1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Preferred image size in bytes (tunable via /sys/power/image_size). 45 * When it is set to N, swsusp will do its best to ensure the image 46 * size will not exceed N bytes, but if that is impossible, it will 47 * try to create the smallest image possible. 48 */ 49 unsigned long image_size = 500 * 1024 * 1024; 50 51 /* List of PBEs needed for restoring the pages that were allocated before 52 * the suspend and included in the suspend image, but have also been 53 * allocated by the "resume" kernel, so their contents cannot be written 54 * directly to their "original" page frames. 55 */ 56 struct pbe *restore_pblist; 57 58 /* Pointer to an auxiliary buffer (1 page) */ 59 static void *buffer; 60 61 /** 62 * @safe_needed - on resume, for storing the PBE list and the image, 63 * we can only use memory pages that do not conflict with the pages 64 * used before suspend. The unsafe pages have PageNosaveFree set 65 * and we count them using unsafe_pages. 66 * 67 * Each allocated image page is marked as PageNosave and PageNosaveFree 68 * so that swsusp_free() can release it. 69 */ 70 71 #define PG_ANY 0 72 #define PG_SAFE 1 73 #define PG_UNSAFE_CLEAR 1 74 #define PG_UNSAFE_KEEP 0 75 76 static unsigned int allocated_unsafe_pages; 77 78 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 79 { 80 void *res; 81 82 res = (void *)get_zeroed_page(gfp_mask); 83 if (safe_needed) 84 while (res && swsusp_page_is_free(virt_to_page(res))) { 85 /* The page is unsafe, mark it for swsusp_free() */ 86 swsusp_set_page_forbidden(virt_to_page(res)); 87 allocated_unsafe_pages++; 88 res = (void *)get_zeroed_page(gfp_mask); 89 } 90 if (res) { 91 swsusp_set_page_forbidden(virt_to_page(res)); 92 swsusp_set_page_free(virt_to_page(res)); 93 } 94 return res; 95 } 96 97 unsigned long get_safe_page(gfp_t gfp_mask) 98 { 99 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 100 } 101 102 static struct page *alloc_image_page(gfp_t gfp_mask) 103 { 104 struct page *page; 105 106 page = alloc_page(gfp_mask); 107 if (page) { 108 swsusp_set_page_forbidden(page); 109 swsusp_set_page_free(page); 110 } 111 return page; 112 } 113 114 /** 115 * free_image_page - free page represented by @addr, allocated with 116 * get_image_page (page flags set by it must be cleared) 117 */ 118 119 static inline void free_image_page(void *addr, int clear_nosave_free) 120 { 121 struct page *page; 122 123 BUG_ON(!virt_addr_valid(addr)); 124 125 page = virt_to_page(addr); 126 127 swsusp_unset_page_forbidden(page); 128 if (clear_nosave_free) 129 swsusp_unset_page_free(page); 130 131 __free_page(page); 132 } 133 134 /* struct linked_page is used to build chains of pages */ 135 136 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 137 138 struct linked_page { 139 struct linked_page *next; 140 char data[LINKED_PAGE_DATA_SIZE]; 141 } __attribute__((packed)); 142 143 static inline void 144 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 145 { 146 while (list) { 147 struct linked_page *lp = list->next; 148 149 free_image_page(list, clear_page_nosave); 150 list = lp; 151 } 152 } 153 154 /** 155 * struct chain_allocator is used for allocating small objects out of 156 * a linked list of pages called 'the chain'. 157 * 158 * The chain grows each time when there is no room for a new object in 159 * the current page. The allocated objects cannot be freed individually. 160 * It is only possible to free them all at once, by freeing the entire 161 * chain. 162 * 163 * NOTE: The chain allocator may be inefficient if the allocated objects 164 * are not much smaller than PAGE_SIZE. 165 */ 166 167 struct chain_allocator { 168 struct linked_page *chain; /* the chain */ 169 unsigned int used_space; /* total size of objects allocated out 170 * of the current page 171 */ 172 gfp_t gfp_mask; /* mask for allocating pages */ 173 int safe_needed; /* if set, only "safe" pages are allocated */ 174 }; 175 176 static void 177 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 178 { 179 ca->chain = NULL; 180 ca->used_space = LINKED_PAGE_DATA_SIZE; 181 ca->gfp_mask = gfp_mask; 182 ca->safe_needed = safe_needed; 183 } 184 185 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 186 { 187 void *ret; 188 189 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 190 struct linked_page *lp; 191 192 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 193 if (!lp) 194 return NULL; 195 196 lp->next = ca->chain; 197 ca->chain = lp; 198 ca->used_space = 0; 199 } 200 ret = ca->chain->data + ca->used_space; 201 ca->used_space += size; 202 return ret; 203 } 204 205 /** 206 * Data types related to memory bitmaps. 