1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 30 #include <asm/uaccess.h> 31 #include <asm/mmu_context.h> 32 #include <asm/pgtable.h> 33 #include <asm/tlbflush.h> 34 #include <asm/io.h> 35 36 #include "power.h" 37 38 static int swsusp_page_is_free(struct page *); 39 static void swsusp_set_page_forbidden(struct page *); 40 static void swsusp_unset_page_forbidden(struct page *); 41 42 /* List of PBEs needed for restoring the pages that were allocated before 43 * the suspend and included in the suspend image, but have also been 44 * allocated by the "resume" kernel, so their contents cannot be written 45 * directly to their "original" page frames. 46 */ 47 struct pbe *restore_pblist; 48 49 /* Pointer to an auxiliary buffer (1 page) */ 50 static void *buffer; 51 52 /** 53 * @safe_needed - on resume, for storing the PBE list and the image, 54 * we can only use memory pages that do not conflict with the pages 55 * used before suspend. The unsafe pages have PageNosaveFree set 56 * and we count them using unsafe_pages. 57 * 58 * Each allocated image page is marked as PageNosave and PageNosaveFree 59 * so that swsusp_free() can release it. 60 */ 61 62 #define PG_ANY 0 63 #define PG_SAFE 1 64 #define PG_UNSAFE_CLEAR 1 65 #define PG_UNSAFE_KEEP 0 66 67 static unsigned int allocated_unsafe_pages; 68 69 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 70 { 71 void *res; 72 73 res = (void *)get_zeroed_page(gfp_mask); 74 if (safe_needed) 75 while (res && swsusp_page_is_free(virt_to_page(res))) { 76 /* The page is unsafe, mark it for swsusp_free() */ 77 swsusp_set_page_forbidden(virt_to_page(res)); 78 allocated_unsafe_pages++; 79 res = (void *)get_zeroed_page(gfp_mask); 80 } 81 if (res) { 82 swsusp_set_page_forbidden(virt_to_page(res)); 83 swsusp_set_page_free(virt_to_page(res)); 84 } 85 return res; 86 } 87 88 unsigned long get_safe_page(gfp_t gfp_mask) 89 { 90 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 91 } 92 93 static struct page *alloc_image_page(gfp_t gfp_mask) 94 { 95 struct page *page; 96 97 page = alloc_page(gfp_mask); 98 if (page) { 99 swsusp_set_page_forbidden(page); 100 swsusp_set_page_free(page); 101 } 102 return page; 103 } 104 105 /** 106 * free_image_page - free page represented by @addr, allocated with 107 * get_image_page (page flags set by it must be cleared) 108 */ 109 110 static inline void free_image_page(void *addr, int clear_nosave_free) 111 { 112 struct page *page; 113 114 BUG_ON(!virt_addr_valid(addr)); 115 116 page = virt_to_page(addr); 117 118 swsusp_unset_page_forbidden(page); 119 if (clear_nosave_free) 120 swsusp_unset_page_free(page); 121 122 __free_page(page); 123 } 124 125 /* struct linked_page is used to build chains of pages */ 126 127 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 128 129 struct linked_page { 130 struct linked_page *next; 131 char data[LINKED_PAGE_DATA_SIZE]; 132 } __attribute__((packed)); 133 134 static inline void 135 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 136 { 137 while (list) { 138 struct linked_page *lp = list->next; 139 140 free_image_page(list, clear_page_nosave); 141 list = lp; 142 } 143 } 144 145 /** 146 * struct chain_allocator is used for allocating small objects out of 147 * a linked list of pages called 'the chain'. 148 * 149 * The chain grows each time when there is no room for a new object in 150 * the current page. The allocated objects cannot be freed individually. 151 * It is only possible to free them all at once, by freeing the entire 152 * chain. 153 * 154 * NOTE: The chain allocator may be inefficient if the allocated objects 155 * are not much smaller than PAGE_SIZE. 156 */ 157 158 struct chain_allocator { 159 struct linked_page *chain; /* the chain */ 160 unsigned int used_space; /* total size of objects allocated out 161 * of the current page 162 */ 163 gfp_t gfp_mask; /* mask for allocating pages */ 164 int safe_needed; /* if set, only "safe" pages are allocated */ 165 }; 166 167 static void 168 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 169 { 170 ca->chain = NULL; 171 ca->used_space = LINKED_PAGE_DATA_SIZE; 172 ca->gfp_mask = gfp_mask; 173 ca->safe_needed = safe_needed; 174 } 175 176 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 177 { 178 void *ret; 179 180 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 181 struct linked_page *lp; 182 183 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 184 if (!lp) 185 return NULL; 186 187 lp->next = ca->chain; 188 ca->chain = lp; 189 ca->used_space = 0; 190 } 191 ret = ca->chain->data + ca->used_space; 192 ca->used_space += size; 193 return ret; 194 } 195 196 /** 197 * Data types related to memory bitmaps. 198 * 199 * Memory bitmap is a structure consiting of many linked lists of 200 * objects. The main list's elements are of type struct zone_bitmap 201 * and each of them corresonds to one zone. For each zone bitmap 202 * object there is a list of objects of type struct bm_block that 203 * represent each blocks of bitmap in which information is stored. 204 * 205 * struct memory_bitmap contains a pointer to the main list of zone 206 * bitmap objects, a struct bm_position used for browsing the bitmap, 207 * and a pointer to the list of pages used for allocating all of the 208 * zone bitmap objects and bitmap block objects. 209 * 210 * NOTE: It has to be possible to lay out the bitmap in memory 211 * using only allocations of order 0. Additionally, the bitmap is 212 * designed to work with arbitrary number of zones (this is over the 213 * top for now, but let's avoid making unnecessary assumptions ;-). 214 * 215 * struct zone_bitmap contains a pointer to a list of bitmap block 216 * objects and a pointer to the bitmap block object that has been 217 * most recently used for setting bits. Additionally, it contains the 218 * pfns that correspond to the start and end of the represented zone. 219 * 220 * struct bm_block contains a pointer to the memory page in which 221 * information is stored (in the form of a block of bitmap) 222 * It also contains the pfns that correspond to the start and end of 223 * the represented memory area. 224 */ 225 226 #define BM_END_OF_MAP (~0UL) 227 228 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 229 230 struct bm_block { 231 struct list_head hook; /* hook into a list of bitmap blocks */ 232 unsigned long start_pfn; /* pfn represented by the first bit */ 233 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 234 unsigned long *data; /* bitmap representing pages */ 235 }; 236 237 static inline unsigned long bm_block_bits(struct bm_block *bb) 238 { 239 return bb->end_pfn - bb->start_pfn; 240 } 241 242 /* strcut bm_position is used for browsing memory bitmaps */ 243 244 struct bm_position { 245 struct bm_block *block; 246 int bit; 247 }; 248 249 struct memory_bitmap { 250 struct list_head blocks; /* list of bitmap blocks */ 251 struct linked_page *p_list; /* list of pages used to store zone 252 * bitmap objects and bitmap block 253 * objects 254 */ 255 struct bm_position cur; /* most recently