1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/version.h> 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/bitops.h> 21 #include <linux/spinlock.h> 22 #include <linux/kernel.h> 23 #include <linux/pm.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/memblock.h> 27 #include <linux/nmi.h> 28 #include <linux/syscalls.h> 29 #include <linux/console.h> 30 #include <linux/highmem.h> 31 #include <linux/list.h> 32 #include <linux/slab.h> 33 #include <linux/compiler.h> 34 #include <linux/ktime.h> 35 #include <linux/set_memory.h> 36 37 #include <linux/uaccess.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/tlbflush.h> 41 #include <asm/io.h> 42 43 #include "power.h" 44 45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 46 static bool hibernate_restore_protection; 47 static bool hibernate_restore_protection_active; 48 49 void enable_restore_image_protection(void) 50 { 51 hibernate_restore_protection = true; 52 } 53 54 static inline void hibernate_restore_protection_begin(void) 55 { 56 hibernate_restore_protection_active = hibernate_restore_protection; 57 } 58 59 static inline void hibernate_restore_protection_end(void) 60 { 61 hibernate_restore_protection_active = false; 62 } 63 64 static inline void hibernate_restore_protect_page(void *page_address) 65 { 66 if (hibernate_restore_protection_active) 67 set_memory_ro((unsigned long)page_address, 1); 68 } 69 70 static inline void hibernate_restore_unprotect_page(void *page_address) 71 { 72 if (hibernate_restore_protection_active) 73 set_memory_rw((unsigned long)page_address, 1); 74 } 75 #else 76 static inline void hibernate_restore_protection_begin(void) {} 77 static inline void hibernate_restore_protection_end(void) {} 78 static inline void hibernate_restore_protect_page(void *page_address) {} 79 static inline void hibernate_restore_unprotect_page(void *page_address) {} 80 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 81 82 static int swsusp_page_is_free(struct page *); 83 static void swsusp_set_page_forbidden(struct page *); 84 static void swsusp_unset_page_forbidden(struct page *); 85 86 /* 87 * Number of bytes to reserve for memory allocations made by device drivers 88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 89 * cause image creation to fail (tunable via /sys/power/reserved_size). 90 */ 91 unsigned long reserved_size; 92 93 void __init hibernate_reserved_size_init(void) 94 { 95 reserved_size = SPARE_PAGES * PAGE_SIZE; 96 } 97 98 /* 99 * Preferred image size in bytes (tunable via /sys/power/image_size). 100 * When it is set to N, swsusp will do its best to ensure the image 101 * size will not exceed N bytes, but if that is impossible, it will 102 * try to create the smallest image possible. 103 */ 104 unsigned long image_size; 105 106 void __init hibernate_image_size_init(void) 107 { 108 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 109 } 110 111 /* 112 * List of PBEs needed for restoring the pages that were allocated before 113 * the suspend and included in the suspend image, but have also been 114 * allocated by the "resume" kernel, so their contents cannot be written 115 * directly to their "original" page frames. 116 */ 117 struct pbe *restore_pblist; 118 119 /* struct linked_page is used to build chains of pages */ 120 121 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 122 123 struct linked_page { 124 struct linked_page *next; 125 char data[LINKED_PAGE_DATA_SIZE]; 126 } __packed; 127 128 /* 129 * List of "safe" pages (ie. pages that were not used by the image kernel 130 * before hibernation) that may be used as temporary storage for image kernel 131 * memory contents. 132 */ 133 static struct linked_page *safe_pages_list; 134 135 /* Pointer to an auxiliary buffer (1 page) */ 136 static void *buffer; 137 138 #define PG_ANY 0 139 #define PG_SAFE 1 140 #define PG_UNSAFE_CLEAR 1 141 #define PG_UNSAFE_KEEP 0 142 143 static unsigned int allocated_unsafe_pages; 144 145 /** 146 * get_image_page - Allocate a page for a hibernation image. 147 * @gfp_mask: GFP mask for the allocation. 148 * @safe_needed: Get pages that were not used before hibernation (restore only) 149 * 150 * During image restoration, for storing the PBE list and the image data, we can 151 * only use memory pages that do not conflict with the pages used before 152 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 153 * using allocated_unsafe_pages. 154 * 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 156 * swsusp_free() can release it. 157 */ 158 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 159 { 160 void *res; 161 162 res = (void *)get_zeroed_page(gfp_mask); 163 if (safe_needed) 164 while (res && swsusp_page_is_free(virt_to_page(res))) { 165 /* The page is unsafe, mark it for swsusp_free() */ 166 swsusp_set_page_forbidden(virt_to_page(res)); 167 allocated_unsafe_pages++; 168 res = (void *)get_zeroed_page(gfp_mask); 169 } 170 if (res) { 171 swsusp_set_page_forbidden(virt_to_page(res)); 172 swsusp_set_page_free(virt_to_page(res)); 173 } 174 return res; 175 } 176 177 static void *__get_safe_page(gfp_t gfp_mask) 178 { 179 if (safe_pages_list) { 180 void *ret = safe_pages_list; 181 182 safe_pages_list = safe_pages_list->next; 183 memset(ret, 0, PAGE_SIZE); 184 return ret; 185 } 186 return get_image_page(gfp_mask, PG_SAFE); 187 } 188 189 unsigned long get_safe_page(gfp_t gfp_mask) 190 { 191 return (unsigned long)__get_safe_page(gfp_mask); 192 } 193 194 static struct page *alloc_image_page(gfp_t gfp_mask) 195 { 196 struct page *page; 197 198 page = alloc_page(gfp_mask); 199 if (page) { 200 swsusp_set_page_forbidden(page); 201 swsusp_set_page_free(page); 202 } 203 return page; 204 } 205 206 static void recycle_safe_page(void *page_address) 207 { 208 struct linked_page *lp = page_address; 209 210 lp->next = safe_pages_list; 211 safe_pages_list = lp; 212 } 213 214 /** 215 * free_image_page - Free a page allocated for hibernation image. 216 * @addr: Address of the page to free. 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 218 * 219 * The page to free should have been allocated by get_image_page() (page flags 220 * set by it are affected). 221 */ 222 static inline void free_image_page(void *addr, int clear_nosave_free) 223 { 224 struct page *page; 225 226 BUG_ON(!virt_addr_valid(addr)); 227 228 page = virt_to_page(addr); 229 230 swsusp_unset_page_forbidden(page); 231 if (clear_nosave_free) 232 swsusp_unset_page_free(page); 233 234 __free_page(page); 235 } 236 237 static inline void free_list_of_pages(struct linked_page *list, 238 int clear_page_nosave) 239 { 240 while (list) { 241 struct linked_page *lp = list->next; 242 243 free_image_page(list, clear_page_nosave); 244 list = lp; 245 } 246 } 247 248 /* 249 * struct chain_allocator is used for allocating small objects out of 250 * a linked list of pages called 'the chain'. 251 * 252 * The chain grows each time when there is no room for a new object in 253 * the current page. The allocated objects cannot be freed individually. 254 * It is only possible to free them all at once, by freeing the entire 255 * chain. 256 * 257 * NOTE: The chain allocator may be inefficient if the allocated objects 258 * are not much smaller than PAGE_SIZE. 259 */ 260 struct chain_allocator { 261 struct linked_page *chain; /* the chain */ 262 unsigned int used_space; /* total size of objects allocated out 263 of the current page */ 264 gfp_t gfp_mask; /* mask for allocating pages */ 265 int safe_needed; /* if set, only "safe" pages are allocated */ 266 }; 267 268 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 269 int safe_needed) 270 { 271 ca->chain = NULL; 272 ca->used_space = LINKED_PAGE_DATA_SIZE; 273 ca->gfp_mask = gfp_mask; 274 ca->safe_needed = safe_needed; 275 } 276 277 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 278 { 279 void *ret; 280 281 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 282 struct linked_page *lp; 283 284 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 285 get_image_page(ca->gfp_mask, PG_ANY); 286 if (!lp) 287 return NULL; 288 289 lp->next = ca->chain; 290 ca->chain = lp; 291 ca->used_space = 0; 292 } 293 ret = ca->chain->data + ca->used_space; 294 ca->used_space += size; 295 return ret; 296 } 297 298 /** 299 * Data types related to memory bitmaps. 300 * 301 * Memory bitmap is a structure consiting of many linked lists of 302 * objects. The main list's elements are of type struct zone_bitmap 303 * and each of them corresonds to one zone. For each zone bitmap 304 * object there is a list of objects of type struct bm_block that 305 * represent each blocks of bitmap in which information is stored. 306 * 307 * struct memory_bitmap contains a pointer to the main list of zone 308 * bitmap objects, a struct bm_position used for browsing the bitmap, 309 * and a pointer to the list of pages used for allocating all of the 310 * zone bitmap objects and bitmap block objects. 311 * 312 * NOTE: It has to be possible to lay out the bitmap in memory 313 * using only allocations of order 0. Additionally, the bitmap is 314 * designed to work with arbitrary number of zones (this is over the 315 * top for now, but let's avoid making unnecessary assumptions ;-). 316 * 317 * struct zone_bitmap contains a pointer to a list of bitmap block 318 * objects and a pointer to the bitmap block object that has been 319 * most recently used for setting bits. Additionally, it contains the 320 * PFNs that correspond to the start and end of the represented zone. 321 * 322 * struct bm_block contains a pointer to the memory page in which 323 * information is stored (in the form of a block of bitmap) 324 * It also contains the pfns that correspond to the start and end of 325 * the represented memory area. 326 * 327 * The memory bitmap is organized as a radix tree to guarantee fast random 328 * access to the bits. There is one radix tree for each zone (as returned 329 * from create_mem_extents). 