207 * 208 * Memory bitmap is a structure consiting of many linked lists of 209 * objects. The main list's elements are of type struct zone_bitmap 210 * and each of them corresonds to one zone. For each zone bitmap 211 * object there is a list of objects of type struct bm_block that 212 * represent each blocks of bitmap in which information is stored. 213 * 214 * struct memory_bitmap contains a pointer to the main list of zone 215 * bitmap objects, a struct bm_position used for browsing the bitmap, 216 * and a pointer to the list of pages used for allocating all of the 217 * zone bitmap objects and bitmap block objects. 218 * 219 * NOTE: It has to be possible to lay out the bitmap in memory 220 * using only allocations of order 0. Additionally, the bitmap is 221 * designed to work with arbitrary number of zones (this is over the 222 * top for now, but let's avoid making unnecessary assumptions ;-). 223 * 224 * struct zone_bitmap contains a pointer to a list of bitmap block 225 * objects and a pointer to the bitmap block object that has been 226 * most recently used for setting bits. Additionally, it contains the 227 * pfns that correspond to the start and end of the represented zone. 228 * 229 * struct bm_block contains a pointer to the memory page in which 230 * information is stored (in the form of a block of bitmap) 231 * It also contains the pfns that correspond to the start and end of 232 * the represented memory area. 233 */ 234 235 #define BM_END_OF_MAP (~0UL) 236 237 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 238 239 struct bm_block { 240 struct list_head hook; /* hook into a list of bitmap blocks */ 241 unsigned long start_pfn; /* pfn represented by the first bit */ 242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 243 unsigned long *data; /* bitmap representing pages */ 244 }; 245 246 static inline unsigned long bm_block_bits(struct bm_block *bb) 247 { 248 return bb->end_pfn - bb->start_pfn; 249 } 250 251 /* strcut bm_position is used for browsing memory bitmaps */ 252 253 struct bm_position { 254 struct bm_block *block; 255 int bit; 256 }; 257 258 struct memory_bitmap { 259 struct list_head blocks; /* list of bitmap blocks */ 260 struct linked_page *p_list; /* list of pages used to store zone 261 * bitmap objects and bitmap block 262 * objects 263 */ 264 struct bm_position cur; /* most recently used bit position */ 265 }; 266 267 /* Functions that operate on memory bitmaps */ 268 269 static void memory_bm_position_reset(struct memory_bitmap *bm) 270 { 271 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 272 bm->cur.bit = 0; 273 } 274 275 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 276 277 /** 278 * create_bm_block_list - create a list of block bitmap objects 279 * @pages - number of pages to track 280 * @list - list to put the allocated blocks into 281 * @ca - chain allocator to be used for allocating memory 282 */ 283 static int create_bm_block_list(unsigned long pages, 284 struct list_head *list, 285 struct chain_allocator *ca) 286 { 287 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 288 289 while (nr_blocks-- > 0) { 290 struct bm_block *bb; 291 292 bb = chain_alloc(ca, sizeof(struct bm_block)); 293 if (!bb) 294 return -ENOMEM; 295 list_add(&bb->hook, list); 296 } 297 298 return 0; 299 } 300 301 struct mem_extent { 302 struct list_head hook; 303 unsigned long start; 304 unsigned long end; 305 }; 306 307 /** 308 * free_mem_extents - free a list of memory extents 309 * @list - list of extents to empty 310 */ 311 static void free_mem_extents(struct list_head *list) 312 { 313 struct mem_extent *ext, *aux; 314 315 list_for_each_entry_safe(ext, aux, list, hook) { 316 list_del(&ext->hook); 317 kfree(ext); 318 } 319 } 320 321 /** 322 * create_mem_extents - create a list of memory extents representing 323 * contiguous ranges of PFNs 324 * @list - list to put the extents into 325 * @gfp_mask - mask to use for memory allocations 326 */ 327 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 328 { 329 struct zone *zone; 330 331 INIT_LIST_HEAD(list); 332 333 for_each_populated_zone(zone) { 334 unsigned long zone_start, zone_end; 335 struct mem_extent *ext, *cur, *aux; 336 337 zone_start = zone->zone_start_pfn; 338 zone_end = zone->zone_start_pfn + zone->spanned_pages; 339 340 list_for_each_entry(ext, list, hook) 341 if (zone_start <= ext->end) 342 break; 343 344 if (&ext->hook == list || zone_end < ext->start) { 345 /* New extent is necessary */ 346 struct mem_extent *new_ext; 347 348 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 349 if (!new_ext) { 