used bit position */ 256 }; 257 258 /* Functions that operate on memory bitmaps */ 259 260 static void memory_bm_position_reset(struct memory_bitmap *bm) 261 { 262 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 263 bm->cur.bit = 0; 264 } 265 266 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 267 268 /** 269 * create_bm_block_list - create a list of block bitmap objects 270 * @nr_blocks - number of blocks to allocate 271 * @list - list to put the allocated blocks into 272 * @ca - chain allocator to be used for allocating memory 273 */ 274 static int create_bm_block_list(unsigned long pages, 275 struct list_head *list, 276 struct chain_allocator *ca) 277 { 278 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 279 280 while (nr_blocks-- > 0) { 281 struct bm_block *bb; 282 283 bb = chain_alloc(ca, sizeof(struct bm_block)); 284 if (!bb) 285 return -ENOMEM; 286 list_add(&bb->hook, list); 287 } 288 289 return 0; 290 } 291 292 struct mem_extent { 293 struct list_head hook; 294 unsigned long start; 295 unsigned long end; 296 }; 297 298 /** 299 * free_mem_extents - free a list of memory extents 300 * @list - list of extents to empty 301 */ 302 static void free_mem_extents(struct list_head *list) 303 { 304 struct mem_extent *ext, *aux; 305 306 list_for_each_entry_safe(ext, aux, list, hook) { 307 list_del(&ext->hook); 308 kfree(ext); 309 } 310 } 311 312 /** 313 * create_mem_extents - create a list of memory extents representing 314 * contiguous ranges of PFNs 315 * @list - list to put the extents into 316 * @gfp_mask - mask to use for memory allocations 317 */ 318 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 319 { 320 struct zone *zone; 321 322 INIT_LIST_HEAD(list); 323 324 for_each_zone(zone) { 325 unsigned long zone_start, zone_end; 326 struct mem_extent *ext, *cur, *aux; 327 328 if (!populated_zone(zone)) 329 continue; 330 331 zone_start = zone->zone_start_pfn; 332 zone_end = zone->zone_start_pfn + zone->spanned_pages; 333 334 list_for_each_entry(ext, list, hook) 335 if (zone_start <= ext->end) 336 break; 337 338 if (&ext->hook == list || zone_end < ext->start) { 339 /* New extent is necessary */ 340 struct mem_extent *new_ext; 341 342 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 343 if (!new_ext) { 344 free_mem_extents(list); 345 return -ENOMEM; 346 } 347 new_ext->start = zone_start; 348 new_ext->end = zone_end; 349 list_add_tail(&new_ext->hook, &ext->hook); 350 continue; 351 } 352 353 /* Merge this zone's range of PFNs with the existing one */ 354 if (zone_start < ext->start) 355 ext->start = zone_start; 356 if (zone_end > ext->end) 357 ext->end = zone_end; 358 359 /* More merging may be possible */ 360 cur = ext; 361 list_for_each_entry_safe_continue(cur, aux, list, hook) { 362 if (zone_end < cur->start) 363 break; 364 if (zone_end < cur->end) 365 ext->end = cur->end; 366 list_del(&cur->hook); 367 kfree(cur); 368 } 369 } 370 371 return 0; 372 } 373 374 /** 375 * memory_bm_create - allocate memory for a memory bitmap 376 */ 377 static int 378 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 379 { 380 struct chain_allocator ca; 381 struct list_head mem_extents; 382 struct mem_extent *ext; 383 int error; 384 385 chain_init(&ca, gfp_mask, safe_needed); 386 INIT_LIST_HEAD(&bm->blocks); 387 388 error = create_mem_extents(&mem_extents, gfp_mask); 389 if (error) 390 return error; 391 392 list_for_each_entry(ext, &mem_extents, hook) { 393 struct bm_block *bb; 394 unsigned long pfn = ext->start; 395 unsigned long pages = ext->end - ext->start; 396 397 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 398 399 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 400 if (error) 401 goto Error; 402 403 list_for_each_entry_continue(bb, &bm->blocks, hook) { 404 bb->data = get_image_page(gfp_mask, safe_needed); 405 if (!bb->data) { 406 error = -ENOMEM; 407 goto Error; 408 } 409 410 bb->start_pfn = pfn; 411 if (pages >= BM_BITS_PER_BLOCK) { 412 pfn += BM_BITS_PER_BLOCK; 413 pages -= BM_BITS_PER_BLOCK; 414 } else { 415 /* This is executed only once in the loop */ 416 pfn += pages; 417 } 418 bb->end_pfn = pfn; 419 } 420 } 421 422 bm->p_list = ca.chain; 423 memory_bm_position_reset(bm); 424 Exit: 425 free_mem_extents(&mem_extents); 426 return error; 427 428 Error: 429 bm->p_list = ca.chain; 430 memory_bm_free(bm, PG_UNSAFE_CLEAR); 431 goto Exit; 432 } 433 434 /** 435 * memory_bm_free - free memory occupied by the memory bitmap @bm 436 */ 437 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 438 { 439 struct bm_block *bb; 440 441 list_for_each_entry(bb, &bm->blocks, hook) 442 if (bb->data) 443 free_image_page(bb->data, clear_nosave_free); 444 445 free_list_of_pages(bm->p_list, clear_nosave_free); 446 447 INIT_LIST_HEAD(&bm->blocks); 448 } 449 450 /** 451 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 452 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 453 * of @bm->cur_zone_bm are updated. 454 */ 455 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 456 void **addr, unsigned int *bit_nr) 457 { 458 struct bm_block *bb; 459 460 /* 461 * Check if the pfn corresponds to the current bitmap block and find 462 * the block where it fits if this is not the case. 463 */ 464 bb = bm->cur.block; 465 if (pfn < bb->start_pfn) 466 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 467 if (pfn >= bb->start_pfn) 468 break; 469 470 if (pfn >= bb->end_pfn) 471 list_for_each_entry_continue(bb, &bm->blocks, hook) 472 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 473 break; 474 475 if (&bb->hook == &bm->blocks) 476 return -EFAULT; 477 478 /* The block has been found */ 479 bm->cur.block = bb; 480 pfn -= bb->start_pfn; 481 bm->cur.bit = pfn + 1; 482 *bit_nr = pfn; 483 *addr = bb->data; 484 return 0; 485 } 486 487 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 488 { 489 void *addr; 490 unsigned int bit; 491 int error; 492 493 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 494 BUG_ON(error); 495 set_bit(bit, addr); 496 } 497 498 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 499 { 500 void *addr; 501 unsigned int bit; 502 int error; 503 504 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 505 if (!error) 506 set_bit(bit, addr); 507 return error; 508 } 509 510 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 511 { 512 void *addr; 513 unsigned int bit; 514 int error; 515 516 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 517 BUG_ON(error); 518 clear_bit(bit, addr); 519 } 520 521 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 BUG_ON(error); 529 return test_bit(bit, addr); 530 } 531 532 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 533 { 534 void *addr; 535 unsigned int bit; 536 537 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 538 } 539 540 /** 541 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 542 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 543 * returned. 544 * 545 * It is required to run memory_bm_position_reset() before the first call to 546 * this function. 