330 * 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 332 * two linked lists for the nodes of the tree, one for the inner nodes and 333 * one for the leave nodes. The linked leave nodes are used for fast linear 334 * access of the memory bitmap. 335 * 336 * The struct rtree_node represents one node of the radix tree. 337 */ 338 339 #define BM_END_OF_MAP (~0UL) 340 341 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 342 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 343 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 344 345 /* 346 * struct rtree_node is a wrapper struct to link the nodes 347 * of the rtree together for easy linear iteration over 348 * bits and easy freeing 349 */ 350 struct rtree_node { 351 struct list_head list; 352 unsigned long *data; 353 }; 354 355 /* 356 * struct mem_zone_bm_rtree represents a bitmap used for one 357 * populated memory zone. 358 */ 359 struct mem_zone_bm_rtree { 360 struct list_head list; /* Link Zones together */ 361 struct list_head nodes; /* Radix Tree inner nodes */ 362 struct list_head leaves; /* Radix Tree leaves */ 363 unsigned long start_pfn; /* Zone start page frame */ 364 unsigned long end_pfn; /* Zone end page frame + 1 */ 365 struct rtree_node *rtree; /* Radix Tree Root */ 366 int levels; /* Number of Radix Tree Levels */ 367 unsigned int blocks; /* Number of Bitmap Blocks */ 368 }; 369 370 /* strcut bm_position is used for browsing memory bitmaps */ 371 372 struct bm_position { 373 struct mem_zone_bm_rtree *zone; 374 struct rtree_node *node; 375 unsigned long node_pfn; 376 int node_bit; 377 }; 378 379 struct memory_bitmap { 380 struct list_head zones; 381 struct linked_page *p_list; /* list of pages used to store zone 382 bitmap objects and bitmap block 383 objects */ 384 struct bm_position cur; /* most recently used bit position */ 385 }; 386 387 /* Functions that operate on memory bitmaps */ 388 389 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 390 #if BITS_PER_LONG == 32 391 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 392 #else 393 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 394 #endif 395 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 396 397 /** 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 399 * 400 * This function is used to allocate inner nodes as well as the 401 * leave nodes of the radix tree. It also adds the node to the 402 * corresponding linked list passed in by the *list parameter. 403 */ 404 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 405 struct chain_allocator *ca, 406 struct list_head *list) 407 { 408 struct rtree_node *node; 409 410 node = chain_alloc(ca, sizeof(struct rtree_node)); 411 if (!node) 412 return NULL; 413 414 node->data = get_image_page(gfp_mask, safe_needed); 415 if (!node->data) 416 return NULL; 417 418 list_add_tail(&node->list, list); 419 420 return node; 421 } 422 423 /** 424 * add_rtree_block - Add a new leave node to the radix tree. 425 * 426 * The leave nodes need to be allocated in order to keep the leaves 427 * linked list in order. This is guaranteed by the zone->blocks 428 * counter. 429 */ 430 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 431 int safe_needed, struct chain_allocator *ca) 432 { 433 struct rtree_node *node, *block, **dst; 434 unsigned int levels_needed, block_nr; 435 int i; 436 437 block_nr = zone->blocks; 438 levels_needed = 0; 439 440 /* How many levels do we need for this block nr? */ 441 while (block_nr) { 442 levels_needed += 1; 443 block_nr >>= BM_RTREE_LEVEL_SHIFT; 444 } 445 446 /* Make sure the rtree has enough levels */ 447 for (i = zone->levels; i < levels_needed; i++) { 448 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 449 &zone->nodes); 450 if (!node) 451 return -ENOMEM; 452 453 node->data[0] = (unsigned long)zone->rtree; 454 zone->rtree = node; 455 zone->levels += 1; 456 } 457 458 /* Allocate new block */ 459 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 460 if (!block) 461 return -ENOMEM; 462 463 /* Now walk the rtree to insert the block */ 464 node = zone->rtree; 465 dst = &zone->rtree; 466 block_nr = zone->blocks; 467 for (i = zone->levels; i > 0; i--) { 468 int index; 469 470 if (!node) { 471 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 472 &zone->nodes); 473 if (!node) 474 return -ENOMEM; 475 *dst = node; 476 } 477 478 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 479 index &= BM_RTREE_LEVEL_MASK; 480 dst = (struct rtree_node **)&((*dst)->data[index]); 481 node = *dst; 482 } 483 484 zone->blocks += 1; 485 *dst = block; 486 487 return 0; 488 } 489 490 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 491 int clear_nosave_free); 492 493 /** 494 * create_zone_bm_rtree - Create a radix tree for one zone. 495 * 496 * Allocated the mem_zone_bm_rtree structure and initializes it. 497 * This function also allocated and builds the radix tree for the 498 * zone. 499 */ 500 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 501 int safe_needed, 502 struct chain_allocator *ca, 503 unsigned long start, 504 unsigned long end) 505 { 506 struct mem_zone_bm_rtree *zone; 507 unsigned int i, nr_blocks; 508 unsigned long pages; 509 510 pages = end - start; 511 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 512 if (!zone) 513 return NULL; 514 515 INIT_LIST_HEAD(&zone->nodes); 516 INIT_LIST_HEAD(&zone->leaves); 517 zone->start_pfn = start; 518 zone->end_pfn = end; 519 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 520 521 for (i = 0; i < nr_blocks; i++) { 522 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 523 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 524 return NULL; 525 } 526 } 527 528 return zone; 529 } 530 531 /** 532 * free_zone_bm_rtree - Free the memory of the radix tree. 533 * 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree 535 * structure itself is not freed here nor are the rtree_node 536 * structs. 537 */ 538 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 539 int clear_nosave_free) 540 { 541 struct rtree_node *node; 542 543 list_for_each_entry(node, &zone->nodes, list) 544 free_image_page(node->data, clear_nosave_free); 545 546 list_for_each_entry(node, &zone->leaves, list) 547 free_image_page(node->data, clear_nosave_free); 548 } 549 550 static void memory_bm_position_reset(struct memory_bitmap *bm) 551 { 552 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 553 list); 554 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 555 struct rtree_node, list); 556 bm->cur.node_pfn = 0; 557 bm->cur.node_bit = 0; 558 } 559 560 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 561 562 struct mem_extent { 563 struct list_head hook; 564 unsigned long start; 565 unsigned long end; 566 }; 567 568 /** 569 * free_mem_extents - Free a list of memory extents. 570 * @list: List of extents to free. 571 */ 572 static void free_mem_extents(struct list_head *list) 573 { 574 struct mem_extent *ext, *aux; 575 576 list_for_each_entry_safe(ext, aux, list, hook) { 577 list_del(&ext->hook); 578 kfree(ext); 579 } 580 } 581 582 /** 583 * create_mem_extents - Create a list of memory extents. 584 * @list: List to put the extents into. 585 * @gfp_mask: Mask to use for memory allocations. 586 * 587 * The extents represent contiguous ranges of PFNs. 588 */ 589 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 590 { 591 struct zone *zone; 592 593 INIT_LIST_HEAD(list); 594 595 for_each_populated_zone(zone) { 596 unsigned long zone_start, zone_end; 597 struct mem_extent *ext, *cur, *aux; 598 599 zone_start = zone->zone_start_pfn; 600 zone_end = zone_end_pfn(zone); 601 602 list_for_each_entry(ext, list, hook) 603 if (zone_start <= ext->end) 604 break; 605 606 if (&ext->hook == list || zone_end < ext->start) { 607 /* New extent is necessary */ 608 struct mem_extent *new_ext; 609 610 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 611 if (!new_ext) { 612 free_mem_extents(list); 613 return -ENOMEM; 614 } 615 new_ext->start = zone_start; 616 new_ext->end = zone_end; 617 list_add_tail(&new_ext->hook, &ext->hook); 618 continue; 619 } 620 621 /* Merge this zone's range of PFNs with the existing one */ 622 if (zone_start < ext->start) 623 ext->start = zone_start; 624 if (zone_end > ext->end) 625 ext->end = zone_end; 626 627 /* More merging may be possible */ 628 cur = ext; 629 list_for_each_entry_safe_continue(cur, aux, list, hook) { 630 if (zone_end < cur->start) 631 break; 632 if (zone_end < cur->end) 633 ext->end = cur->end; 634 list_del(&cur->hook); 635 kfree(cur); 636 } 637 } 638 639 return 0; 640 } 641 642 /** 643 * memory_bm_create - Allocate memory for a memory bitmap. 644 */ 645 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 646 int safe_needed) 647 { 648 struct chain_allocator ca; 649 struct list_head mem_extents; 650 struct mem_extent *ext; 651 int error; 652 653 chain_init(&ca, gfp_mask, safe_needed); 654 INIT_LIST_HEAD(&bm->zones); 655 656 error = create_mem_extents(&mem_extents, gfp_mask); 657 if (error) 658 return error; 659 660 list_for_each_entry(ext, &mem_extents, hook) { 661 struct mem_zone_bm_rtree *zone; 662 663 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 664 ext->start, ext->end); 665 if (!zone) { 666 error = -ENOMEM; 667 goto Error; 668 } 669 list_add_tail(&zone->list, &bm->zones); 670 } 671 672 bm->p_list = ca.chain; 673 memory_bm_position_reset(bm); 674 Exit: 675 free_mem_extents(&mem_extents); 676 return error; 677 678 Error: 679 bm->p_list = ca.chain; 680 memory_bm_free(bm, PG_UNSAFE_CLEAR); 681 goto Exit; 682 } 683 684 /** 685 * memory_bm_free - Free memory occupied by the memory bitmap. 686 * @bm: Memory bitmap. 