885 cnt++; 1886 1887 pfn = memory_bm_next_pfn(bm); 1888 } 1889 return cnt; 1890 } 1891 1892 /** 1893 * prepare_highmem_image - try to allocate as many highmem pages as 1894 * there are highmem image pages (@nr_highmem_p points to the variable 1895 * containing the number of highmem image pages). The pages that are 1896 * "safe" (ie. will not be overwritten when the suspend image is 1897 * restored) have the corresponding bits set in @bm (it must be 1898 * unitialized). 1899 * 1900 * NOTE: This function should not be called if there are no highmem 1901 * image pages. 1902 */ 1903 1904 static unsigned int safe_highmem_pages; 1905 1906 static struct memory_bitmap *safe_highmem_bm; 1907 1908 static int 1909 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1910 { 1911 unsigned int to_alloc; 1912 1913 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1914 return -ENOMEM; 1915 1916 if (get_highmem_buffer(PG_SAFE)) 1917 return -ENOMEM; 1918 1919 to_alloc = count_free_highmem_pages(); 1920 if (to_alloc > *nr_highmem_p) 1921 to_alloc = *nr_highmem_p; 1922 else 1923 *nr_highmem_p = to_alloc; 1924 1925 safe_highmem_pages = 0; 1926 while (to_alloc-- > 0) { 1927 struct page *page; 1928 1929 page = alloc_page(__GFP_HIGHMEM); 1930 if (!swsusp_page_is_free(page)) { 1931 /* The page is "safe", set its bit the bitmap */ 1932 memory_bm_set_bit(bm, page_to_pfn(page)); 1933 safe_highmem_pages++; 1934 } 1935 /* Mark the page as allocated */ 1936 swsusp_set_page_forbidden(page); 1937 swsusp_set_page_free(page); 1938 } 1939 memory_bm_position_reset(bm); 1940 safe_highmem_bm = bm; 1941 return 0; 1942 } 1943 1944 /** 1945 * get_highmem_page_buffer - for given highmem image page find the buffer 1946 * that suspend_write_next() should set for its caller to write to. 1947 * 1948 * If the page is to be saved to its "original" page frame or a copy of 1949 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1950 * the copy of the page is to be made in normal memory, so the address of 1951 * the copy is returned. 1952 * 1953 * If @buffer is returned, the caller of suspend_write_next() will write 1954 * the page's contents to @buffer, so they will have to be copied to the 1955 * right location on the next call to suspend_write_next() and it is done 1956 * with the help of copy_last_highmem_page(). For this purpose, if 1957 * @buffer is returned, @last_highmem page is set to the page to which 1958 * the data will have to be copied from @buffer. 1959 */ 1960 1961 static struct page *last_highmem_page; 1962 1963 static void * 1964 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1965 { 1966 struct highmem_pbe *pbe; 1967 void *kaddr; 1968 1969 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1970 /* We have allocated the "original" page frame and we can 1971 * use it directly to store the loaded page. 1972 */ 1973 last_highmem_page = page; 1974 return buffer; 1975 } 1976 /* The "original" page frame has not been allocated and we have to 1977 * use a "safe" page frame to store the loaded page. 1978 */ 1979 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1980 if (!pbe) { 1981 swsusp_free(); 1982 return ERR_PTR(-ENOMEM); 1983 } 1984 pbe->orig_page = page; 1985 if (safe_highmem_pages > 0) { 1986 struct page *tmp; 1987 1988 /* Copy of the page will be stored in high memory */ 1989 kaddr = buffer; 1990 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1991 safe_highmem_pages--; 1992 last_highmem_page = tmp; 1993 pbe->copy_page = tmp; 1994 } else { 1995 /* Copy of the page will be stored in normal memory */ 1996 kaddr = safe_pages_list; 1997 safe_pages_list = safe_pages_list->next; 1998 pbe->copy_page = virt_to_page(kaddr); 1999 } 2000 pbe->next = highmem_pblist; 2001 highmem_pblist = pbe; 2002 return kaddr; 2003 } 2004 2005 /** 2006 * copy_last_highmem_page - copy the contents of a highmem image from 2007 * @buffer, where the caller of snapshot_write_next() has place them, 2008 * to the right location represented by @last_highmem_page . 2009 */ 2010 2011 static void copy_last_highmem_page(void) 2012 { 2013 if (last_highmem_page) { 2014 void *dst; 2015 2016 dst = kmap_atomic(last_highmem_page, KM_USER0); 2017 copy_page(dst, buffer); 2018 kunmap_atomic(dst, KM_USER0); 2019 last_highmem_page = NULL; 2020 } 2021 } 2022 2023 static inline int last_highmem_page_copied(void) 2024 { 2025 return !last_highmem_page; 2026 } 2027 2028 static inline void free_highmem_data(void) 2029 { 2030 if (safe_highmem_bm) 2031 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2032 2033 if (buffer) 2034 free_image_page(buffer, PG_UNSAFE_CLEAR); 2035 } 2036 #else 2037 static inline int get_safe_write_buffer(void) { return 0; } 2038 2039 static unsigned int 2040 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2041 2042 static inline int 2043 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2044 { 2045 return 0; 2046 } 2047 2048 static inline void * 2049 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2050 { 2051 return ERR_PTR(-EINVAL); 2052 } 2053 2054 static inline void copy_last_highmem_page(void) {} 2055 static inline int last_highmem_page_copied(void) { return 1; } 2056 static inline void free_highmem_data(void) {} 2057 #endif /* CONFIG_HIGHMEM */ 2058 2059 /** 2060 * prepare_image - use the memory bitmap @bm to mark the pages that will 2061 * be overwritten in the process of restoring the system memory state 2062 * from the suspend image ("unsafe" pages) and allocate memory for the 2063 * image. 