350 free_mem_extents(list); 351 return -ENOMEM; 352 } 353 new_ext->start = zone_start; 354 new_ext->end = zone_end; 355 list_add_tail(&new_ext->hook, &ext->hook); 356 continue; 357 } 358 359 /* Merge this zone's range of PFNs with the existing one */ 360 if (zone_start < ext->start) 361 ext->start = zone_start; 362 if (zone_end > ext->end) 363 ext->end = zone_end; 364 365 /* More merging may be possible */ 366 cur = ext; 367 list_for_each_entry_safe_continue(cur, aux, list, hook) { 368 if (zone_end < cur->start) 369 break; 370 if (zone_end < cur->end) 371 ext->end = cur->end; 372 list_del(&cur->hook); 373 kfree(cur); 374 } 375 } 376 377 return 0; 378 } 379 380 /** 381 * memory_bm_create - allocate memory for a memory bitmap 382 */ 383 static int 384 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 385 { 386 struct chain_allocator ca; 387 struct list_head mem_extents; 388 struct mem_extent *ext; 389 int error; 390 391 chain_init(&ca, gfp_mask, safe_needed); 392 INIT_LIST_HEAD(&bm->blocks); 393 394 error = create_mem_extents(&mem_extents, gfp_mask); 395 if (error) 396 return error; 397 398 list_for_each_entry(ext, &mem_extents, hook) { 399 struct bm_block *bb; 400 unsigned long pfn = ext->start; 401 unsigned long pages = ext->end - ext->start; 402 403 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 404 405 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 406 if (error) 407 goto Error; 408 409 list_for_each_entry_continue(bb, &bm->blocks, hook) { 410 bb->data = get_image_page(gfp_mask, safe_needed); 411 if (!bb->data) { 412 error = -ENOMEM; 413 goto Error; 414 } 415 416 bb->start_pfn = pfn; 417 if (pages >= BM_BITS_PER_BLOCK) { 418 pfn += BM_BITS_PER_BLOCK; 419 pages -= BM_BITS_PER_BLOCK; 420 } else { 421 /* This is executed only once in the loop */ 422 pfn += pages; 423 } 424 bb->end_pfn = pfn; 425 } 426 } 427 428 bm->p_list = ca.chain; 429 memory_bm_position_reset(bm); 430 Exit: 431 free_mem_extents(&mem_extents); 432 return error; 433 434 Error: 435 bm->p_list = ca.chain; 436 memory_bm_free(bm, PG_UNSAFE_CLEAR); 437 goto Exit; 438 } 439 440 /** 441 * memory_bm_free - free memory occupied by the memory bitmap @bm 442 */ 443 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 444 { 445 struct bm_block *bb; 446 447 list_for_each_entry(bb, &bm->blocks, hook) 448 if (bb->data) 449 free_image_page(bb->data, clear_nosave_free); 450 451 free_list_of_pages(bm->p_list, clear_nosave_free); 452 453 INIT_LIST_HEAD(&bm->blocks); 454 } 455 456 /** 457 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 458 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 459 * of @bm->cur_zone_bm are updated. 460 */ 461 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 462 void **addr, unsigned int *bit_nr) 463 { 464 struct bm_block *bb; 465 466 /* 467 * Check if the pfn corresponds to the current bitmap block and find 468 * the block where it fits if this is not the case. 469 */ 470 bb = bm->cur.block; 471 if (pfn < bb->start_pfn) 472 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 473 if (pfn >= bb->start_pfn) 474 break; 475 476 if (pfn >= bb->end_pfn) 477 list_for_each_entry_continue(bb, &bm->blocks, hook) 478 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 479 break; 480 481 if (&bb->hook == &bm->blocks) 482 return -EFAULT; 483 484 /* The block has been found */ 485 bm->cur.block = bb; 486 pfn -= bb->start_pfn; 487 bm->cur.bit = pfn + 1; 488 *bit_nr = pfn; 489 *addr = bb->data; 490 return 0; 491 } 492 493 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 494 { 495 void *addr; 496 unsigned int bit; 497 int error; 498 499 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 500 BUG_ON(error); 501 set_bit(bit, addr); 502 } 503 504 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 505 { 506 void *addr; 507 unsigned int bit; 508 int error; 509 510 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 511 if (!error) 512 set_bit(bit, addr); 513 return error; 514 } 515 516 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 517 { 518 void *addr; 519 unsigned int bit; 520 int error; 521 522 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 523 BUG_ON(error); 524 clear_bit(bit, addr); 525 } 526 527 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 528 { 529 void *addr; 530 unsigned int bit; 531 int error; 532 533 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 534 BUG_ON(error); 535 return test_bit(bit, addr); 536 } 537 538 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 539 { 540 void *addr; 541 unsigned int bit; 542 543 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 544 } 545 546 /** 547 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 548 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 549 * returned. 