547 */ 548 549 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 550 { 551 struct bm_block *bb; 552 int bit; 553 554 bb = bm->cur.block; 555 do { 556 bit = bm->cur.bit; 557 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 558 if (bit < bm_block_bits(bb)) 559 goto Return_pfn; 560 561 bb = list_entry(bb->hook.next, struct bm_block, hook); 562 bm->cur.block = bb; 563 bm->cur.bit = 0; 564 } while (&bb->hook != &bm->blocks); 565 566 memory_bm_position_reset(bm); 567 return BM_END_OF_MAP; 568 569 Return_pfn: 570 bm->cur.bit = bit + 1; 571 return bb->start_pfn + bit; 572 } 573 574 /** 575 * This structure represents a range of page frames the contents of which 576 * should not be saved during the suspend. 577 */ 578 579 struct nosave_region { 580 struct list_head list; 581 unsigned long start_pfn; 582 unsigned long end_pfn; 583 }; 584 585 static LIST_HEAD(nosave_regions); 586 587 /** 588 * register_nosave_region - register a range of page frames the contents 589 * of which should not be saved during the suspend (to be used in the early 590 * initialization code) 591 */ 592 593 void __init 594 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 595 int use_kmalloc) 596 { 597 struct nosave_region *region; 598 599 if (start_pfn >= end_pfn) 600 return; 601 602 if (!list_empty(&nosave_regions)) { 603 /* Try to extend the previous region (they should be sorted) */ 604 region = list_entry(nosave_regions.prev, 605 struct nosave_region, list); 606 if (region->end_pfn == start_pfn) { 607 region->end_pfn = end_pfn; 608 goto Report; 609 } 610 } 611 if (use_kmalloc) { 612 /* during init, this shouldn't fail */ 613 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 614 BUG_ON(!region); 615 } else 616 /* This allocation cannot fail */ 617 region = alloc_bootmem_low(sizeof(struct nosave_region)); 618 region->start_pfn = start_pfn; 619 region->end_pfn = end_pfn; 620 list_add_tail(®ion->list, &nosave_regions); 621 Report: 622 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 623 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 624 } 625 626 /* 627 * Set bits in this map correspond to the page frames the contents of which 628 * should not be saved during the suspend. 629 */ 630 static struct memory_bitmap *forbidden_pages_map; 631 632 /* Set bits in this map correspond to free page frames. */ 633 static struct memory_bitmap *free_pages_map; 634 635 /* 636 * Each page frame allocated for creating the image is marked by setting the 637 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 638 */ 639 640 void swsusp_set_page_free(struct page *page) 641 { 642 if (free_pages_map) 643 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 644 } 645 646 static int swsusp_page_is_free(struct page *page) 647 { 648 return free_pages_map ? 649 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 650 } 651 652 void swsusp_unset_page_free(struct page *page) 653 { 654 if (free_pages_map) 655 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 656 } 657 658 static void swsusp_set_page_forbidden(struct page *page) 659 { 660 if (forbidden_pages_map) 661 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 662 } 663 664 int swsusp_page_is_forbidden(struct page *page) 665 { 666 return forbidden_pages_map ? 667 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 668 } 669 670 static void swsusp_unset_page_forbidden(struct page *page) 671 { 672 if (forbidden_pages_map) 673 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 674 } 675 676 /** 677 * mark_nosave_pages - set bits corresponding to the page frames the 678 * contents of which should not be saved in a given bitmap. 679 */ 680 681 static void mark_nosave_pages(struct memory_bitmap *bm) 682 { 683 struct nosave_region *region; 684 685 if (list_empty(&nosave_regions)) 686 return; 687 688 list_for_each_entry(region, &nosave_regions, list) { 689 unsigned long pfn; 690 691 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 692 region->start_pfn << PAGE_SHIFT, 693 region->end_pfn << PAGE_SHIFT); 694 695 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 696 if (pfn_valid(pfn)) { 697 /* 698 * It is safe to ignore the result of 699 * mem_bm_set_bit_check() here, since we won't 700 * touch the PFNs for which the error is 701 * returned anyway. 702 */ 703 mem_bm_set_bit_check(bm, pfn); 704 } 705 } 706 } 707 708 /** 709 * create_basic_memory_bitmaps - create bitmaps needed for marking page 710 * frames that should not be saved and free page frames. The pointers 711 * forbidden_pages_map and free_pages_map are only modified if everything 712 * goes well, because we don't want the bits to be used before both bitmaps 713 * are set up. 714 */ 715 716 int create_basic_memory_bitmaps(void) 717 { 718 struct memory_bitmap *bm1, *bm2; 719 int error = 0; 720 721 BUG_ON(forbidden_pages_map || free_pages_map); 722 723 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 724 if (!bm1) 725 return -ENOMEM; 726 727 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 728 if (error) 729 goto Free_first_object; 730 731 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 732 if (!bm2) 733 goto Free_first_bitmap; 734 735 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 736 if (error) 737 goto Free_second_object; 738 739 forbidden_pages_map = bm1; 740 free_pages_map = bm2; 741 mark_nosave_pages(forbidden_pages_map); 742 743 pr_debug("PM: Basic memory bitmaps created\n"); 744 745 return 0; 746 747 Free_second_object: 748 kfree(bm2); 749 Free_first_bitmap: 750 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 751 Free_first_object: 752 kfree(bm1); 753 return -ENOMEM; 754 } 755 756 /** 757 * free_basic_memory_bitmaps - free memory bitmaps allocated by 758 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 759 * so that the bitmaps themselves are not referred to while they are being 760 * freed. 761 */ 762 763 void free_basic_memory_bitmaps(void) 764 { 765 struct memory_bitmap *bm1, *bm2; 766 767 BUG_ON(!(forbidden_pages_map && free_pages_map)); 768 769 bm1 = forbidden_pages_map; 770 bm2 = free_pages_map; 771 forbidden_pages_map = NULL; 772 free_pages_map = NULL; 773 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 774 kfree(bm1); 775 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 776 kfree(bm2); 777 778 pr_debug("PM: Basic memory bitmaps freed\n"); 779 } 780 781 /** 782 * snapshot_additional_pages - estimate the number of additional pages 783 * be needed for setting up the suspend image data structures for given 784 * zone (usually the returned value is greater than the exact number) 785 */ 786 787 unsigned int snapshot_additional_pages(struct zone *zone) 788 { 789 unsigned int res; 790 791 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 792 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 793 return 2 * res; 794 } 795 796 #ifdef CONFIG_HIGHMEM 797 /** 798 * count_free_highmem_pages - compute the total number of free highmem 799 * pages, system-wide. 800 */ 801 802 static unsigned int count_free_highmem_pages(void) 803 { 804 struct zone *zone; 805 unsigned int cnt = 0; 806 807 for_each_zone(zone) 808 if (populated_zone(zone) && is_highmem(zone)) 809 cnt += zone_page_state(zone, NR_FREE_PAGES); 810 811 return cnt; 812 } 813 814 /** 815 * saveable_highmem_page - Determine whether a highmem page should be 816 * included in the suspend image. 