2064 * 2065 * The idea is to allocate a new memory bitmap first and then allocate 2066 * as many pages as needed for the image data, but not to assign these 2067 * pages to specific tasks initially. Instead, we just mark them as 2068 * allocated and create a lists of "safe" pages that will be used 2069 * later. On systems with high memory a list of "safe" highmem pages is 2070 * also created. 2071 */ 2072 2073 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2074 2075 static int 2076 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2077 { 2078 unsigned int nr_pages, nr_highmem; 2079 struct linked_page *sp_list, *lp; 2080 int error; 2081 2082 /* If there is no highmem, the buffer will not be necessary */ 2083 free_image_page(buffer, PG_UNSAFE_CLEAR); 2084 buffer = NULL; 2085 2086 nr_highmem = count_highmem_image_pages(bm); 2087 error = mark_unsafe_pages(bm); 2088 if (error) 2089 goto Free; 2090 2091 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2092 if (error) 2093 goto Free; 2094 2095 duplicate_memory_bitmap(new_bm, bm); 2096 memory_bm_free(bm, PG_UNSAFE_KEEP); 2097 if (nr_highmem > 0) { 2098 error = prepare_highmem_image(bm, &nr_highmem); 2099 if (error) 2100 goto Free; 2101 } 2102 /* Reserve some safe pages for potential later use. 2103 * 2104 * NOTE: This way we make sure there will be enough safe pages for the 2105 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2106 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2107 */ 2108 sp_list = NULL; 2109 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2110 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2111 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2112 while (nr_pages > 0) { 2113 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2114 if (!lp) { 2115 error = -ENOMEM; 2116 goto Free; 2117 } 2118 lp->next = sp_list; 2119 sp_list = lp; 2120 nr_pages--; 2121 } 2122 /* Preallocate memory for the image */ 2123 safe_pages_list = NULL; 2124 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2125 while (nr_pages > 0) { 2126 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2127 if (!lp) { 2128 error = -ENOMEM; 2129 goto Free; 2130 } 2131 if (!swsusp_page_is_free(virt_to_page(lp))) { 2132 /* The page is "safe", add it to the list */ 2133 lp->next = safe_pages_list; 2134 safe_pages_list = lp; 2135 } 2136 /* Mark the page as allocated */ 2137 swsusp_set_page_forbidden(virt_to_page(lp)); 2138 swsusp_set_page_free(virt_to_page(lp)); 2139 nr_pages--; 2140 } 2141 /* Free the reserved safe pages so that chain_alloc() can use them */ 2142 while (sp_list) { 2143 lp = sp_list->next; 2144 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2145 sp_list = lp; 2146 } 2147 return 0; 2148 2149 Free: 2150 swsusp_free(); 2151 return error; 2152 } 2153 2154 /** 2155 * get_buffer - compute the address that snapshot_write_next() should 2156 * set for its caller to write to. 2157 */ 2158 2159 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2160 { 2161 struct pbe *pbe; 2162 struct page *page; 2163 unsigned long pfn = memory_bm_next_pfn(bm); 2164 2165 if (pfn == BM_END_OF_MAP) 2166 return ERR_PTR(-EFAULT); 2167 2168 page = pfn_to_page(pfn); 2169 if (PageHighMem(page)) 2170 return get_highmem_page_buffer(page, ca); 2171 2172 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2173 /* We have allocated the "original" page frame and we can 2174 * use it directly to store the loaded page. 2175 */ 2176 return page_address(page); 2177 2178 /* The "original" page frame has not been allocated and we have to 2179 * use a "safe" page frame to store the loaded page. 2180 */ 2181 pbe = chain_alloc(ca, sizeof(struct pbe)); 2182 if (!pbe) { 2183 swsusp_free(); 2184 return ERR_PTR(-ENOMEM); 2185 } 2186 pbe->orig_address = page_address(page); 2187 pbe->address = safe_pages_list; 2188 safe_pages_list = safe_pages_list->next; 2189 pbe->next = restore_pblist; 2190 restore_pblist = pbe; 2191 return pbe->address; 2192 } 2193 2194 /** 2195 * snapshot_write_next - used for writing the system memory snapshot. 