687 */ 688 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 689 { 690 struct mem_zone_bm_rtree *zone; 691 692 list_for_each_entry(zone, &bm->zones, list) 693 free_zone_bm_rtree(zone, clear_nosave_free); 694 695 free_list_of_pages(bm->p_list, clear_nosave_free); 696 697 INIT_LIST_HEAD(&bm->zones); 698 } 699 700 /** 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 702 * 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 705 * 706 * Walk the radix tree to find the page containing the bit that represents @pfn 707 * and return the position of the bit in @addr and @bit_nr. 708 */ 709 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 710 void **addr, unsigned int *bit_nr) 711 { 712 struct mem_zone_bm_rtree *curr, *zone; 713 struct rtree_node *node; 714 int i, block_nr; 715 716 zone = bm->cur.zone; 717 718 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 719 goto zone_found; 720 721 zone = NULL; 722 723 /* Find the right zone */ 724 list_for_each_entry(curr, &bm->zones, list) { 725 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 726 zone = curr; 727 break; 728 } 729 } 730 731 if (!zone) 732 return -EFAULT; 733 734 zone_found: 735 /* 736 * We have found the zone. Now walk the radix tree to find the leaf node 737 * for our PFN. 738 */ 739 node = bm->cur.node; 740 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 741 goto node_found; 742 743 node = zone->rtree; 744 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 745 746 for (i = zone->levels; i > 0; i--) { 747 int index; 748 749 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 750 index &= BM_RTREE_LEVEL_MASK; 751 BUG_ON(node->data[index] == 0); 752 node = (struct rtree_node *)node->data[index]; 753 } 754 755 node_found: 756 /* Update last position */ 757 bm->cur.zone = zone; 758 bm->cur.node = node; 759 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 760 761 /* Set return values */ 762 *addr = node->data; 763 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 764 765 return 0; 766 } 767 768 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 769 { 770 void *addr; 771 unsigned int bit; 772 int error; 773 774 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 775 BUG_ON(error); 776 set_bit(bit, addr); 777 } 778 779 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 780 { 781 void *addr; 782 unsigned int bit; 783 int error; 784 785 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 786 if (!error) 787 set_bit(bit, addr); 788 789 return error; 790 } 791 792 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 793 { 794 void *addr; 795 unsigned int bit; 796 int error; 797 798 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 799 BUG_ON(error); 800 clear_bit(bit, addr); 801 } 802 803 static void memory_bm_clear_current(struct memory_bitmap *bm) 804 { 805 int bit; 806 807 bit = max(bm->cur.node_bit - 1, 0); 808 clear_bit(bit, bm->cur.node->data); 809 } 810 811 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 812 { 813 void *addr; 814 unsigned int bit; 815 int error; 816 817 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 818 BUG_ON(error); 819 return test_bit(bit, addr); 820 } 821 822 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 823 { 824 void *addr; 825 unsigned int bit; 826 827 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 828 } 829 830 /* 831 * rtree_next_node - Jump to the next leaf node. 832 * 833 * Set the position to the beginning of the next node in the 834 * memory bitmap. This is either the next node in the current 835 * zone's radix tree or the first node in the radix tree of the 836 * next zone. 837 * 838 * Return true if there is a next node, false otherwise. 839 */ 840 static bool rtree_next_node(struct memory_bitmap *bm) 841 { 842 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 843 bm->cur.node = list_entry(bm->cur.node->list.next, 844 struct rtree_node, list); 845 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 846 bm->cur.node_bit = 0; 847 touch_softlockup_watchdog(); 848 return true; 849 } 850 851 /* No more nodes, goto next zone */ 852 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 853 bm->cur.zone = list_entry(bm->cur.zone->list.next, 854 struct mem_zone_bm_rtree, list); 855 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 856 struct rtree_node, list); 857 bm->cur.node_pfn = 0; 858 bm->cur.node_bit = 0; 859 return true; 860 } 861 862 /* No more zones */ 863 return false; 864 } 865 866 /** 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap. 868 * @bm: Memory bitmap. 869 * 870 * Starting from the last returned position this function searches for the next 871 * set bit in @bm and returns the PFN represented by it. If no more bits are 872 * set, BM_END_OF_MAP is returned. 873 * 874 * It is required to run memory_bm_position_reset() before the first call to 875 * this function for the given memory bitmap. 876 */ 877 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 878 { 879 unsigned long bits, pfn, pages; 880 int bit; 881 882 do { 883 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 884 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 885 bit = find_next_bit(bm->cur.node->data, bits, 886 bm->cur.node_bit); 887 if (bit < bits) { 888 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 889 bm->cur.node_bit = bit + 1; 890 return pfn; 891 } 892 } while (rtree_next_node(bm)); 893 894 return BM_END_OF_MAP; 895 } 896 897 /* 898 * This structure represents a range of page frames the contents of which 899 * should not be saved during hibernation. 900 */ 901 struct nosave_region { 902 struct list_head list; 903 unsigned long start_pfn; 904 unsigned long end_pfn; 905 }; 906 907 static LIST_HEAD(nosave_regions); 908 909 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 910 { 911 struct rtree_node *node; 912 913 list_for_each_entry(node, &zone->nodes, list) 914 recycle_safe_page(node->data); 915 916 list_for_each_entry(node, &zone->leaves, list) 917 recycle_safe_page(node->data); 918 } 919 920 static void memory_bm_recycle(struct memory_bitmap *bm) 921 { 922 struct mem_zone_bm_rtree *zone; 923 struct linked_page *p_list; 924 925 list_for_each_entry(zone, &bm->zones, list) 926 recycle_zone_bm_rtree(zone); 927 928 p_list = bm->p_list; 929 while (p_list) { 930 struct linked_page *lp = p_list; 931 932 p_list = lp->next; 933 recycle_safe_page(lp); 934 } 935 } 936 937 /** 938 * register_nosave_region - Register a region of unsaveable memory. 939 * 940 * Register a range of page frames the contents of which should not be saved 941 * during hibernation (to be used in the early initialization code). 942 */ 943 void __init __register_nosave_region(unsigned long start_pfn, 944 unsigned long end_pfn, int use_kmalloc) 945 { 946 struct nosave_region *region; 947 948 if (start_pfn >= end_pfn) 949 return; 950 951 if (!list_empty(&nosave_regions)) { 952 /* Try to extend the previous region (they should be sorted) */ 953 region = list_entry(nosave_regions.prev, 954 struct nosave_region, list); 955 if (region->end_pfn == start_pfn) { 956 region->end_pfn = end_pfn; 957 goto Report; 958 } 959 } 960 if (use_kmalloc) { 961 /* During init, this shouldn't fail */ 962 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 963 BUG_ON(!region); 964 } else { 965 /* This allocation cannot fail */ 966 region = memblock_alloc(sizeof(struct nosave_region), 967 SMP_CACHE_BYTES); 968 if (!region) 969 panic("%s: Failed to allocate %zu bytes\n", __func__, 970 sizeof(struct nosave_region)); 971 } 972 region->start_pfn = start_pfn; 973 region->end_pfn = end_pfn; 974 list_add_tail(®ion->list, &nosave_regions); 975 Report: 976 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 977 (unsigned long long) start_pfn << PAGE_SHIFT, 978 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 979 } 980 981 /* 982 * Set bits in this map correspond to the page frames the contents of which 983 * should not be saved during the suspend. 984 */ 985 static struct memory_bitmap *forbidden_pages_map; 986 987 /* Set bits in this map correspond to free page frames. */ 988 static struct memory_bitmap *free_pages_map; 989 990 /* 991 * Each page frame allocated for creating the image is marked by setting the 992 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 993 */ 994 995 void swsusp_set_page_free(struct page *page) 996 { 997 if (free_pages_map) 998 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 999 } 1000 1001 static int swsusp_page_is_free(struct page *page) 1002 { 1003 return free_pages_map ? 1004 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1005 } 1006 1007 void swsusp_unset_page_free(struct page *page) 1008 { 1009 if (free_pages_map) 1010 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1011 } 1012 1013 static void swsusp_set_page_forbidden(struct page *page) 1014 { 1015 if (forbidden_pages_map) 1016 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1017 } 1018 1019 int swsusp_page_is_forbidden(struct page *page) 1020 { 1021 return forbidden_pages_map ? 1022 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1023 } 1024 1025 static void swsusp_unset_page_forbidden(struct page *page) 1026 { 1027 if (forbidden_pages_map) 1028 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1029 } 1030 1031 /** 1032 * mark_nosave_pages - Mark pages that should not be saved. 1033 * @bm: Memory bitmap. 1034 * 1035 * Set the bits in @bm that correspond to the page frames the contents of which 1036 * should not be saved. 1037 */ 1038 static void mark_nosave_pages(struct memory_bitmap *bm) 1039 { 1040 struct nosave_region *region; 1041 1042 if (list_empty(&nosave_regions)) 1043 return; 1044 1045 list_for_each_entry(region, &nosave_regions, list) { 1046 unsigned long pfn; 1047 1048 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1049 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1050 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1051 - 1); 1052 1053 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1054 if (pfn_valid(pfn)) { 1055 /* 1056 * It is safe to ignore the result of 1057 * mem_bm_set_bit_check() here, since we won't 1058 * touch the PFNs for which the error is 1059 * returned anyway. 