550 * 551 * It is required to run memory_bm_position_reset() before the first call to 552 * this function. 553 */ 554 555 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 556 { 557 struct bm_block *bb; 558 int bit; 559 560 bb = bm->cur.block; 561 do { 562 bit = bm->cur.bit; 563 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 564 if (bit < bm_block_bits(bb)) 565 goto Return_pfn; 566 567 bb = list_entry(bb->hook.next, struct bm_block, hook); 568 bm->cur.block = bb; 569 bm->cur.bit = 0; 570 } while (&bb->hook != &bm->blocks); 571 572 memory_bm_position_reset(bm); 573 return BM_END_OF_MAP; 574 575 Return_pfn: 576 bm->cur.bit = bit + 1; 577 return bb->start_pfn + bit; 578 } 579 580 /** 581 * This structure represents a range of page frames the contents of which 582 * should not be saved during the suspend. 583 */ 584 585 struct nosave_region { 586 struct list_head list; 587 unsigned long start_pfn; 588 unsigned long end_pfn; 589 }; 590 591 static LIST_HEAD(nosave_regions); 592 593 /** 594 * register_nosave_region - register a range of page frames the contents 595 * of which should not be saved during the suspend (to be used in the early 596 * initialization code) 597 */ 598 599 void __init 600 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 601 int use_kmalloc) 602 { 603 struct nosave_region *region; 604 605 if (start_pfn >= end_pfn) 606 return; 607 608 if (!list_empty(&nosave_regions)) { 609 /* Try to extend the previous region (they should be sorted) */ 610 region = list_entry(nosave_regions.prev, 611 struct nosave_region, list); 612 if (region->end_pfn == start_pfn) { 613 region->end_pfn = end_pfn; 614 goto Report; 615 } 616 } 617 if (use_kmalloc) { 618 /* during init, this shouldn't fail */ 619 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 620 BUG_ON(!region); 621 } else 622 /* This allocation cannot fail */ 623 region = alloc_bootmem(sizeof(struct nosave_region)); 624 region->start_pfn = start_pfn; 625 region->end_pfn = end_pfn; 626 list_add_tail(®ion->list, &nosave_regions); 627 Report: 628 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 629 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 630 } 631 632 /* 633 * Set bits in this map correspond to the page frames the contents of which 634 * should not be saved during the suspend. 635 */ 636 static struct memory_bitmap *forbidden_pages_map; 637 638 /* Set bits in this map correspond to free page frames. */ 639 static struct memory_bitmap *free_pages_map; 640 641 /* 642 * Each page frame allocated for creating the image is marked by setting the 643 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 644 */ 645 646 void swsusp_set_page_free(struct page *page) 647 { 648 if (free_pages_map) 649 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 650 } 651 652 static int swsusp_page_is_free(struct page *page) 653 { 654 return free_pages_map ? 655 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 656 } 657 658 void swsusp_unset_page_free(struct page *page) 659 { 660 if (free_pages_map) 661 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 662 } 663 664 static void swsusp_set_page_forbidden(struct page *page) 665 { 666 if (forbidden_pages_map) 667 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 668 } 669 670 int swsusp_page_is_forbidden(struct page *page) 671 { 672 return forbidden_pages_map ? 673 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 674 } 675 676 static void swsusp_unset_page_forbidden(struct page *page) 677 { 678 if (forbidden_pages_map) 679 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 680 } 681 682 /** 683 * mark_nosave_pages - set bits corresponding to the page frames the 684 * contents of which should not be saved in a given bitmap. 685 */ 686 687 static void mark_nosave_pages(struct memory_bitmap *bm) 688 { 689 struct nosave_region *region; 690 691 if (list_empty(&nosave_regions)) 692 return; 693 694 list_for_each_entry(region, &nosave_regions, list) { 695 unsigned long pfn; 696 697 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 698 region->start_pfn << PAGE_SHIFT, 699 region->end_pfn << PAGE_SHIFT); 700 701 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 702 if (pfn_valid(pfn)) { 703 /* 704 * It is safe to ignore the result of 705 * mem_bm_set_bit_check() here, since we won't 706 * touch the PFNs for which the error is 707 * returned anyway. 