817 * 818 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 819 * and it isn't a part of a free chunk of pages. 820 */ 821 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 822 { 823 struct page *page; 824 825 if (!pfn_valid(pfn)) 826 return NULL; 827 828 page = pfn_to_page(pfn); 829 if (page_zone(page) != zone) 830 return NULL; 831 832 BUG_ON(!PageHighMem(page)); 833 834 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 835 PageReserved(page)) 836 return NULL; 837 838 return page; 839 } 840 841 /** 842 * count_highmem_pages - compute the total number of saveable highmem 843 * pages. 844 */ 845 846 unsigned int count_highmem_pages(void) 847 { 848 struct zone *zone; 849 unsigned int n = 0; 850 851 for_each_zone(zone) { 852 unsigned long pfn, max_zone_pfn; 853 854 if (!is_highmem(zone)) 855 continue; 856 857 mark_free_pages(zone); 858 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 859 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 860 if (saveable_highmem_page(zone, pfn)) 861 n++; 862 } 863 return n; 864 } 865 #else 866 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 867 { 868 return NULL; 869 } 870 #endif /* CONFIG_HIGHMEM */ 871 872 /** 873 * saveable_page - Determine whether a non-highmem page should be included 874 * in the suspend image. 875 * 876 * We should save the page if it isn't Nosave, and is not in the range 877 * of pages statically defined as 'unsaveable', and it isn't a part of 878 * a free chunk of pages. 879 */ 880 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 881 { 882 struct page *page; 883 884 if (!pfn_valid(pfn)) 885 return NULL; 886 887 page = pfn_to_page(pfn); 888 if (page_zone(page) != zone) 889 return NULL; 890 891 BUG_ON(PageHighMem(page)); 892 893 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 894 return NULL; 895 896 if (PageReserved(page) 897 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 898 return NULL; 899 900 return page; 901 } 902 903 /** 904 * count_data_pages - compute the total number of saveable non-highmem 905 * pages. 906 */ 907 908 unsigned int count_data_pages(void) 909 { 910 struct zone *zone; 911 unsigned long pfn, max_zone_pfn; 912 unsigned int n = 0; 913 914 for_each_zone(zone) { 915 if (is_highmem(zone)) 916 continue; 917 918 mark_free_pages(zone); 919 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 920 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 921 if (saveable_page(zone, pfn)) 922 n++; 923 } 924 return n; 925 } 926 927 /* This is needed, because copy_page and memcpy are not usable for copying 928 * task structs. 929 */ 930 static inline void do_copy_page(long *dst, long *src) 931 { 932 int n; 933 934 for (n = PAGE_SIZE / sizeof(long); n; n--) 935 *dst++ = *src++; 936 } 937 938 939 /** 940 * safe_copy_page - check if the page we are going to copy is marked as 941 * present in the kernel page tables (this always is the case if 942 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 943 * kernel_page_present() always returns 'true'). 944 */ 945 static void safe_copy_page(void *dst, struct page *s_page) 946 { 947 if (kernel_page_present(s_page)) { 948 do_copy_page(dst, page_address(s_page)); 949 } else { 950 kernel_map_pages(s_page, 1, 1); 951 do_copy_page(dst, page_address(s_page)); 952 kernel_map_pages(s_page, 1, 0); 953 } 954 } 955 956 957 #ifdef CONFIG_HIGHMEM 958 static inline struct page * 959 page_is_saveable(struct zone *zone, unsigned long pfn) 960 { 961 return is_highmem(zone) ? 962 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 963 } 964 965 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 966 { 967 struct page *s_page, *d_page; 968 void *src, *dst; 969 970 s_page = pfn_to_page(src_pfn); 971 d_page = pfn_to_page(dst_pfn); 972 if (PageHighMem(s_page)) { 973 src = kmap_atomic(s_page, KM_USER0); 974 dst = kmap_atomic(d_page, KM_USER1); 975 do_copy_page(dst, src); 976 kunmap_atomic(src, KM_USER0); 977 kunmap_atomic(dst, KM_USER1); 978 } else { 979 if (PageHighMem(d_page)) { 980 /* Page pointed to by src may contain some kernel 981 * data modified by kmap_atomic() 982 */ 983 safe_copy_page(buffer, s_page); 984 dst = kmap_atomic(d_page, KM_USER0); 985 memcpy(dst, buffer, PAGE_SIZE); 986 kunmap_atomic(dst, KM_USER0); 987 } else { 988 safe_copy_page(page_address(d_page), s_page); 989 } 990 } 991 } 992 #else 993 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 994 995 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 996 { 997 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 998 pfn_to_page(src_pfn)); 999 } 1000 #endif /* CONFIG_HIGHMEM */ 1001 1002 static void 1003 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1004 { 1005 struct zone *zone; 1006 unsigned long pfn; 1007 1008 for_each_zone(zone) { 1009 unsigned long max_zone_pfn; 1010 1011 mark_free_pages(zone); 1012 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1013 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1014 if (page_is_saveable(zone, pfn)) 1015 memory_bm_set_bit(orig_bm, pfn); 1016 } 1017 memory_bm_position_reset(orig_bm); 1018 memory_bm_position_reset(copy_bm); 1019 for(;;) { 1020 pfn = memory_bm_next_pfn(orig_bm); 1021 if (unlikely(pfn == BM_END_OF_MAP)) 1022 break; 1023 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1024 } 1025 } 1026 1027 /* Total number of image pages */ 1028 static unsigned int nr_copy_pages; 1029 /* Number of pages needed for saving the original pfns of the image pages */ 1030 static unsigned int nr_meta_pages; 1031 1032 /** 1033 * swsusp_free - free pages allocated for the suspend. 1034 * 1035 * Suspend pages are alocated before the atomic copy is made, so we 1036 * need to release them after the resume. 1037 */ 1038 1039 void swsusp_free(void) 1040 { 1041 struct zone *zone; 1042 unsigned long pfn, max_zone_pfn; 1043 1044 for_each_zone(zone) { 1045 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1046 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1047 if (pfn_valid(pfn)) { 1048 struct page *page = pfn_to_page(pfn); 1049 1050 if (swsusp_page_is_forbidden(page) && 1051 swsusp_page_is_free(page)) { 1052 swsusp_unset_page_forbidden(page); 1053 swsusp_unset_page_free(page); 1054 __free_page(page); 1055 } 1056 } 1057 } 1058 nr_copy_pages = 0; 1059 nr_meta_pages = 0; 1060 restore_pblist = NULL; 1061 buffer = NULL; 1062 } 1063 1064 #ifdef CONFIG_HIGHMEM 1065 /** 1066 * count_pages_for_highmem - compute the number of non-highmem pages 1067 * that will be necessary for creating copies of highmem pages. 1068 */ 1069 1070 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1071 { 1072 unsigned int free_highmem = count_free_highmem_pages(); 1073 1074 if (free_highmem >= nr_highmem) 1075 nr_highmem = 0; 1076 else 1077 nr_highmem -= free_highmem; 1078 1079 return nr_highmem; 1080 } 1081 #else 1082 static unsigned int 1083 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1084 #endif /* CONFIG_HIGHMEM */ 1085 1086 /** 1087 * enough_free_mem - Make sure we have enough free memory for the 1088 * snapshot image. 