1060 */ 1061 mem_bm_set_bit_check(bm, pfn); 1062 } 1063 } 1064 } 1065 1066 /** 1067 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1068 * 1069 * Create bitmaps needed for marking page frames that should not be saved and 1070 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1071 * only modified if everything goes well, because we don't want the bits to be 1072 * touched before both bitmaps are set up. 1073 */ 1074 int create_basic_memory_bitmaps(void) 1075 { 1076 struct memory_bitmap *bm1, *bm2; 1077 int error = 0; 1078 1079 if (forbidden_pages_map && free_pages_map) 1080 return 0; 1081 else 1082 BUG_ON(forbidden_pages_map || free_pages_map); 1083 1084 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1085 if (!bm1) 1086 return -ENOMEM; 1087 1088 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1089 if (error) 1090 goto Free_first_object; 1091 1092 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1093 if (!bm2) 1094 goto Free_first_bitmap; 1095 1096 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1097 if (error) 1098 goto Free_second_object; 1099 1100 forbidden_pages_map = bm1; 1101 free_pages_map = bm2; 1102 mark_nosave_pages(forbidden_pages_map); 1103 1104 pr_debug("Basic memory bitmaps created\n"); 1105 1106 return 0; 1107 1108 Free_second_object: 1109 kfree(bm2); 1110 Free_first_bitmap: 1111 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1112 Free_first_object: 1113 kfree(bm1); 1114 return -ENOMEM; 1115 } 1116 1117 /** 1118 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1119 * 1120 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1121 * auxiliary pointers are necessary so that the bitmaps themselves are not 1122 * referred to while they are being freed. 1123 */ 1124 void free_basic_memory_bitmaps(void) 1125 { 1126 struct memory_bitmap *bm1, *bm2; 1127 1128 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1129 return; 1130 1131 bm1 = forbidden_pages_map; 1132 bm2 = free_pages_map; 1133 forbidden_pages_map = NULL; 1134 free_pages_map = NULL; 1135 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1136 kfree(bm1); 1137 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1138 kfree(bm2); 1139 1140 pr_debug("Basic memory bitmaps freed\n"); 1141 } 1142 1143 void clear_free_pages(void) 1144 { 1145 #ifdef CONFIG_PAGE_POISONING_ZERO 1146 struct memory_bitmap *bm = free_pages_map; 1147 unsigned long pfn; 1148 1149 if (WARN_ON(!(free_pages_map))) 1150 return; 1151 1152 memory_bm_position_reset(bm); 1153 pfn = memory_bm_next_pfn(bm); 1154 while (pfn != BM_END_OF_MAP) { 1155 if (pfn_valid(pfn)) 1156 clear_highpage(pfn_to_page(pfn)); 1157 1158 pfn = memory_bm_next_pfn(bm); 1159 } 1160 memory_bm_position_reset(bm); 1161 pr_info("free pages cleared after restore\n"); 1162 #endif /* PAGE_POISONING_ZERO */ 1163 } 1164 1165 /** 1166 * snapshot_additional_pages - Estimate the number of extra pages needed. 1167 * @zone: Memory zone to carry out the computation for. 1168 * 1169 * Estimate the number of additional pages needed for setting up a hibernation 1170 * image data structures for @zone (usually, the returned value is greater than 1171 * the exact number). 1172 */ 1173 unsigned int snapshot_additional_pages(struct zone *zone) 1174 { 1175 unsigned int rtree, nodes; 1176 1177 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1178 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1179 LINKED_PAGE_DATA_SIZE); 1180 while (nodes > 1) { 1181 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1182 rtree += nodes; 1183 } 1184 1185 return 2 * rtree; 1186 } 1187 1188 #ifdef CONFIG_HIGHMEM 1189 /** 1190 * count_free_highmem_pages - Compute the total number of free highmem pages. 1191 * 1192 * The returned number is system-wide. 1193 */ 1194 static unsigned int count_free_highmem_pages(void) 1195 { 1196 struct zone *zone; 1197 unsigned int cnt = 0; 1198 1199 for_each_populated_zone(zone) 1200 if (is_highmem(zone)) 1201 cnt += zone_page_state(zone, NR_FREE_PAGES); 1202 1203 return cnt; 1204 } 1205 1206 /** 1207 * saveable_highmem_page - Check if a highmem page is saveable. 1208 * 1209 * Determine whether a highmem page should be included in a hibernation image. 1210 * 1211 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1212 * and it isn't part of a free chunk of pages. 1213 */ 1214 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1215 { 1216 struct page *page; 1217 1218 if (!pfn_valid(pfn)) 1219 return NULL; 1220 1221 page = pfn_to_online_page(pfn); 1222 if (!page || page_zone(page) != zone) 1223 return NULL; 1224 1225 BUG_ON(!PageHighMem(page)); 1226 1227 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1228 return NULL; 1229 1230 if (PageReserved(page) || PageOffline(page)) 1231 return NULL; 1232 1233 if (page_is_guard(page)) 1234 return NULL; 1235 1236 return page; 1237 } 1238 1239 /** 1240 * count_highmem_pages - Compute the total number of saveable highmem pages. 1241 */ 1242 static unsigned int count_highmem_pages(void) 1243 { 1244 struct zone *zone; 1245 unsigned int n = 0; 1246 1247 for_each_populated_zone(zone) { 1248 unsigned long pfn, max_zone_pfn; 1249 1250 if (!is_highmem(zone)) 1251 continue; 1252 1253 mark_free_pages(zone); 1254 max_zone_pfn = zone_end_pfn(zone); 1255 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1256 if (saveable_highmem_page(zone, pfn)) 1257 n++; 1258 } 1259 return n; 1260 } 1261 #else 1262 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1263 { 1264 return NULL; 1265 } 1266 #endif /* CONFIG_HIGHMEM */ 1267 1268 /** 1269 * saveable_page - Check if the given page is saveable. 1270 * 1271 * Determine whether a non-highmem page should be included in a hibernation 1272 * image. 1273 * 1274 * We should save the page if it isn't Nosave, and is not in the range 1275 * of pages statically defined as 'unsaveable', and it isn't part of 1276 * a free chunk of pages. 1277 */ 1278 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1279 { 1280 struct page *page; 1281 1282 if (!pfn_valid(pfn)) 1283 return NULL; 1284 1285 page = pfn_to_online_page(pfn); 1286 if (!page || page_zone(page) != zone) 1287 return NULL; 1288 1289 BUG_ON(PageHighMem(page)); 1290 1291 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1292 return NULL; 1293 1294 if (PageOffline(page)) 1295 return NULL; 1296 1297 if (PageReserved(page) 1298 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1299 return NULL; 1300 1301 if (page_is_guard(page)) 1302 return NULL; 1303 1304 return page; 1305 } 1306 1307 /** 1308 * count_data_pages - Compute the total number of saveable non-highmem pages. 1309 */ 1310 static unsigned int count_data_pages(void) 1311 { 1312 struct zone *zone; 1313 unsigned long pfn, max_zone_pfn; 1314 unsigned int n = 0; 1315 1316 for_each_populated_zone(zone) { 1317 if (is_highmem(zone)) 1318 continue; 1319 1320 mark_free_pages(zone); 1321 max_zone_pfn = zone_end_pfn(zone); 1322 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1323 if (saveable_page(zone, pfn)) 1324 n++; 1325 } 1326 return n; 1327 } 1328 1329 /* 1330 * This is needed, because copy_page and memcpy are not usable for copying 1331 * task structs. 1332 */ 1333 static inline void do_copy_page(long *dst, long *src) 1334 { 1335 int n; 1336 1337 for (n = PAGE_SIZE / sizeof(long); n; n--) 1338 *dst++ = *src++; 1339 } 1340 1341 /** 1342 * safe_copy_page - Copy a page in a safe way. 1343 * 1344 * Check if the page we are going to copy is marked as present in the kernel 1345 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or 1346 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present() 1347 * always returns 'true'. 1348 */ 1349 static void safe_copy_page(void *dst, struct page *s_page) 1350 { 1351 if (kernel_page_present(s_page)) { 1352 do_copy_page(dst, page_address(s_page)); 1353 } else { 1354 kernel_map_pages(s_page, 1, 1); 1355 do_copy_page(dst, page_address(s_page)); 1356 kernel_map_pages(s_page, 1, 0); 1357 } 1358 } 1359 1360 #ifdef CONFIG_HIGHMEM 1361 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1362 { 1363 return is_highmem(zone) ? 1364 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1365 } 1366 1367 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1368 { 1369 struct page *s_page, *d_page; 1370 void *src, *dst; 1371 1372 s_page = pfn_to_page(src_pfn); 1373 d_page = pfn_to_page(dst_pfn); 1374 if (PageHighMem(s_page)) { 1375 src = kmap_atomic(s_page); 1376 dst = kmap_atomic(d_page); 1377 do_copy_page(dst, src); 1378 kunmap_atomic(dst); 1379 kunmap_atomic(src); 1380 } else { 1381 if (PageHighMem(d_page)) { 1382 /* 1383 * The page pointed to by src may contain some kernel 1384 * data modified by kmap_atomic() 1385 */ 1386 safe_copy_page(buffer, s_page); 1387 dst = kmap_atomic(d_page); 1388 copy_page(dst, buffer); 1389 kunmap_atomic(dst); 1390 } else { 1391 safe_copy_page(page_address(d_page), s_page); 1392 } 1393 } 1394 } 1395 #else 1396 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1397 1398 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1399 { 1400 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1401 pfn_to_page(src_pfn)); 1402 } 1403 #endif /* CONFIG_HIGHMEM */ 1404 1405 static void copy_data_pages(struct memory_bitmap *copy_bm, 1406 struct memory_bitmap *orig_bm) 1407 { 1408 struct zone *zone; 1409 unsigned long pfn; 1410 1411 for_each_populated_zone(zone) { 1412 unsigned long max_zone_pfn; 1413 1414 mark_free_pages(zone); 1415 max_zone_pfn = zone_end_pfn(zone); 1416 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1417 if (page_is_saveable(zone, pfn)) 1418 memory_bm_set_bit(orig_bm, pfn); 1419 } 1420 memory_bm_position_reset(orig_bm); 1421 memory_bm_position_reset(copy_bm); 1422 for(;;) { 1423 pfn = memory_bm_next_pfn(orig_bm); 1424 if (unlikely(pfn == BM_END_OF_MAP)) 1425 break; 1426 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1427 } 1428 } 1429 1430 /* Total number of image pages */ 1431 static unsigned int nr_copy_pages; 1432 /* Number of pages needed for saving the original pfns of the image pages */ 1433 static unsigned int nr_meta_pages; 1434 /* 1435 * Numbers of normal and highmem page frames allocated for hibernation image 1436 * before suspending devices. 