708 */ 709 mem_bm_set_bit_check(bm, pfn); 710 } 711 } 712 } 713 714 /** 715 * create_basic_memory_bitmaps - create bitmaps needed for marking page 716 * frames that should not be saved and free page frames. The pointers 717 * forbidden_pages_map and free_pages_map are only modified if everything 718 * goes well, because we don't want the bits to be used before both bitmaps 719 * are set up. 720 */ 721 722 int create_basic_memory_bitmaps(void) 723 { 724 struct memory_bitmap *bm1, *bm2; 725 int error = 0; 726 727 BUG_ON(forbidden_pages_map || free_pages_map); 728 729 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 730 if (!bm1) 731 return -ENOMEM; 732 733 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 734 if (error) 735 goto Free_first_object; 736 737 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 738 if (!bm2) 739 goto Free_first_bitmap; 740 741 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 742 if (error) 743 goto Free_second_object; 744 745 forbidden_pages_map = bm1; 746 free_pages_map = bm2; 747 mark_nosave_pages(forbidden_pages_map); 748 749 pr_debug("PM: Basic memory bitmaps created\n"); 750 751 return 0; 752 753 Free_second_object: 754 kfree(bm2); 755 Free_first_bitmap: 756 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 757 Free_first_object: 758 kfree(bm1); 759 return -ENOMEM; 760 } 761 762 /** 763 * free_basic_memory_bitmaps - free memory bitmaps allocated by 764 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 765 * so that the bitmaps themselves are not referred to while they are being 766 * freed. 767 */ 768 769 void free_basic_memory_bitmaps(void) 770 { 771 struct memory_bitmap *bm1, *bm2; 772 773 BUG_ON(!(forbidden_pages_map && free_pages_map)); 774 775 bm1 = forbidden_pages_map; 776 bm2 = free_pages_map; 777 forbidden_pages_map = NULL; 778 free_pages_map = NULL; 779 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 780 kfree(bm1); 781 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 782 kfree(bm2); 783 784 pr_debug("PM: Basic memory bitmaps freed\n"); 785 } 786 787 /** 788 * snapshot_additional_pages - estimate the number of additional pages 789 * be needed for setting up the suspend image data structures for given 790 * zone (usually the returned value is greater than the exact number) 791 */ 792 793 unsigned int snapshot_additional_pages(struct zone *zone) 794 { 795 unsigned int res; 796 797 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 798 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 799 return 2 * res; 800 } 801 802 #ifdef CONFIG_HIGHMEM 803 /** 804 * count_free_highmem_pages - compute the total number of free highmem 805 * pages, system-wide. 806 */ 807 808 static unsigned int count_free_highmem_pages(void) 809 { 810 struct zone *zone; 811 unsigned int cnt = 0; 812 813 for_each_populated_zone(zone) 814 if (is_highmem(zone)) 815 cnt += zone_page_state(zone, NR_FREE_PAGES); 816 817 return cnt; 818 } 819 820 /** 821 * saveable_highmem_page - Determine whether a highmem page should be 822 * included in the suspend image. 823 * 824 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 825 * and it isn't a part of a free chunk of pages. 826 */ 827 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 828 { 829 struct page *page; 830 831 if (!pfn_valid(pfn)) 832 return NULL; 833 834 page = pfn_to_page(pfn); 835 if (page_zone(page) != zone) 836 return NULL; 837 838 BUG_ON(!PageHighMem(page)); 839 840 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 841 PageReserved(page)) 842 return NULL; 843 844 return page; 845 } 846 847 /** 848 * count_highmem_pages - compute the total number of saveable highmem 849 * pages. 850 */ 851 852 static unsigned int count_highmem_pages(void) 853 { 854 struct zone *zone; 855 unsigned int n = 0; 856 857 for_each_populated_zone(zone) { 858 unsigned long pfn, max_zone_pfn; 859 860 if (!is_highmem(zone)) 861 continue; 862 863 mark_free_pages(zone); 864 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 865 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 866 if (saveable_highmem_page(zone, pfn)) 867 n++; 868 } 869 return n; 870 } 871 #else 872 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 873 { 874 return NULL; 875 } 876 #endif /* CONFIG_HIGHMEM */ 877 878 /** 879 * saveable_page - Determine whether a non-highmem page should be included 880 * in the suspend image. 881 * 882 * We should save the page if it isn't Nosave, and is not in the range 883 * of pages statically defined as 'unsaveable', and it isn't a part of 884 * a free chunk of pages. 