1089 */ 1090 1091 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1092 { 1093 struct zone *zone; 1094 unsigned int free = 0, meta = 0; 1095 1096 for_each_zone(zone) { 1097 meta += snapshot_additional_pages(zone); 1098 if (!is_highmem(zone)) 1099 free += zone_page_state(zone, NR_FREE_PAGES); 1100 } 1101 1102 nr_pages += count_pages_for_highmem(nr_highmem); 1103 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", 1104 nr_pages, PAGES_FOR_IO, meta, free); 1105 1106 return free > nr_pages + PAGES_FOR_IO + meta; 1107 } 1108 1109 #ifdef CONFIG_HIGHMEM 1110 /** 1111 * get_highmem_buffer - if there are some highmem pages in the suspend 1112 * image, we may need the buffer to copy them and/or load their data. 1113 */ 1114 1115 static inline int get_highmem_buffer(int safe_needed) 1116 { 1117 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1118 return buffer ? 0 : -ENOMEM; 1119 } 1120 1121 /** 1122 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1123 * Try to allocate as many pages as needed, but if the number of free 1124 * highmem pages is lesser than that, allocate them all. 1125 */ 1126 1127 static inline unsigned int 1128 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1129 { 1130 unsigned int to_alloc = count_free_highmem_pages(); 1131 1132 if (to_alloc > nr_highmem) 1133 to_alloc = nr_highmem; 1134 1135 nr_highmem -= to_alloc; 1136 while (to_alloc-- > 0) { 1137 struct page *page; 1138 1139 page = alloc_image_page(__GFP_HIGHMEM); 1140 memory_bm_set_bit(bm, page_to_pfn(page)); 1141 } 1142 return nr_highmem; 1143 } 1144 #else 1145 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1146 1147 static inline unsigned int 1148 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1149 #endif /* CONFIG_HIGHMEM */ 1150 1151 /** 1152 * swsusp_alloc - allocate memory for the suspend image 1153 * 1154 * We first try to allocate as many highmem pages as there are 1155 * saveable highmem pages in the system. If that fails, we allocate 1156 * non-highmem pages for the copies of the remaining highmem ones. 1157 * 1158 * In this approach it is likely that the copies of highmem pages will 1159 * also be located in the high memory, because of the way in which 1160 * copy_data_pages() works. 1161 */ 1162 1163 static int 1164 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1165 unsigned int nr_pages, unsigned int nr_highmem) 1166 { 1167 int error; 1168 1169 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1170 if (error) 1171 goto Free; 1172 1173 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1174 if (error) 1175 goto Free; 1176 1177 if (nr_highmem > 0) { 1178 error = get_highmem_buffer(PG_ANY); 1179 if (error) 1180 goto Free; 1181 1182 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1183 } 1184 while (nr_pages-- > 0) { 1185 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1186 1187 if (!page) 1188 goto Free; 1189 1190 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1191 } 1192 return 0; 1193 1194 Free: 1195 swsusp_free(); 1196 return -ENOMEM; 1197 } 1198 1199 /* Memory bitmap used for marking saveable pages (during suspend) or the 1200 * suspend image pages (during resume) 1201 */ 1202 static struct memory_bitmap orig_bm; 1203 /* Memory bitmap used on suspend for marking allocated pages that will contain 1204 * the copies of saveable pages. During resume it is initially used for 1205 * marking the suspend image pages, but then its set bits are duplicated in 1206 * @orig_bm and it is released. Next, on systems with high memory, it may be 1207 * used for marking "safe" highmem pages, but it has to be reinitialized for 1208 * this purpose. 1209 */ 1210 static struct memory_bitmap copy_bm; 1211 1212 asmlinkage int swsusp_save(void) 1213 { 1214 unsigned int nr_pages, nr_highmem; 1215 1216 printk(KERN_INFO "PM: Creating hibernation image: \n"); 1217 1218 drain_local_pages(NULL); 1219 nr_pages = count_data_pages(); 1220 nr_highmem = count_highmem_pages(); 1221 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1222 1223 if (!enough_free_mem(nr_pages, nr_highmem)) { 1224 printk(KERN_ERR "PM: Not enough free memory\n"); 1225 return -ENOMEM; 1226 } 1227 1228 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1229 printk(KERN_ERR "PM: Memory allocation failed\n"); 1230 return -ENOMEM; 1231 } 1232 1233 /* During allocating of suspend pagedir, new cold pages may appear. 1234 * Kill them. 1235 */ 1236 drain_local_pages(NULL); 1237 copy_data_pages(©_bm, &orig_bm); 1238 1239 /* 1240 * End of critical section. From now on, we can write to memory, 1241 * but we should not touch disk. This specially means we must _not_ 1242 * touch swap space! Except we must write out our image of course. 1243 */ 1244 1245 nr_pages += nr_highmem; 1246 nr_copy_pages = nr_pages; 1247 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1248 1249 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1250 nr_pages); 1251 1252 return 0; 1253 } 1254 1255 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1256 static int init_header_complete(struct swsusp_info *info) 1257 { 1258 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1259 info->version_code = LINUX_VERSION_CODE; 1260 return 0; 1261 } 1262 1263 static char *check_image_kernel(struct swsusp_info *info) 1264 { 1265 if (info->version_code != LINUX_VERSION_CODE) 1266 return "kernel version"; 1267 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1268 return "system type"; 1269 if (strcmp(info->uts.release,init_utsname()->release)) 1270 return "kernel release"; 1271 if (strcmp(info->uts.version,init_utsname()->version)) 1272 return "version"; 1273 if (strcmp(info->uts.machine,init_utsname()->machine)) 1274 return "machine"; 1275 return NULL; 1276 } 1277 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1278 1279 unsigned long snapshot_get_image_size(void) 1280 { 1281 return nr_copy_pages + nr_meta_pages + 1; 1282 } 1283 1284 static int init_header(struct swsusp_info *info) 1285 { 1286 memset(info, 0, sizeof(struct swsusp_info)); 1287 info->num_physpages = num_physpages; 1288 info->image_pages = nr_copy_pages; 1289 info->pages = snapshot_get_image_size(); 1290 info->size = info->pages; 1291 info->size <<= PAGE_SHIFT; 1292 return init_header_complete(info); 1293 } 1294 1295 /** 1296 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1297 * are stored in the array @buf[] (1 page at a time) 1298 */ 1299 1300 static inline void 1301 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1302 { 1303 int j; 1304 1305 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1306 buf[j] = memory_bm_next_pfn(bm); 1307 if (unlikely(buf[j] == BM_END_OF_MAP)) 1308 break; 1309 } 1310 } 1311 1312 /** 1313 * snapshot_read_next - used for reading the system memory snapshot. 