1437 */ 1438 static unsigned int alloc_normal, alloc_highmem; 1439 /* 1440 * Memory bitmap used for marking saveable pages (during hibernation) or 1441 * hibernation image pages (during restore) 1442 */ 1443 static struct memory_bitmap orig_bm; 1444 /* 1445 * Memory bitmap used during hibernation for marking allocated page frames that 1446 * will contain copies of saveable pages. During restore it is initially used 1447 * for marking hibernation image pages, but then the set bits from it are 1448 * duplicated in @orig_bm and it is released. On highmem systems it is next 1449 * used for marking "safe" highmem pages, but it has to be reinitialized for 1450 * this purpose. 1451 */ 1452 static struct memory_bitmap copy_bm; 1453 1454 /** 1455 * swsusp_free - Free pages allocated for hibernation image. 1456 * 1457 * Image pages are alocated before snapshot creation, so they need to be 1458 * released after resume. 1459 */ 1460 void swsusp_free(void) 1461 { 1462 unsigned long fb_pfn, fr_pfn; 1463 1464 if (!forbidden_pages_map || !free_pages_map) 1465 goto out; 1466 1467 memory_bm_position_reset(forbidden_pages_map); 1468 memory_bm_position_reset(free_pages_map); 1469 1470 loop: 1471 fr_pfn = memory_bm_next_pfn(free_pages_map); 1472 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1473 1474 /* 1475 * Find the next bit set in both bitmaps. This is guaranteed to 1476 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1477 */ 1478 do { 1479 if (fb_pfn < fr_pfn) 1480 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1481 if (fr_pfn < fb_pfn) 1482 fr_pfn = memory_bm_next_pfn(free_pages_map); 1483 } while (fb_pfn != fr_pfn); 1484 1485 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1486 struct page *page = pfn_to_page(fr_pfn); 1487 1488 memory_bm_clear_current(forbidden_pages_map); 1489 memory_bm_clear_current(free_pages_map); 1490 hibernate_restore_unprotect_page(page_address(page)); 1491 __free_page(page); 1492 goto loop; 1493 } 1494 1495 out: 1496 nr_copy_pages = 0; 1497 nr_meta_pages = 0; 1498 restore_pblist = NULL; 1499 buffer = NULL; 1500 alloc_normal = 0; 1501 alloc_highmem = 0; 1502 hibernate_restore_protection_end(); 1503 } 1504 1505 /* Helper functions used for the shrinking of memory. */ 1506 1507 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1508 1509 /** 1510 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1511 * @nr_pages: Number of page frames to allocate. 1512 * @mask: GFP flags to use for the allocation. 1513 * 1514 * Return value: Number of page frames actually allocated 1515 */ 1516 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1517 { 1518 unsigned long nr_alloc = 0; 1519 1520 while (nr_pages > 0) { 1521 struct page *page; 1522 1523 page = alloc_image_page(mask); 1524 if (!page) 1525 break; 1526 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1527 if (PageHighMem(page)) 1528 alloc_highmem++; 1529 else 1530 alloc_normal++; 1531 nr_pages--; 1532 nr_alloc++; 1533 } 1534 1535 return nr_alloc; 1536 } 1537 1538 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1539 unsigned long avail_normal) 1540 { 1541 unsigned long alloc; 1542 1543 if (avail_normal <= alloc_normal) 1544 return 0; 1545 1546 alloc = avail_normal - alloc_normal; 1547 if (nr_pages < alloc) 1548 alloc = nr_pages; 1549 1550 return preallocate_image_pages(alloc, GFP_IMAGE); 1551 } 1552 1553 #ifdef CONFIG_HIGHMEM 1554 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1555 { 1556 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1557 } 1558 1559 /** 1560 * __fraction - Compute (an approximation of) x * (multiplier / base). 1561 */ 1562 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1563 { 1564 x *= multiplier; 1565 do_div(x, base); 1566 return (unsigned long)x; 1567 } 1568 1569 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1570 unsigned long highmem, 1571 unsigned long total) 1572 { 1573 unsigned long alloc = __fraction(nr_pages, highmem, total); 1574 1575 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1576 } 1577 #else /* CONFIG_HIGHMEM */ 1578 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1579 { 1580 return 0; 1581 } 1582 1583 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1584 unsigned long highmem, 1585 unsigned long total) 1586 { 1587 return 0; 1588 } 1589 #endif /* CONFIG_HIGHMEM */ 1590 1591 /** 1592 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1593 */ 1594 static unsigned long free_unnecessary_pages(void) 1595 { 1596 unsigned long save, to_free_normal, to_free_highmem, free; 1597 1598 save = count_data_pages(); 1599 if (alloc_normal >= save) { 1600 to_free_normal = alloc_normal - save; 1601 save = 0; 1602 } else { 1603 to_free_normal = 0; 1604 save -= alloc_normal; 1605 } 1606 save += count_highmem_pages(); 1607 if (alloc_highmem >= save) { 1608 to_free_highmem = alloc_highmem - save; 1609 } else { 1610 to_free_highmem = 0; 1611 save -= alloc_highmem; 1612 if (to_free_normal > save) 1613 to_free_normal -= save; 1614 else 1615 to_free_normal = 0; 1616 } 1617 free = to_free_normal + to_free_highmem; 1618 1619 memory_bm_position_reset(©_bm); 1620 1621 while (to_free_normal > 0 || to_free_highmem > 0) { 1622 unsigned long pfn = memory_bm_next_pfn(©_bm); 1623 struct page *page = pfn_to_page(pfn); 1624 1625 if (PageHighMem(page)) { 1626 if (!to_free_highmem) 1627 continue; 1628 to_free_highmem--; 1629 alloc_highmem--; 1630 } else { 1631 if (!to_free_normal) 1632 continue; 1633 to_free_normal--; 1634 alloc_normal--; 1635 } 1636 memory_bm_clear_bit(©_bm, pfn); 1637 swsusp_unset_page_forbidden(page); 1638 swsusp_unset_page_free(page); 1639 __free_page(page); 1640 } 1641 1642 return free; 1643 } 1644 1645 /** 1646 * minimum_image_size - Estimate the minimum acceptable size of an image. 1647 * @saveable: Number of saveable pages in the system. 1648 * 1649 * We want to avoid attempting to free too much memory too hard, so estimate the 1650 * minimum acceptable size of a hibernation image to use as the lower limit for 1651 * preallocating memory. 1652 * 1653 * We assume that the minimum image size should be proportional to 1654 * 1655 * [number of saveable pages] - [number of pages that can be freed in theory] 1656 * 1657 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1658 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1659 */ 1660 static unsigned long minimum_image_size(unsigned long saveable) 1661 { 1662 unsigned long size; 1663 1664 size = global_node_page_state(NR_SLAB_RECLAIMABLE) 1665 + global_node_page_state(NR_ACTIVE_ANON) 1666 + global_node_page_state(NR_INACTIVE_ANON) 1667 + global_node_page_state(NR_ACTIVE_FILE) 1668 + global_node_page_state(NR_INACTIVE_FILE); 1669 1670 return saveable <= size ? 0 : saveable - size; 1671 } 1672 1673 /** 1674 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1675 * 1676 * To create a hibernation image it is necessary to make a copy of every page 1677 * frame in use. We also need a number of page frames to be free during 1678 * hibernation for allocations made while saving the image and for device 1679 * drivers, in case they need to allocate memory from their hibernation 1680 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1681 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1682 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1683 * total number of available page frames and allocate at least 1684 * 1685 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1686 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1687 * 1688 * of them, which corresponds to the maximum size of a hibernation image. 1689 * 1690 * If image_size is set below the number following from the above formula, 1691 * the preallocation of memory is continued until the total number of saveable 1692 * pages in the system is below the requested image size or the minimum 1693 * acceptable image size returned by minimum_image_size(), whichever is greater. 1694 */ 1695 int hibernate_preallocate_memory(void) 1696 { 1697 struct zone *zone; 1698 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1699 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1700 ktime_t start, stop; 1701 int error; 1702 1703 pr_info("Preallocating image memory... "); 1704 start = ktime_get(); 1705 1706 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1707 if (error) 1708 goto err_out; 1709 1710 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1711 if (error) 1712 goto err_out; 1713 1714 alloc_normal = 0; 1715 alloc_highmem = 0; 1716 1717 /* Count the number of saveable data pages. */ 1718 save_highmem = count_highmem_pages(); 1719 saveable = count_data_pages(); 1720 1721 /* 1722 * Compute the total number of page frames we can use (count) and the 1723 * number of pages needed for image metadata (size). 1724 */ 1725 count = saveable; 1726 saveable += save_highmem; 1727 highmem = save_highmem; 1728 size = 0; 1729 for_each_populated_zone(zone) { 1730 size += snapshot_additional_pages(zone); 1731 if (is_highmem(zone)) 1732 highmem += zone_page_state(zone, NR_FREE_PAGES); 1733 else 1734 count += zone_page_state(zone, NR_FREE_PAGES); 1735 } 1736 avail_normal = count; 1737 count += highmem; 1738 count -= totalreserve_pages; 1739 1740 /* Add number of pages required for page keys (s390 only). */ 1741 size += page_key_additional_pages(saveable); 1742 1743 /* Compute the maximum number of saveable pages to leave in memory. */ 1744 max_size = (count - (size + PAGES_FOR_IO)) / 2 1745 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1746 /* Compute the desired number of image pages specified by image_size. */ 1747 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1748 if (size > max_size) 1749 size = max_size; 1750 /* 1751 * If the desired number of image pages is at least as large as the 1752 * current number of saveable pages in memory, allocate page frames for 1753 * the image and we're done. 1754 */ 1755 if (size >= saveable) { 1756 pages = preallocate_image_highmem(save_highmem); 1757 pages += preallocate_image_memory(saveable - pages, avail_normal); 1758 goto out; 1759 } 1760 1761 /* Estimate the minimum size of the image. */ 1762 pages = minimum_image_size(saveable); 1763 /* 1764 * To avoid excessive pressure on the normal zone, leave room in it to 1765 * accommodate an image of the minimum size (unless it's already too 1766 * small, in which case don't preallocate pages from it at all). 