885 */ 886 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 887 { 888 struct page *page; 889 890 if (!pfn_valid(pfn)) 891 return NULL; 892 893 page = pfn_to_page(pfn); 894 if (page_zone(page) != zone) 895 return NULL; 896 897 BUG_ON(PageHighMem(page)); 898 899 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 900 return NULL; 901 902 if (PageReserved(page) 903 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 904 return NULL; 905 906 return page; 907 } 908 909 /** 910 * count_data_pages - compute the total number of saveable non-highmem 911 * pages. 912 */ 913 914 static unsigned int count_data_pages(void) 915 { 916 struct zone *zone; 917 unsigned long pfn, max_zone_pfn; 918 unsigned int n = 0; 919 920 for_each_populated_zone(zone) { 921 if (is_highmem(zone)) 922 continue; 923 924 mark_free_pages(zone); 925 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 926 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 927 if (saveable_page(zone, pfn)) 928 n++; 929 } 930 return n; 931 } 932 933 /* This is needed, because copy_page and memcpy are not usable for copying 934 * task structs. 935 */ 936 static inline void do_copy_page(long *dst, long *src) 937 { 938 int n; 939 940 for (n = PAGE_SIZE / sizeof(long); n; n--) 941 *dst++ = *src++; 942 } 943 944 945 /** 946 * safe_copy_page - check if the page we are going to copy is marked as 947 * present in the kernel page tables (this always is the case if 948 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 949 * kernel_page_present() always returns 'true'). 950 */ 951 static void safe_copy_page(void *dst, struct page *s_page) 952 { 953 if (kernel_page_present(s_page)) { 954 do_copy_page(dst, page_address(s_page)); 955 } else { 956 kernel_map_pages(s_page, 1, 1); 957 do_copy_page(dst, page_address(s_page)); 958 kernel_map_pages(s_page, 1, 0); 959 } 960 } 961 962 963 #ifdef CONFIG_HIGHMEM 964 static inline struct page * 965 page_is_saveable(struct zone *zone, unsigned long pfn) 966 { 967 return is_highmem(zone) ? 968 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 969 } 970 971 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 972 { 973 struct page *s_page, *d_page; 974 void *src, *dst; 975 976 s_page = pfn_to_page(src_pfn); 977 d_page = pfn_to_page(dst_pfn); 978 if (PageHighMem(s_page)) { 979 src = kmap_atomic(s_page, KM_USER0); 980 dst = kmap_atomic(d_page, KM_USER1); 981 do_copy_page(dst, src); 982 kunmap_atomic(src, KM_USER0); 983 kunmap_atomic(dst, KM_USER1); 984 } else { 985 if (PageHighMem(d_page)) { 986 /* Page pointed to by src may contain some kernel 987 * data modified by kmap_atomic() 988 */ 989 safe_copy_page(buffer, s_page); 990 dst = kmap_atomic(d_page, KM_USER0); 991 memcpy(dst, buffer, PAGE_SIZE); 992 kunmap_atomic(dst, KM_USER0); 993 } else { 994 safe_copy_page(page_address(d_page), s_page); 995 } 996 } 997 } 998 #else 999 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1000 1001 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1002 { 1003 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1004 pfn_to_page(src_pfn)); 1005 } 1006 #endif /* CONFIG_HIGHMEM */ 1007 1008 static void 1009 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1010 { 1011 struct zone *zone; 1012 unsigned long pfn; 1013 1014 for_each_populated_zone(zone) { 1015 unsigned long max_zone_pfn; 1016 1017 mark_free_pages(zone); 1018 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1019 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1020 if (page_is_saveable(zone, pfn)) 1021 memory_bm_set_bit(orig_bm, pfn); 1022 } 1023 memory_bm_position_reset(orig_bm); 1024 memory_bm_position_reset(copy_bm); 1025 for(;;) { 1026 pfn = memory_bm_next_pfn(orig_bm); 1027 if (unlikely(pfn == BM_END_OF_MAP)) 1028 break; 1029 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1030 } 1031 } 1032 1033 /* Total number of image pages */ 1034 static unsigned int nr_copy_pages; 1035 /* Number of pages needed for saving the original pfns of the image pages */ 1036 static unsigned int nr_meta_pages; 1037 /* 1038 * Numbers of normal and highmem page frames allocated for hibernation image 1039 * before suspending devices. 1040 */ 1041 unsigned int alloc_normal, alloc_highmem; 1042 /* 1043 * Memory bitmap used for marking saveable pages (during hibernation) or 1044 * hibernation image pages (during restore) 1045 */ 1046 static struct memory_bitmap orig_bm; 1047 /* 1048 * Memory bitmap used during hibernation for marking allocated page frames that 1049 * will contain copies of saveable pages. During restore it is initially used 1050 * for marking hibernation image pages, but then the set bits from it are 1051 * duplicated in @orig_bm and it is released. On highmem systems it is next 1052 * used for marking "safe" highmem pages, but it has to be reinitialized for 1053 * this purpose. 