1314 * 1315 * On the first call to it @handle should point to a zeroed 1316 * snapshot_handle structure. The structure gets updated and a pointer 1317 * to it should be passed to this function every next time. 1318 * 1319 * The @count parameter should contain the number of bytes the caller 1320 * wants to read from the snapshot. It must not be zero. 1321 * 1322 * On success the function returns a positive number. Then, the caller 1323 * is allowed to read up to the returned number of bytes from the memory 1324 * location computed by the data_of() macro. The number returned 1325 * may be smaller than @count, but this only happens if the read would 1326 * cross a page boundary otherwise. 1327 * 1328 * The function returns 0 to indicate the end of data stream condition, 1329 * and a negative number is returned on error. In such cases the 1330 * structure pointed to by @handle is not updated and should not be used 1331 * any more. 1332 */ 1333 1334 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1335 { 1336 if (handle->cur > nr_meta_pages + nr_copy_pages) 1337 return 0; 1338 1339 if (!buffer) { 1340 /* This makes the buffer be freed by swsusp_free() */ 1341 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1342 if (!buffer) 1343 return -ENOMEM; 1344 } 1345 if (!handle->offset) { 1346 int error; 1347 1348 error = init_header((struct swsusp_info *)buffer); 1349 if (error) 1350 return error; 1351 handle->buffer = buffer; 1352 memory_bm_position_reset(&orig_bm); 1353 memory_bm_position_reset(©_bm); 1354 } 1355 if (handle->prev < handle->cur) { 1356 if (handle->cur <= nr_meta_pages) { 1357 memset(buffer, 0, PAGE_SIZE); 1358 pack_pfns(buffer, &orig_bm); 1359 } else { 1360 struct page *page; 1361 1362 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1363 if (PageHighMem(page)) { 1364 /* Highmem pages are copied to the buffer, 1365 * because we can't return with a kmapped 1366 * highmem page (we may not be called again). 1367 */ 1368 void *kaddr; 1369 1370 kaddr = kmap_atomic(page, KM_USER0); 1371 memcpy(buffer, kaddr, PAGE_SIZE); 1372 kunmap_atomic(kaddr, KM_USER0); 1373 handle->buffer = buffer; 1374 } else { 1375 handle->buffer = page_address(page); 1376 } 1377 } 1378 handle->prev = handle->cur; 1379 } 1380 handle->buf_offset = handle->cur_offset; 1381 if (handle->cur_offset + count >= PAGE_SIZE) { 1382 count = PAGE_SIZE - handle->cur_offset; 1383 handle->cur_offset = 0; 1384 handle->cur++; 1385 } else { 1386 handle->cur_offset += count; 1387 } 1388 handle->offset += count; 1389 return count; 1390 } 1391 1392 /** 1393 * mark_unsafe_pages - mark the pages that cannot be used for storing 1394 * the image during resume, because they conflict with the pages that 1395 * had been used before suspend 1396 */ 1397 1398 static int mark_unsafe_pages(struct memory_bitmap *bm) 1399 { 1400 struct zone *zone; 1401 unsigned long pfn, max_zone_pfn; 1402 1403 /* Clear page flags */ 1404 for_each_zone(zone) { 1405 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1406 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1407 if (pfn_valid(pfn)) 1408 swsusp_unset_page_free(pfn_to_page(pfn)); 1409 } 1410 1411 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1412 memory_bm_position_reset(bm); 1413 do { 1414 pfn = memory_bm_next_pfn(bm); 1415 if (likely(pfn != BM_END_OF_MAP)) { 1416 if (likely(pfn_valid(pfn))) 1417 swsusp_set_page_free(pfn_to_page(pfn)); 1418 else 1419 return -EFAULT; 1420 } 1421 } while (pfn != BM_END_OF_MAP); 1422 1423 allocated_unsafe_pages = 0; 1424 1425 return 0; 1426 } 1427 1428 static void 1429 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1430 { 1431 unsigned long pfn; 1432 1433 memory_bm_position_reset(src); 1434 pfn = memory_bm_next_pfn(src); 1435 while (pfn != BM_END_OF_MAP) { 1436 memory_bm_set_bit(dst, pfn); 1437 pfn = memory_bm_next_pfn(src); 1438 } 1439 } 1440 1441 static int check_header(struct swsusp_info *info) 1442 { 1443 char *reason; 1444 1445 reason = check_image_kernel(info); 1446 if (!reason && info->num_physpages != num_physpages) 1447 reason = "memory size"; 1448 if (reason) { 1449 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1450 return -EPERM; 1451 } 1452 return 0; 1453 } 1454 1455 /** 1456 * load header - check the image header and copy data from it 1457 */ 1458 1459 static int 1460 load_header(struct swsusp_info *info) 1461 { 1462 int error; 1463 1464 restore_pblist = NULL; 1465 error = check_header(info); 1466 if (!error) { 1467 nr_copy_pages = info->image_pages; 1468 nr_meta_pages = info->pages - info->image_pages - 1; 1469 } 1470 return error; 1471 } 1472 1473 /** 1474 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1475 * the corresponding bit in the memory bitmap @bm 1476 */ 1477 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1478 { 1479 int j; 1480 1481 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1482 if (unlikely(buf[j] == BM_END_OF_MAP)) 1483 break; 1484 1485 if (memory_bm_pfn_present(bm, buf[j])) 1486 memory_bm_set_bit(bm, buf[j]); 1487 else 1488 return -EFAULT; 1489 } 1490 1491 return 0; 1492 } 1493 1494 /* List of "safe" pages that may be used to store data loaded from the suspend 1495 * image 1496 */ 1497 static struct linked_page *safe_pages_list; 1498 1499 #ifdef CONFIG_HIGHMEM 1500 /* struct highmem_pbe is used for creating the list of highmem pages that 1501 * should be restored atomically during the resume from disk, because the page 1502 * frames they have occupied before the suspend are in use. 1503 */ 1504 struct highmem_pbe { 1505 struct page *copy_page; /* data is here now */ 1506 struct page *orig_page; /* data was here before the suspend */ 1507 struct highmem_pbe *next; 1508 }; 1509 1510 /* List of highmem PBEs needed for restoring the highmem pages that were 1511 * allocated before the suspend and included in the suspend image, but have 1512 * also been allocated by the "resume" kernel, so their contents cannot be 1513 * written directly to their "original" page frames. 1514 */ 1515 static struct highmem_pbe *highmem_pblist; 1516 1517 /** 1518 * count_highmem_image_pages - compute the number of highmem pages in the 1519 * suspend image. The bits in the memory bitmap @bm that correspond to the 1520 * image pages are assumed to be set. 1521 */ 1522 1523 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1524 { 1525 unsigned long pfn; 1526 unsigned int cnt = 0; 1527 1528 memory_bm_position_reset(bm); 1529 pfn = memory_bm_next_pfn(bm); 1530 while (pfn != BM_END_OF_MAP) { 1531 if (PageHighMem(pfn_to_page(pfn))) 1532 cnt++; 1533 1534 pfn = memory_bm_next_pfn(bm); 1535 } 1536 return cnt; 1537 } 1538 1539 /** 1540 * prepare_highmem_image - try to allocate as many highmem pages as 1541 * there are highmem image pages (@nr_highmem_p points to the variable 1542 * containing the number of highmem image pages). The pages that are 1543 * "safe" (ie. will not be overwritten when the suspend image is 1544 * restored) have the corresponding bits set in @bm (it must be 1545 * unitialized). 1546 * 1547 * NOTE: This function should not be called if there are no highmem 1548 * image pages. 