1767 */ 1768 if (avail_normal > pages) 1769 avail_normal -= pages; 1770 else 1771 avail_normal = 0; 1772 if (size < pages) 1773 size = min_t(unsigned long, pages, max_size); 1774 1775 /* 1776 * Let the memory management subsystem know that we're going to need a 1777 * large number of page frames to allocate and make it free some memory. 1778 * NOTE: If this is not done, performance will be hurt badly in some 1779 * test cases. 1780 */ 1781 shrink_all_memory(saveable - size); 1782 1783 /* 1784 * The number of saveable pages in memory was too high, so apply some 1785 * pressure to decrease it. First, make room for the largest possible 1786 * image and fail if that doesn't work. Next, try to decrease the size 1787 * of the image as much as indicated by 'size' using allocations from 1788 * highmem and non-highmem zones separately. 1789 */ 1790 pages_highmem = preallocate_image_highmem(highmem / 2); 1791 alloc = count - max_size; 1792 if (alloc > pages_highmem) 1793 alloc -= pages_highmem; 1794 else 1795 alloc = 0; 1796 pages = preallocate_image_memory(alloc, avail_normal); 1797 if (pages < alloc) { 1798 /* We have exhausted non-highmem pages, try highmem. */ 1799 alloc -= pages; 1800 pages += pages_highmem; 1801 pages_highmem = preallocate_image_highmem(alloc); 1802 if (pages_highmem < alloc) 1803 goto err_out; 1804 pages += pages_highmem; 1805 /* 1806 * size is the desired number of saveable pages to leave in 1807 * memory, so try to preallocate (all memory - size) pages. 1808 */ 1809 alloc = (count - pages) - size; 1810 pages += preallocate_image_highmem(alloc); 1811 } else { 1812 /* 1813 * There are approximately max_size saveable pages at this point 1814 * and we want to reduce this number down to size. 1815 */ 1816 alloc = max_size - size; 1817 size = preallocate_highmem_fraction(alloc, highmem, count); 1818 pages_highmem += size; 1819 alloc -= size; 1820 size = preallocate_image_memory(alloc, avail_normal); 1821 pages_highmem += preallocate_image_highmem(alloc - size); 1822 pages += pages_highmem + size; 1823 } 1824 1825 /* 1826 * We only need as many page frames for the image as there are saveable 1827 * pages in memory, but we have allocated more. Release the excessive 1828 * ones now. 1829 */ 1830 pages -= free_unnecessary_pages(); 1831 1832 out: 1833 stop = ktime_get(); 1834 pr_cont("done (allocated %lu pages)\n", pages); 1835 swsusp_show_speed(start, stop, pages, "Allocated"); 1836 1837 return 0; 1838 1839 err_out: 1840 pr_cont("\n"); 1841 swsusp_free(); 1842 return -ENOMEM; 1843 } 1844 1845 #ifdef CONFIG_HIGHMEM 1846 /** 1847 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1848 * 1849 * Compute the number of non-highmem pages that will be necessary for creating 1850 * copies of highmem pages. 1851 */ 1852 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1853 { 1854 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1855 1856 if (free_highmem >= nr_highmem) 1857 nr_highmem = 0; 1858 else 1859 nr_highmem -= free_highmem; 1860 1861 return nr_highmem; 1862 } 1863 #else 1864 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1865 #endif /* CONFIG_HIGHMEM */ 1866 1867 /** 1868 * enough_free_mem - Check if there is enough free memory for the image. 1869 */ 1870 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1871 { 1872 struct zone *zone; 1873 unsigned int free = alloc_normal; 1874 1875 for_each_populated_zone(zone) 1876 if (!is_highmem(zone)) 1877 free += zone_page_state(zone, NR_FREE_PAGES); 1878 1879 nr_pages += count_pages_for_highmem(nr_highmem); 1880 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 1881 nr_pages, PAGES_FOR_IO, free); 1882 1883 return free > nr_pages + PAGES_FOR_IO; 1884 } 1885 1886 #ifdef CONFIG_HIGHMEM 1887 /** 1888 * get_highmem_buffer - Allocate a buffer for highmem pages. 1889 * 1890 * If there are some highmem pages in the hibernation image, we may need a 1891 * buffer to copy them and/or load their data. 1892 */ 1893 static inline int get_highmem_buffer(int safe_needed) 1894 { 1895 buffer = get_image_page(GFP_ATOMIC, safe_needed); 1896 return buffer ? 0 : -ENOMEM; 1897 } 1898 1899 /** 1900 * alloc_highmem_image_pages - Allocate some highmem pages for the image. 1901 * 1902 * Try to allocate as many pages as needed, but if the number of free highmem 1903 * pages is less than that, allocate them all. 1904 */ 1905 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1906 unsigned int nr_highmem) 1907 { 1908 unsigned int to_alloc = count_free_highmem_pages(); 1909 1910 if (to_alloc > nr_highmem) 1911 to_alloc = nr_highmem; 1912 1913 nr_highmem -= to_alloc; 1914 while (to_alloc-- > 0) { 1915 struct page *page; 1916 1917 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 1918 memory_bm_set_bit(bm, page_to_pfn(page)); 1919 } 1920 return nr_highmem; 1921 } 1922 #else 1923 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1924 1925 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1926 unsigned int n) { return 0; } 1927 #endif /* CONFIG_HIGHMEM */ 1928 1929 /** 1930 * swsusp_alloc - Allocate memory for hibernation image. 1931 * 1932 * We first try to allocate as many highmem pages as there are 1933 * saveable highmem pages in the system. If that fails, we allocate 1934 * non-highmem pages for the copies of the remaining highmem ones. 1935 * 1936 * In this approach it is likely that the copies of highmem pages will 1937 * also be located in the high memory, because of the way in which 1938 * copy_data_pages() works. 1939 */ 1940 static int swsusp_alloc(struct memory_bitmap *copy_bm, 1941 unsigned int nr_pages, unsigned int nr_highmem) 1942 { 1943 if (nr_highmem > 0) { 1944 if (get_highmem_buffer(PG_ANY)) 1945 goto err_out; 1946 if (nr_highmem > alloc_highmem) { 1947 nr_highmem -= alloc_highmem; 1948 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1949 } 1950 } 1951 if (nr_pages > alloc_normal) { 1952 nr_pages -= alloc_normal; 1953 while (nr_pages-- > 0) { 1954 struct page *page; 1955 1956 page = alloc_image_page(GFP_ATOMIC); 1957 if (!page) 1958 goto err_out; 1959 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1960 } 1961 } 1962 1963 return 0; 1964 1965 err_out: 1966 swsusp_free(); 1967 return -ENOMEM; 1968 } 1969 1970 asmlinkage __visible int swsusp_save(void) 1971 { 1972 unsigned int nr_pages, nr_highmem; 1973 1974 pr_info("Creating hibernation image:\n"); 1975 1976 drain_local_pages(NULL); 1977 nr_pages = count_data_pages(); 1978 nr_highmem = count_highmem_pages(); 1979 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 1980 1981 if (!enough_free_mem(nr_pages, nr_highmem)) { 1982 pr_err("Not enough free memory\n"); 1983 return -ENOMEM; 1984 } 1985 1986 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 1987 pr_err("Memory allocation failed\n"); 1988 return -ENOMEM; 1989 } 1990 1991 /* 1992 * During allocating of suspend pagedir, new cold pages may appear. 1993 * Kill them. 1994 */ 1995 drain_local_pages(NULL); 1996 copy_data_pages(©_bm, &orig_bm); 1997 1998 /* 1999 * End of critical section. From now on, we can write to memory, 2000 * but we should not touch disk. This specially means we must _not_ 2001 * touch swap space! Except we must write out our image of course. 2002 */ 2003 2004 nr_pages += nr_highmem; 2005 nr_copy_pages = nr_pages; 2006 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2007 2008 pr_info("Hibernation image created (%d pages copied)\n", nr_pages); 2009 2010 return 0; 2011 } 2012 2013 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2014 static int init_header_complete(struct swsusp_info *info) 2015 { 2016 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2017 info->version_code = LINUX_VERSION_CODE; 2018 return 0; 2019 } 2020 2021 static char *check_image_kernel(struct swsusp_info *info) 2022 { 2023 if (info->version_code != LINUX_VERSION_CODE) 2024 return "kernel version"; 2025 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2026 return "system type"; 2027 if (strcmp(info->uts.release,init_utsname()->release)) 2028 return "kernel release"; 2029 if (strcmp(info->uts.version,init_utsname()->version)) 2030 return "version"; 2031 if (strcmp(info->uts.machine,init_utsname()->machine)) 2032 return "machine"; 2033 return NULL; 2034 } 2035 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2036 2037 unsigned long snapshot_get_image_size(void) 2038 { 2039 return nr_copy_pages + nr_meta_pages + 1; 2040 } 2041 2042 static int init_header(struct swsusp_info *info) 2043 { 2044 memset(info, 0, sizeof(struct swsusp_info)); 2045 info->num_physpages = get_num_physpages(); 2046 info->image_pages = nr_copy_pages; 2047 info->pages = snapshot_get_image_size(); 2048 info->size = info->pages; 2049 info->size <<= PAGE_SHIFT; 2050 return init_header_complete(info); 2051 } 2052 2053 /** 2054 * pack_pfns - Prepare PFNs for saving. 2055 * @bm: Memory bitmap. 2056 * @buf: Memory buffer to store the PFNs in. 2057 * 2058 * PFNs corresponding to set bits in @bm are stored in the area of memory 2059 * pointed to by @buf (1 page at a time). 2060 */ 2061 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2062 { 2063 int j; 2064 2065 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2066 buf[j] = memory_bm_next_pfn(bm); 2067 if (unlikely(buf[j] == BM_END_OF_MAP)) 2068 break; 2069 /* Save page key for data page (s390 only). */ 2070 page_key_read(buf + j); 2071 } 2072 } 2073 2074 /** 2075 * snapshot_read_next - Get the address to read the next image page from. 2076 * @handle: Snapshot handle to be used for the reading. 2077 * 2078 * On the first call, @handle should point to a zeroed snapshot_handle 2079 * structure. The structure gets populated then and a pointer to it should be 2080 * passed to this function every next time. 2081 * 2082 * On success, the function returns a positive number. Then, the caller 2083 * is allowed to read up to the returned number of bytes from the memory 2084 * location computed by the data_of() macro. 