1054 */ 1055 static struct memory_bitmap copy_bm; 1056 1057 /** 1058 * swsusp_free - free pages allocated for the suspend. 1059 * 1060 * Suspend pages are alocated before the atomic copy is made, so we 1061 * need to release them after the resume. 1062 */ 1063 1064 void swsusp_free(void) 1065 { 1066 struct zone *zone; 1067 unsigned long pfn, max_zone_pfn; 1068 1069 for_each_populated_zone(zone) { 1070 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1071 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1072 if (pfn_valid(pfn)) { 1073 struct page *page = pfn_to_page(pfn); 1074 1075 if (swsusp_page_is_forbidden(page) && 1076 swsusp_page_is_free(page)) { 1077 swsusp_unset_page_forbidden(page); 1078 swsusp_unset_page_free(page); 1079 __free_page(page); 1080 } 1081 } 1082 } 1083 nr_copy_pages = 0; 1084 nr_meta_pages = 0; 1085 restore_pblist = NULL; 1086 buffer = NULL; 1087 alloc_normal = 0; 1088 alloc_highmem = 0; 1089 } 1090 1091 /* Helper functions used for the shrinking of memory. */ 1092 1093 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1094 1095 /** 1096 * preallocate_image_pages - Allocate a number of pages for hibernation image 1097 * @nr_pages: Number of page frames to allocate. 1098 * @mask: GFP flags to use for the allocation. 1099 * 1100 * Return value: Number of page frames actually allocated 1101 */ 1102 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1103 { 1104 unsigned long nr_alloc = 0; 1105 1106 while (nr_pages > 0) { 1107 struct page *page; 1108 1109 page = alloc_image_page(mask); 1110 if (!page) 1111 break; 1112 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1113 if (PageHighMem(page)) 1114 alloc_highmem++; 1115 else 1116 alloc_normal++; 1117 nr_pages--; 1118 nr_alloc++; 1119 } 1120 1121 return nr_alloc; 1122 } 1123 1124 static unsigned long preallocate_image_memory(unsigned long nr_pages) 1125 { 1126 return preallocate_image_pages(nr_pages, GFP_IMAGE); 1127 } 1128 1129 #ifdef CONFIG_HIGHMEM 1130 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1131 { 1132 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1133 } 1134 1135 /** 1136 * __fraction - Compute (an approximation of) x * (multiplier / base) 1137 */ 1138 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1139 { 1140 x *= multiplier; 1141 do_div(x, base); 1142 return (unsigned long)x; 1143 } 1144 1145 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1146 unsigned long highmem, 1147 unsigned long total) 1148 { 1149 unsigned long alloc = __fraction(nr_pages, highmem, total); 1150 1151 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1152 } 1153 #else /* CONFIG_HIGHMEM */ 1154 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1155 { 1156 return 0; 1157 } 1158 1159 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1160 unsigned long highmem, 1161 unsigned long total) 1162 { 1163 return 0; 1164 } 1165 #endif /* CONFIG_HIGHMEM */ 1166 1167 /** 1168 * free_unnecessary_pages - Release preallocated pages not needed for the image 1169 */ 1170 static void free_unnecessary_pages(void) 1171 { 1172 unsigned long save_highmem, to_free_normal, to_free_highmem; 1173 1174 to_free_normal = alloc_normal - count_data_pages(); 1175 save_highmem = count_highmem_pages(); 1176 if (alloc_highmem > save_highmem) { 1177 to_free_highmem = alloc_highmem - save_highmem; 1178 } else { 1179 to_free_highmem = 0; 1180 to_free_normal -= save_highmem - alloc_highmem; 1181 } 1182 1183 memory_bm_position_reset(©_bm); 1184 1185 while (to_free_normal > 0 || to_free_highmem > 0) { 1186 unsigned long pfn = memory_bm_next_pfn(©_bm); 1187 struct page *page = pfn_to_page(pfn); 1188 1189 if (PageHighMem(page)) { 1190 if (!to_free_highmem) 1191 continue; 1192 to_free_highmem--; 1193 alloc_highmem--; 1194 } else { 1195 if (!to_free_normal) 1196 continue; 1197 to_free_normal--; 1198 alloc_normal--; 1199 } 1200 memory_bm_clear_bit(©_bm, pfn); 1201 swsusp_unset_page_forbidden(page); 1202 swsusp_unset_page_free(page); 1203 __free_page(page); 1204 } 1205 } 1206 1207 /** 1208 * minimum_image_size - Estimate the minimum acceptable size of an image 1209 * @saveable: Number of saveable pages in the system. 1210 * 1211 * We want to avoid attempting to free too much memory too hard, so estimate the 1212 * minimum acceptable size of a hibernation image to use as the lower limit for 1213 * preallocating memory. 1214 * 1215 * We assume that the minimum image size should be proportional to 1216 * 1217 * [number of saveable pages] - [number of pages that can be freed in theory] 1218 * 1219 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1220 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1221 * minus mapped file pages. 