1549 */ 1550 1551 static unsigned int safe_highmem_pages; 1552 1553 static struct memory_bitmap *safe_highmem_bm; 1554 1555 static int 1556 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1557 { 1558 unsigned int to_alloc; 1559 1560 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1561 return -ENOMEM; 1562 1563 if (get_highmem_buffer(PG_SAFE)) 1564 return -ENOMEM; 1565 1566 to_alloc = count_free_highmem_pages(); 1567 if (to_alloc > *nr_highmem_p) 1568 to_alloc = *nr_highmem_p; 1569 else 1570 *nr_highmem_p = to_alloc; 1571 1572 safe_highmem_pages = 0; 1573 while (to_alloc-- > 0) { 1574 struct page *page; 1575 1576 page = alloc_page(__GFP_HIGHMEM); 1577 if (!swsusp_page_is_free(page)) { 1578 /* The page is "safe", set its bit the bitmap */ 1579 memory_bm_set_bit(bm, page_to_pfn(page)); 1580 safe_highmem_pages++; 1581 } 1582 /* Mark the page as allocated */ 1583 swsusp_set_page_forbidden(page); 1584 swsusp_set_page_free(page); 1585 } 1586 memory_bm_position_reset(bm); 1587 safe_highmem_bm = bm; 1588 return 0; 1589 } 1590 1591 /** 1592 * get_highmem_page_buffer - for given highmem image page find the buffer 1593 * that suspend_write_next() should set for its caller to write to. 1594 * 1595 * If the page is to be saved to its "original" page frame or a copy of 1596 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1597 * the copy of the page is to be made in normal memory, so the address of 1598 * the copy is returned. 1599 * 1600 * If @buffer is returned, the caller of suspend_write_next() will write 1601 * the page's contents to @buffer, so they will have to be copied to the 1602 * right location on the next call to suspend_write_next() and it is done 1603 * with the help of copy_last_highmem_page(). For this purpose, if 1604 * @buffer is returned, @last_highmem page is set to the page to which 1605 * the data will have to be copied from @buffer. 1606 */ 1607 1608 static struct page *last_highmem_page; 1609 1610 static void * 1611 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1612 { 1613 struct highmem_pbe *pbe; 1614 void *kaddr; 1615 1616 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1617 /* We have allocated the "original" page frame and we can 1618 * use it directly to store the loaded page. 1619 */ 1620 last_highmem_page = page; 1621 return buffer; 1622 } 1623 /* The "original" page frame has not been allocated and we have to 1624 * use a "safe" page frame to store the loaded page. 1625 */ 1626 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1627 if (!pbe) { 1628 swsusp_free(); 1629 return ERR_PTR(-ENOMEM); 1630 } 1631 pbe->orig_page = page; 1632 if (safe_highmem_pages > 0) { 1633 struct page *tmp; 1634 1635 /* Copy of the page will be stored in high memory */ 1636 kaddr = buffer; 1637 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1638 safe_highmem_pages--; 1639 last_highmem_page = tmp; 1640 pbe->copy_page = tmp; 1641 } else { 1642 /* Copy of the page will be stored in normal memory */ 1643 kaddr = safe_pages_list; 1644 safe_pages_list = safe_pages_list->next; 1645 pbe->copy_page = virt_to_page(kaddr); 1646 } 1647 pbe->next = highmem_pblist; 1648 highmem_pblist = pbe; 1649 return kaddr; 1650 } 1651 1652 /** 1653 * copy_last_highmem_page - copy the contents of a highmem image from 1654 * @buffer, where the caller of snapshot_write_next() has place them, 1655 * to the right location represented by @last_highmem_page . 1656 */ 1657 1658 static void copy_last_highmem_page(void) 1659 { 1660 if (last_highmem_page) { 1661 void *dst; 1662 1663 dst = kmap_atomic(last_highmem_page, KM_USER0); 1664 memcpy(dst, buffer, PAGE_SIZE); 1665 kunmap_atomic(dst, KM_USER0); 1666 last_highmem_page = NULL; 1667 } 1668 } 1669 1670 static inline int last_highmem_page_copied(void) 1671 { 1672 return !last_highmem_page; 1673 } 1674 1675 static inline void free_highmem_data(void) 1676 { 1677 if (safe_highmem_bm) 1678 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1679 1680 if (buffer) 1681 free_image_page(buffer, PG_UNSAFE_CLEAR); 1682 } 1683 #else 1684 static inline int get_safe_write_buffer(void) { return 0; } 1685 1686 static unsigned int 1687 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1688 1689 static inline int 1690 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1691 { 1692 return 0; 1693 } 1694 1695 static inline void * 1696 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1697 { 1698 return ERR_PTR(-EINVAL); 1699 } 1700 1701 static inline void copy_last_highmem_page(void) {} 1702 static inline int last_highmem_page_copied(void) { return 1; } 1703 static inline void free_highmem_data(void) {} 1704 #endif /* CONFIG_HIGHMEM */ 1705 1706 /** 1707 * prepare_image - use the memory bitmap @bm to mark the pages that will 1708 * be overwritten in the process of restoring the system memory state 1709 * from the suspend image ("unsafe" pages) and allocate memory for the 1710 * image. 1711 * 1712 * The idea is to allocate a new memory bitmap first and then allocate 1713 * as many pages as needed for the image data, but not to assign these 1714 * pages to specific tasks initially. Instead, we just mark them as 1715 * allocated and create a lists of "safe" pages that will be used 1716 * later. On systems with high memory a list of "safe" highmem pages is 1717 * also created. 1718 */ 1719 1720 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1721 1722 static int 1723 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1724 { 1725 unsigned int nr_pages, nr_highmem; 1726 struct linked_page *sp_list, *lp; 1727 int error; 1728 1729 /* If there is no highmem, the buffer will not be necessary */ 1730 free_image_page(buffer, PG_UNSAFE_CLEAR); 1731 buffer = NULL; 1732 1733 nr_highmem = count_highmem_image_pages(bm); 1734 error = mark_unsafe_pages(bm); 1735 if (error) 1736 goto Free; 1737 1738 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1739 if (error) 1740 goto Free; 1741 1742 duplicate_memory_bitmap(new_bm, bm); 1743 memory_bm_free(bm, PG_UNSAFE_KEEP); 1744 if (nr_highmem > 0) { 1745 error = prepare_highmem_image(bm, &nr_highmem); 1746 if (error) 1747 goto Free; 1748 } 1749 /* Reserve some safe pages for potential later use. 1750 * 1751 * NOTE: This way we make sure there will be enough safe pages for the 1752 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1753 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1754 */ 1755 sp_list = NULL; 1756 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1757 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1758 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1759 while (nr_pages > 0) { 1760 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1761 if (!lp) { 1762 error = -ENOMEM; 1763 goto Free; 1764 } 1765 lp->next = sp_list; 1766 sp_list = lp; 1767 nr_pages--; 1768 } 1769 /* Preallocate memory for the image */ 1770 safe_pages_list = NULL; 1771 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1772 while (nr_pages > 0) { 1773 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1774 if (!lp) { 