2085 * 2086 * The function returns 0 to indicate the end of the data stream condition, 2087 * and negative numbers are returned on errors. If that happens, the structure 2088 * pointed to by @handle is not updated and should not be used any more. 2089 */ 2090 int snapshot_read_next(struct snapshot_handle *handle) 2091 { 2092 if (handle->cur > nr_meta_pages + nr_copy_pages) 2093 return 0; 2094 2095 if (!buffer) { 2096 /* This makes the buffer be freed by swsusp_free() */ 2097 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2098 if (!buffer) 2099 return -ENOMEM; 2100 } 2101 if (!handle->cur) { 2102 int error; 2103 2104 error = init_header((struct swsusp_info *)buffer); 2105 if (error) 2106 return error; 2107 handle->buffer = buffer; 2108 memory_bm_position_reset(&orig_bm); 2109 memory_bm_position_reset(©_bm); 2110 } else if (handle->cur <= nr_meta_pages) { 2111 clear_page(buffer); 2112 pack_pfns(buffer, &orig_bm); 2113 } else { 2114 struct page *page; 2115 2116 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2117 if (PageHighMem(page)) { 2118 /* 2119 * Highmem pages are copied to the buffer, 2120 * because we can't return with a kmapped 2121 * highmem page (we may not be called again). 2122 */ 2123 void *kaddr; 2124 2125 kaddr = kmap_atomic(page); 2126 copy_page(buffer, kaddr); 2127 kunmap_atomic(kaddr); 2128 handle->buffer = buffer; 2129 } else { 2130 handle->buffer = page_address(page); 2131 } 2132 } 2133 handle->cur++; 2134 return PAGE_SIZE; 2135 } 2136 2137 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2138 struct memory_bitmap *src) 2139 { 2140 unsigned long pfn; 2141 2142 memory_bm_position_reset(src); 2143 pfn = memory_bm_next_pfn(src); 2144 while (pfn != BM_END_OF_MAP) { 2145 memory_bm_set_bit(dst, pfn); 2146 pfn = memory_bm_next_pfn(src); 2147 } 2148 } 2149 2150 /** 2151 * mark_unsafe_pages - Mark pages that were used before hibernation. 2152 * 2153 * Mark the pages that cannot be used for storing the image during restoration, 2154 * because they conflict with the pages that had been used before hibernation. 2155 */ 2156 static void mark_unsafe_pages(struct memory_bitmap *bm) 2157 { 2158 unsigned long pfn; 2159 2160 /* Clear the "free"/"unsafe" bit for all PFNs */ 2161 memory_bm_position_reset(free_pages_map); 2162 pfn = memory_bm_next_pfn(free_pages_map); 2163 while (pfn != BM_END_OF_MAP) { 2164 memory_bm_clear_current(free_pages_map); 2165 pfn = memory_bm_next_pfn(free_pages_map); 2166 } 2167 2168 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2169 duplicate_memory_bitmap(free_pages_map, bm); 2170 2171 allocated_unsafe_pages = 0; 2172 } 2173 2174 static int check_header(struct swsusp_info *info) 2175 { 2176 char *reason; 2177 2178 reason = check_image_kernel(info); 2179 if (!reason && info->num_physpages != get_num_physpages()) 2180 reason = "memory size"; 2181 if (reason) { 2182 pr_err("Image mismatch: %s\n", reason); 2183 return -EPERM; 2184 } 2185 return 0; 2186 } 2187 2188 /** 2189 * load header - Check the image header and copy the data from it. 2190 */ 2191 static int load_header(struct swsusp_info *info) 2192 { 2193 int error; 2194 2195 restore_pblist = NULL; 2196 error = check_header(info); 2197 if (!error) { 2198 nr_copy_pages = info->image_pages; 2199 nr_meta_pages = info->pages - info->image_pages - 1; 2200 } 2201 return error; 2202 } 2203 2204 /** 2205 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2206 * @bm: Memory bitmap. 2207 * @buf: Area of memory containing the PFNs. 2208 * 2209 * For each element of the array pointed to by @buf (1 page at a time), set the 2210 * corresponding bit in @bm. 2211 */ 2212 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2213 { 2214 int j; 2215 2216 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2217 if (unlikely(buf[j] == BM_END_OF_MAP)) 2218 break; 2219 2220 /* Extract and buffer page key for data page (s390 only). */ 2221 page_key_memorize(buf + j); 2222 2223 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) 2224 memory_bm_set_bit(bm, buf[j]); 2225 else 2226 return -EFAULT; 2227 } 2228 2229 return 0; 2230 } 2231 2232 #ifdef CONFIG_HIGHMEM 2233 /* 2234 * struct highmem_pbe is used for creating the list of highmem pages that 2235 * should be restored atomically during the resume from disk, because the page 2236 * frames they have occupied before the suspend are in use. 2237 */ 2238 struct highmem_pbe { 2239 struct page *copy_page; /* data is here now */ 2240 struct page *orig_page; /* data was here before the suspend */ 2241 struct highmem_pbe *next; 2242 }; 2243 2244 /* 2245 * List of highmem PBEs needed for restoring the highmem pages that were 2246 * allocated before the suspend and included in the suspend image, but have 2247 * also been allocated by the "resume" kernel, so their contents cannot be 2248 * written directly to their "original" page frames. 2249 */ 2250 static struct highmem_pbe *highmem_pblist; 2251 2252 /** 2253 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2254 * @bm: Memory bitmap. 2255 * 2256 * The bits in @bm that correspond to image pages are assumed to be set. 2257 */ 2258 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2259 { 2260 unsigned long pfn; 2261 unsigned int cnt = 0; 2262 2263 memory_bm_position_reset(bm); 2264 pfn = memory_bm_next_pfn(bm); 2265 while (pfn != BM_END_OF_MAP) { 2266 if (PageHighMem(pfn_to_page(pfn))) 2267 cnt++; 2268 2269 pfn = memory_bm_next_pfn(bm); 2270 } 2271 return cnt; 2272 } 2273 2274 static unsigned int safe_highmem_pages; 2275 2276 static struct memory_bitmap *safe_highmem_bm; 2277 2278 /** 2279 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2280 * @bm: Pointer to an uninitialized memory bitmap structure. 2281 * @nr_highmem_p: Pointer to the number of highmem image pages. 2282 * 2283 * Try to allocate as many highmem pages as there are highmem image pages 2284 * (@nr_highmem_p points to the variable containing the number of highmem image 2285 * pages). The pages that are "safe" (ie. will not be overwritten when the 2286 * hibernation image is restored entirely) have the corresponding bits set in 2287 * @bm (it must be unitialized). 2288 * 2289 * NOTE: This function should not be called if there are no highmem image pages. 2290 */ 2291 static int prepare_highmem_image(struct memory_bitmap *bm, 2292 unsigned int *nr_highmem_p) 2293 { 2294 unsigned int to_alloc; 2295 2296 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2297 return -ENOMEM; 2298 2299 if (get_highmem_buffer(PG_SAFE)) 2300 return -ENOMEM; 2301 2302 to_alloc = count_free_highmem_pages(); 2303 if (to_alloc > *nr_highmem_p) 2304 to_alloc = *nr_highmem_p; 2305 else 2306 *nr_highmem_p = to_alloc; 2307 2308 safe_highmem_pages = 0; 2309 while (to_alloc-- > 0) { 2310 struct page *page; 2311 2312 page = alloc_page(__GFP_HIGHMEM); 2313 if (!swsusp_page_is_free(page)) { 2314 /* The page is "safe", set its bit the bitmap */ 2315 memory_bm_set_bit(bm, page_to_pfn(page)); 2316 safe_highmem_pages++; 2317 } 2318 /* Mark the page as allocated */ 2319 swsusp_set_page_forbidden(page); 2320 swsusp_set_page_free(page); 2321 } 2322 memory_bm_position_reset(bm); 2323 safe_highmem_bm = bm; 2324 return 0; 2325 } 2326 2327 static struct page *last_highmem_page; 2328 2329 /** 2330 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2331 * 2332 * For a given highmem image page get a buffer that suspend_write_next() should 2333 * return to its caller to write to. 2334 * 2335 * If the page is to be saved to its "original" page frame or a copy of 2336 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2337 * the copy of the page is to be made in normal memory, so the address of 2338 * the copy is returned. 2339 * 2340 * If @buffer is returned, the caller of suspend_write_next() will write 2341 * the page's contents to @buffer, so they will have to be copied to the 2342 * right location on the next call to suspend_write_next() and it is done 2343 * with the help of copy_last_highmem_page(). For this purpose, if 2344 * @buffer is returned, @last_highmem_page is set to the page to which 2345 * the data will have to be copied from @buffer. 2346 */ 2347 static void *get_highmem_page_buffer(struct page *page, 2348 struct chain_allocator *ca) 2349 { 2350 struct highmem_pbe *pbe; 2351 void *kaddr; 2352 2353 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2354 /* 2355 * We have allocated the "original" page frame and we can 2356 * use it directly to store the loaded page. 2357 */ 2358 last_highmem_page = page; 2359 return buffer; 2360 } 2361 /* 2362 * The "original" page frame has not been allocated and we have to 2363 * use a "safe" page frame to store the loaded page. 2364 */ 2365 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2366 if (!pbe) { 2367 swsusp_free(); 2368 return ERR_PTR(-ENOMEM); 2369 } 2370 pbe->orig_page = page; 2371 if (safe_highmem_pages > 0) { 2372 struct page *tmp; 2373 2374 /* Copy of the page will be stored in high memory */ 2375 kaddr = buffer; 2376 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2377 safe_highmem_pages--; 2378 last_highmem_page = tmp; 2379 pbe->copy_page = tmp; 2380 } else { 2381 /* Copy of the page will be stored in normal memory */ 2382 kaddr = safe_pages_list; 2383 safe_pages_list = safe_pages_list->next; 2384 pbe->copy_page = virt_to_page(kaddr); 2385 } 2386 pbe->next = highmem_pblist; 2387 highmem_pblist = pbe; 2388 return kaddr; 2389 } 2390 2391 /** 2392 * copy_last_highmem_page - Copy most the most recent highmem image page. 2393 * 2394 * Copy the contents of a highmem image from @buffer, where the caller of 2395 * snapshot_write_next() has stored them, to the right location represented by 2396 * @last_highmem_page . 