2196 * 2197 * On the first call to it @handle should point to a zeroed 2198 * snapshot_handle structure. The structure gets updated and a pointer 2199 * to it should be passed to this function every next time. 2200 * 2201 * On success the function returns a positive number. Then, the caller 2202 * is allowed to write up to the returned number of bytes to the memory 2203 * location computed by the data_of() macro. 2204 * 2205 * The function returns 0 to indicate the "end of file" condition, 2206 * and a negative number is returned on error. In such cases the 2207 * structure pointed to by @handle is not updated and should not be used 2208 * any more. 2209 */ 2210 2211 int snapshot_write_next(struct snapshot_handle *handle) 2212 { 2213 static struct chain_allocator ca; 2214 int error = 0; 2215 2216 /* Check if we have already loaded the entire image */ 2217 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2218 return 0; 2219 2220 handle->sync_read = 1; 2221 2222 if (!handle->cur) { 2223 if (!buffer) 2224 /* This makes the buffer be freed by swsusp_free() */ 2225 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2226 2227 if (!buffer) 2228 return -ENOMEM; 2229 2230 handle->buffer = buffer; 2231 } else if (handle->cur == 1) { 2232 error = load_header(buffer); 2233 if (error) 2234 return error; 2235 2236 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2237 if (error) 2238 return error; 2239 2240 /* Allocate buffer for page keys. */ 2241 error = page_key_alloc(nr_copy_pages); 2242 if (error) 2243 return error; 2244 2245 } else if (handle->cur <= nr_meta_pages + 1) { 2246 error = unpack_orig_pfns(buffer, ©_bm); 2247 if (error) 2248 return error; 2249 2250 if (handle->cur == nr_meta_pages + 1) { 2251 error = prepare_image(&orig_bm, ©_bm); 2252 if (error) 2253 return error; 2254 2255 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2256 memory_bm_position_reset(&orig_bm); 2257 restore_pblist = NULL; 2258 handle->buffer = get_buffer(&orig_bm, &ca); 2259 handle->sync_read = 0; 2260 if (IS_ERR(handle->buffer)) 2261 return PTR_ERR(handle->buffer); 2262 } 2263 } else { 2264 copy_last_highmem_page(); 2265 /* Restore page key for data page (s390 only). */ 2266 page_key_write(handle->buffer); 2267 handle->buffer = get_buffer(&orig_bm, &ca); 2268 if (IS_ERR(handle->buffer)) 2269 return PTR_ERR(handle->buffer); 2270 if (handle->buffer != buffer) 2271 handle->sync_read = 0; 2272 } 2273 handle->cur++; 2274 return PAGE_SIZE; 2275 } 2276 2277 /** 2278 * snapshot_write_finalize - must be called after the last call to 2279 * snapshot_write_next() in case the last page in the image happens 2280 * to be a highmem page and its contents should be stored in the 2281 * highmem. Additionally, it releases the memory that will not be 2282 * used any more. 2283 */ 2284 2285 void snapshot_write_finalize(struct snapshot_handle *handle) 2286 { 2287 copy_last_highmem_page(); 2288 /* Restore page key for data page (s390 only). */ 2289 page_key_write(handle->buffer); 2290 page_key_free(); 2291 /* Free only if we have loaded the image entirely */ 2292 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2293 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2294 free_highmem_data(); 2295 } 2296 } 2297 2298 int snapshot_image_loaded(struct snapshot_handle *handle) 2299 { 2300 return !(!nr_copy_pages || !last_highmem_page_copied() || 2301 handle->cur <= nr_meta_pages + nr_copy_pages); 2302 } 2303 2304 #ifdef CONFIG_HIGHMEM 2305 /* Assumes that @buf is ready and points to a "safe" page */ 2306 static inline void 2307 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2308 { 2309 void *kaddr1, *kaddr2; 2310 2311 kaddr1 = kmap_atomic(p1, KM_USER0); 2312 kaddr2 = kmap_atomic(p2, KM_USER1); 2313 copy_page(buf, kaddr1); 2314 copy_page(kaddr1, kaddr2); 2315 copy_page(kaddr2, buf); 2316 kunmap_atomic(kaddr2, KM_USER1); 2317 kunmap_atomic(kaddr1, KM_USER0); 2318 } 2319 2320 /** 2321 * restore_highmem - for each highmem page that was allocated before 2322 * the suspend and included in the suspend image, and also has been 2323 * allocated by the "resume" kernel swap its current (ie. "before 2324 * resume") contents with the previous (ie. "before suspend") one. 2325 * 2326 * If the resume eventually fails, we can call this function once 2327 * again and restore the "before resume" highmem state. 2328 */ 2329 2330 int restore_highmem(void) 2331 { 2332 struct highmem_pbe *pbe = highmem_pblist; 2333 void *buf; 2334 2335 if (!pbe) 2336 return 0; 2337 2338 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2339 if (!buf) 2340 return -ENOMEM; 2341 2342 while (pbe) { 2343 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2344 pbe = pbe->next; 2345 } 2346 free_image_page(buf, PG_UNSAFE_CLEAR); 2347 return 0; 2348 } 2349 #endif /* CONFIG_HIGHMEM */ 2350