1775 error = -ENOMEM; 1776 goto Free; 1777 } 1778 if (!swsusp_page_is_free(virt_to_page(lp))) { 1779 /* The page is "safe", add it to the list */ 1780 lp->next = safe_pages_list; 1781 safe_pages_list = lp; 1782 } 1783 /* Mark the page as allocated */ 1784 swsusp_set_page_forbidden(virt_to_page(lp)); 1785 swsusp_set_page_free(virt_to_page(lp)); 1786 nr_pages--; 1787 } 1788 /* Free the reserved safe pages so that chain_alloc() can use them */ 1789 while (sp_list) { 1790 lp = sp_list->next; 1791 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1792 sp_list = lp; 1793 } 1794 return 0; 1795 1796 Free: 1797 swsusp_free(); 1798 return error; 1799 } 1800 1801 /** 1802 * get_buffer - compute the address that snapshot_write_next() should 1803 * set for its caller to write to. 1804 */ 1805 1806 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1807 { 1808 struct pbe *pbe; 1809 struct page *page; 1810 unsigned long pfn = memory_bm_next_pfn(bm); 1811 1812 if (pfn == BM_END_OF_MAP) 1813 return ERR_PTR(-EFAULT); 1814 1815 page = pfn_to_page(pfn); 1816 if (PageHighMem(page)) 1817 return get_highmem_page_buffer(page, ca); 1818 1819 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1820 /* We have allocated the "original" page frame and we can 1821 * use it directly to store the loaded page. 1822 */ 1823 return page_address(page); 1824 1825 /* The "original" page frame has not been allocated and we have to 1826 * use a "safe" page frame to store the loaded page. 1827 */ 1828 pbe = chain_alloc(ca, sizeof(struct pbe)); 1829 if (!pbe) { 1830 swsusp_free(); 1831 return ERR_PTR(-ENOMEM); 1832 } 1833 pbe->orig_address = page_address(page); 1834 pbe->address = safe_pages_list; 1835 safe_pages_list = safe_pages_list->next; 1836 pbe->next = restore_pblist; 1837 restore_pblist = pbe; 1838 return pbe->address; 1839 } 1840 1841 /** 1842 * snapshot_write_next - used for writing the system memory snapshot. 1843 * 1844 * On the first call to it @handle should point to a zeroed 1845 * snapshot_handle structure. The structure gets updated and a pointer 1846 * to it should be passed to this function every next time. 1847 * 1848 * The @count parameter should contain the number of bytes the caller 1849 * wants to write to the image. It must not be zero. 1850 * 1851 * On success the function returns a positive number. Then, the caller 1852 * is allowed to write up to the returned number of bytes to the memory 1853 * location computed by the data_of() macro. The number returned 1854 * may be smaller than @count, but this only happens if the write would 1855 * cross a page boundary otherwise. 1856 * 1857 * The function returns 0 to indicate the "end of file" condition, 1858 * and a negative number is returned on error. In such cases the 1859 * structure pointed to by @handle is not updated and should not be used 1860 * any more. 1861 */ 1862 1863 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1864 { 1865 static struct chain_allocator ca; 1866 int error = 0; 1867 1868 /* Check if we have already loaded the entire image */ 1869 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1870 return 0; 1871 1872 if (handle->offset == 0) { 1873 if (!buffer) 1874 /* This makes the buffer be freed by swsusp_free() */ 1875 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1876 1877 if (!buffer) 1878 return -ENOMEM; 1879 1880 handle->buffer = buffer; 1881 } 1882 handle->sync_read = 1; 1883 if (handle->prev < handle->cur) { 1884 if (handle->prev == 0) { 1885 error = load_header(buffer); 1886 if (error) 1887 return error; 1888 1889 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1890 if (error) 1891 return error; 1892 1893 } else if (handle->prev <= nr_meta_pages) { 1894 error = unpack_orig_pfns(buffer, ©_bm); 1895 if (error) 1896 return error; 1897 1898 if (handle->prev == nr_meta_pages) { 1899 error = prepare_image(&orig_bm, ©_bm); 1900 if (error) 1901 return error; 1902 1903 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1904 memory_bm_position_reset(&orig_bm); 1905 restore_pblist = NULL; 1906 handle->buffer = get_buffer(&orig_bm, &ca); 1907 handle->sync_read = 0; 1908 if (IS_ERR(handle->buffer)) 1909 return PTR_ERR(handle->buffer); 1910 } 1911 } else { 1912 copy_last_highmem_page(); 1913 handle->buffer = get_buffer(&orig_bm, &ca); 1914 if (IS_ERR(handle->buffer)) 1915 return PTR_ERR(handle->buffer); 1916 if (handle->buffer != buffer) 1917 handle->sync_read = 0; 1918 } 1919 handle->prev = handle->cur; 1920 } 1921 handle->buf_offset = handle->cur_offset; 1922 if (handle->cur_offset + count >= PAGE_SIZE) { 1923 count = PAGE_SIZE - handle->cur_offset; 1924 handle->cur_offset = 0; 1925 handle->cur++; 1926 } else { 1927 handle->cur_offset += count; 1928 } 1929 handle->offset += count; 1930 return count; 1931 } 1932 1933 /** 1934 * snapshot_write_finalize - must be called after the last call to 1935 * snapshot_write_next() in case the last page in the image happens 1936 * to be a highmem page and its contents should be stored in the 1937 * highmem. Additionally, it releases the memory that will not be 1938 * used any more. 1939 */ 1940 1941 void snapshot_write_finalize(struct snapshot_handle *handle) 1942 { 1943 copy_last_highmem_page(); 1944 /* Free only if we have loaded the image entirely */ 1945 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1946 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1947 free_highmem_data(); 1948 } 1949 } 1950 1951 int snapshot_image_loaded(struct snapshot_handle *handle) 1952 { 1953 return !(!nr_copy_pages || !last_highmem_page_copied() || 1954 handle->cur <= nr_meta_pages + nr_copy_pages); 1955 } 1956 1957 #ifdef CONFIG_HIGHMEM 1958 /* Assumes that @buf is ready and points to a "safe" page */ 1959 static inline void 1960 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1961 { 1962 void *kaddr1, *kaddr2; 1963 1964 kaddr1 = kmap_atomic(p1, KM_USER0); 1965 kaddr2 = kmap_atomic(p2, KM_USER1); 1966 memcpy(buf, kaddr1, PAGE_SIZE); 1967 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1968 memcpy(kaddr2, buf, PAGE_SIZE); 1969 kunmap_atomic(kaddr1, KM_USER0); 1970 kunmap_atomic(kaddr2, KM_USER1); 1971 } 1972 1973 /** 1974 * restore_highmem - for each highmem page that was allocated before 1975 * the suspend and included in the suspend image, and also has been 1976 * allocated by the "resume" kernel swap its current (ie. "before 1977 * resume") contents with the previous (ie. "before suspend") one. 1978 * 1979 * If the resume eventually fails, we can call this function once 1980 * again and restore the "before resume" highmem state. 1981 */ 1982 1983 int restore_highmem(void) 1984 { 1985 struct highmem_pbe *pbe = highmem_pblist; 1986 void *buf; 1987 1988 if (!pbe) 1989 return 0; 1990 1991 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1992 if (!buf) 1993 return -ENOMEM; 1994 1995 while (pbe) { 1996 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1997 pbe = pbe->next; 1998 } 1999 free_image_page(buf, PG_UNSAFE_CLEAR); 2000 return 0; 2001 } 2002 #endif /* CONFIG_HIGHMEM */ 2003