2397 */ 2398 static void copy_last_highmem_page(void) 2399 { 2400 if (last_highmem_page) { 2401 void *dst; 2402 2403 dst = kmap_atomic(last_highmem_page); 2404 copy_page(dst, buffer); 2405 kunmap_atomic(dst); 2406 last_highmem_page = NULL; 2407 } 2408 } 2409 2410 static inline int last_highmem_page_copied(void) 2411 { 2412 return !last_highmem_page; 2413 } 2414 2415 static inline void free_highmem_data(void) 2416 { 2417 if (safe_highmem_bm) 2418 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2419 2420 if (buffer) 2421 free_image_page(buffer, PG_UNSAFE_CLEAR); 2422 } 2423 #else 2424 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2425 2426 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2427 unsigned int *nr_highmem_p) { return 0; } 2428 2429 static inline void *get_highmem_page_buffer(struct page *page, 2430 struct chain_allocator *ca) 2431 { 2432 return ERR_PTR(-EINVAL); 2433 } 2434 2435 static inline void copy_last_highmem_page(void) {} 2436 static inline int last_highmem_page_copied(void) { return 1; } 2437 static inline void free_highmem_data(void) {} 2438 #endif /* CONFIG_HIGHMEM */ 2439 2440 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2441 2442 /** 2443 * prepare_image - Make room for loading hibernation image. 2444 * @new_bm: Unitialized memory bitmap structure. 2445 * @bm: Memory bitmap with unsafe pages marked. 2446 * 2447 * Use @bm to mark the pages that will be overwritten in the process of 2448 * restoring the system memory state from the suspend image ("unsafe" pages) 2449 * and allocate memory for the image. 2450 * 2451 * The idea is to allocate a new memory bitmap first and then allocate 2452 * as many pages as needed for image data, but without specifying what those 2453 * pages will be used for just yet. Instead, we mark them all as allocated and 2454 * create a lists of "safe" pages to be used later. On systems with high 2455 * memory a list of "safe" highmem pages is created too. 2456 */ 2457 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2458 { 2459 unsigned int nr_pages, nr_highmem; 2460 struct linked_page *lp; 2461 int error; 2462 2463 /* If there is no highmem, the buffer will not be necessary */ 2464 free_image_page(buffer, PG_UNSAFE_CLEAR); 2465 buffer = NULL; 2466 2467 nr_highmem = count_highmem_image_pages(bm); 2468 mark_unsafe_pages(bm); 2469 2470 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2471 if (error) 2472 goto Free; 2473 2474 duplicate_memory_bitmap(new_bm, bm); 2475 memory_bm_free(bm, PG_UNSAFE_KEEP); 2476 if (nr_highmem > 0) { 2477 error = prepare_highmem_image(bm, &nr_highmem); 2478 if (error) 2479 goto Free; 2480 } 2481 /* 2482 * Reserve some safe pages for potential later use. 2483 * 2484 * NOTE: This way we make sure there will be enough safe pages for the 2485 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2486 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2487 * 2488 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2489 */ 2490 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2491 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2492 while (nr_pages > 0) { 2493 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2494 if (!lp) { 2495 error = -ENOMEM; 2496 goto Free; 2497 } 2498 lp->next = safe_pages_list; 2499 safe_pages_list = lp; 2500 nr_pages--; 2501 } 2502 /* Preallocate memory for the image */ 2503 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2504 while (nr_pages > 0) { 2505 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2506 if (!lp) { 2507 error = -ENOMEM; 2508 goto Free; 2509 } 2510 if (!swsusp_page_is_free(virt_to_page(lp))) { 2511 /* The page is "safe", add it to the list */ 2512 lp->next = safe_pages_list; 2513 safe_pages_list = lp; 2514 } 2515 /* Mark the page as allocated */ 2516 swsusp_set_page_forbidden(virt_to_page(lp)); 2517 swsusp_set_page_free(virt_to_page(lp)); 2518 nr_pages--; 2519 } 2520 return 0; 2521 2522 Free: 2523 swsusp_free(); 2524 return error; 2525 } 2526 2527 /** 2528 * get_buffer - Get the address to store the next image data page. 2529 * 2530 * Get the address that snapshot_write_next() should return to its caller to 2531 * write to. 2532 */ 2533 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2534 { 2535 struct pbe *pbe; 2536 struct page *page; 2537 unsigned long pfn = memory_bm_next_pfn(bm); 2538 2539 if (pfn == BM_END_OF_MAP) 2540 return ERR_PTR(-EFAULT); 2541 2542 page = pfn_to_page(pfn); 2543 if (PageHighMem(page)) 2544 return get_highmem_page_buffer(page, ca); 2545 2546 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2547 /* 2548 * We have allocated the "original" page frame and we can 2549 * use it directly to store the loaded page. 2550 */ 2551 return page_address(page); 2552 2553 /* 2554 * The "original" page frame has not been allocated and we have to 2555 * use a "safe" page frame to store the loaded page. 2556 */ 2557 pbe = chain_alloc(ca, sizeof(struct pbe)); 2558 if (!pbe) { 2559 swsusp_free(); 2560 return ERR_PTR(-ENOMEM); 2561 } 2562 pbe->orig_address = page_address(page); 2563 pbe->address = safe_pages_list; 2564 safe_pages_list = safe_pages_list->next; 2565 pbe->next = restore_pblist; 2566 restore_pblist = pbe; 2567 return pbe->address; 2568 } 2569 2570 /** 2571 * snapshot_write_next - Get the address to store the next image page. 2572 * @handle: Snapshot handle structure to guide the writing. 2573 * 2574 * On the first call, @handle should point to a zeroed snapshot_handle 2575 * structure. The structure gets populated then and a pointer to it should be 2576 * passed to this function every next time. 2577 * 2578 * On success, the function returns a positive number. Then, the caller 2579 * is allowed to write up to the returned number of bytes to the memory 2580 * location computed by the data_of() macro. 2581 * 2582 * The function returns 0 to indicate the "end of file" condition. Negative 2583 * numbers are returned on errors, in which cases the structure pointed to by 2584 * @handle is not updated and should not be used any more. 2585 */ 2586 int snapshot_write_next(struct snapshot_handle *handle) 2587 { 2588 static struct chain_allocator ca; 2589 int error = 0; 2590 2591 /* Check if we have already loaded the entire image */ 2592 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2593 return 0; 2594 2595 handle->sync_read = 1; 2596 2597 if (!handle->cur) { 2598 if (!buffer) 2599 /* This makes the buffer be freed by swsusp_free() */ 2600 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2601 2602 if (!buffer) 2603 return -ENOMEM; 2604 2605 handle->buffer = buffer; 2606 } else if (handle->cur == 1) { 2607 error = load_header(buffer); 2608 if (error) 2609 return error; 2610 2611 safe_pages_list = NULL; 2612 2613 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2614 if (error) 2615 return error; 2616 2617 /* Allocate buffer for page keys. */ 2618 error = page_key_alloc(nr_copy_pages); 2619 if (error) 2620 return error; 2621 2622 hibernate_restore_protection_begin(); 2623 } else if (handle->cur <= nr_meta_pages + 1) { 2624 error = unpack_orig_pfns(buffer, ©_bm); 2625 if (error) 2626 return error; 2627 2628 if (handle->cur == nr_meta_pages + 1) { 2629 error = prepare_image(&orig_bm, ©_bm); 2630 if (error) 2631 return error; 2632 2633 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2634 memory_bm_position_reset(&orig_bm); 2635 restore_pblist = NULL; 2636 handle->buffer = get_buffer(&orig_bm, &ca); 2637 handle->sync_read = 0; 2638 if (IS_ERR(handle->buffer)) 2639 return PTR_ERR(handle->buffer); 2640 } 2641 } else { 2642 copy_last_highmem_page(); 2643 /* Restore page key for data page (s390 only). */ 2644 page_key_write(handle->buffer); 2645 hibernate_restore_protect_page(handle->buffer); 2646 handle->buffer = get_buffer(&orig_bm, &ca); 2647 if (IS_ERR(handle->buffer)) 2648 return PTR_ERR(handle->buffer); 2649 if (handle->buffer != buffer) 2650 handle->sync_read = 0; 2651 } 2652 handle->cur++; 2653 return PAGE_SIZE; 2654 } 2655 2656 /** 2657 * snapshot_write_finalize - Complete the loading of a hibernation image. 2658 * 2659 * Must be called after the last call to snapshot_write_next() in case the last 2660 * page in the image happens to be a highmem page and its contents should be 2661 * stored in highmem. Additionally, it recycles bitmap memory that's not 2662 * necessary any more. 2663 */ 2664 void snapshot_write_finalize(struct snapshot_handle *handle) 2665 { 2666 copy_last_highmem_page(); 2667 /* Restore page key for data page (s390 only). */ 2668 page_key_write(handle->buffer); 2669 page_key_free(); 2670 hibernate_restore_protect_page(handle->buffer); 2671 /* Do that only if we have loaded the image entirely */ 2672 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2673 memory_bm_recycle(&orig_bm); 2674 free_highmem_data(); 2675 } 2676 } 2677 2678 int snapshot_image_loaded(struct snapshot_handle *handle) 2679 { 2680 return !(!nr_copy_pages || !last_highmem_page_copied() || 2681 handle->cur <= nr_meta_pages + nr_copy_pages); 2682 } 2683 2684 #ifdef CONFIG_HIGHMEM 2685 /* Assumes that @buf is ready and points to a "safe" page */ 2686 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2687 void *buf) 2688 { 2689 void *kaddr1, *kaddr2; 2690 2691 kaddr1 = kmap_atomic(p1); 2692 kaddr2 = kmap_atomic(p2); 2693 copy_page(buf, kaddr1); 2694 copy_page(kaddr1, kaddr2); 2695 copy_page(kaddr2, buf); 2696 kunmap_atomic(kaddr2); 2697 kunmap_atomic(kaddr1); 2698 } 2699 2700 /** 2701 * restore_highmem - Put highmem image pages into their original locations. 2702 * 2703 * For each highmem page that was in use before hibernation and is included in 2704 * the image, and also has been allocated by the "restore" kernel, swap its 2705 * current contents with the previous (ie. "before hibernation") ones. 2706 * 2707 * If the restore eventually fails, we can call this function once again and 2708 * restore the highmem state as seen by the restore kernel. 2709 */ 2710 int restore_highmem(void) 2711 { 2712 struct highmem_pbe *pbe = highmem_pblist; 2713 void *buf; 2714 2715 if (!pbe) 2716 return 0; 2717 2718 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2719 if (!buf) 2720 return -ENOMEM; 2721 2722 while (pbe) { 2723 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2724 pbe = pbe->next; 2725 } 2726 free_image_page(buf, PG_UNSAFE_CLEAR); 2727 return 0; 2728 } 2729 #endif /* CONFIG_HIGHMEM */ 2730