1222 */ 1223 static unsigned long minimum_image_size(unsigned long saveable) 1224 { 1225 unsigned long size; 1226 1227 size = global_page_state(NR_SLAB_RECLAIMABLE) 1228 + global_page_state(NR_ACTIVE_ANON) 1229 + global_page_state(NR_INACTIVE_ANON) 1230 + global_page_state(NR_ACTIVE_FILE) 1231 + global_page_state(NR_INACTIVE_FILE) 1232 - global_page_state(NR_FILE_MAPPED); 1233 1234 return saveable <= size ? 0 : saveable - size; 1235 } 1236 1237 /** 1238 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1239 * 1240 * To create a hibernation image it is necessary to make a copy of every page 1241 * frame in use. We also need a number of page frames to be free during 1242 * hibernation for allocations made while saving the image and for device 1243 * drivers, in case they need to allocate memory from their hibernation 1244 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES, 1245 * respectively, both of which are rough estimates). To make this happen, we 1246 * compute the total number of available page frames and allocate at least 1247 * 1248 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES 1249 * 1250 * of them, which corresponds to the maximum size of a hibernation image. 1251 * 1252 * If image_size is set below the number following from the above formula, 1253 * the preallocation of memory is continued until the total number of saveable 1254 * pages in the system is below the requested image size or the minimum 1255 * acceptable image size returned by minimum_image_size(), whichever is greater. 1256 */ 1257 int hibernate_preallocate_memory(void) 1258 { 1259 struct zone *zone; 1260 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1261 unsigned long alloc, save_highmem, pages_highmem; 1262 struct timeval start, stop; 1263 int error; 1264 1265 printk(KERN_INFO "PM: Preallocating image memory... "); 1266 do_gettimeofday(&start); 1267 1268 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1269 if (error) 1270 goto err_out; 1271 1272 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1273 if (error) 1274 goto err_out; 1275 1276 alloc_normal = 0; 1277 alloc_highmem = 0; 1278 1279 /* Count the number of saveable data pages. */ 1280 save_highmem = count_highmem_pages(); 1281 saveable = count_data_pages(); 1282 1283 /* 1284 * Compute the total number of page frames we can use (count) and the 1285 * number of pages needed for image metadata (size). 1286 */ 1287 count = saveable; 1288 saveable += save_highmem; 1289 highmem = save_highmem; 1290 size = 0; 1291 for_each_populated_zone(zone) { 1292 size += snapshot_additional_pages(zone); 1293 if (is_highmem(zone)) 1294 highmem += zone_page_state(zone, NR_FREE_PAGES); 1295 else 1296 count += zone_page_state(zone, NR_FREE_PAGES); 1297 } 1298 count += highmem; 1299 count -= totalreserve_pages; 1300 1301 /* Compute the maximum number of saveable pages to leave in memory. */ 1302 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES; 1303 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1304 if (size > max_size) 1305 size = max_size; 1306 /* 1307 * If the maximum is not less than the current number of saveable pages 1308 * in memory, allocate page frames for the image and we're done. 1309 */ 1310 if (size >= saveable) { 1311 pages = preallocate_image_highmem(save_highmem); 1312 pages += preallocate_image_memory(saveable - pages); 1313 goto out; 1314 } 1315 1316 /* Estimate the minimum size of the image. */ 1317 pages = minimum_image_size(saveable); 1318 if (size < pages) 1319 size = min_t(unsigned long, pages, max_size); 1320 1321 /* 1322 * Let the memory management subsystem know that we're going to need a 1323 * large number of page frames to allocate and make it free some memory. 1324 * NOTE: If this is not done, performance will be hurt badly in some 1325 * test cases. 1326 */ 1327 shrink_all_memory(saveable - size); 1328 1329 /* 1330 * The number of saveable pages in memory was too high, so apply some 1331 * pressure to decrease it. First, make room for the largest possible 1332 * image and fail if that doesn't work. Next, try to decrease the size 1333 * of the image as much as indicated by 'size' using allocations from 1334 * highmem and non-highmem zones separately. 1335 */ 1336 pages_highmem = preallocate_image_highmem(highmem / 2); 1337 alloc = (count - max_size) - pages_highmem; 1338 pages = preallocate_image_memory(alloc); 1339 if (pages < alloc) 1340 goto err_out; 1341 size = max_size - size; 1342 alloc = size; 1343 size = preallocate_highmem_fraction(size, highmem, count); 1344 pages_highmem += size; 1345 alloc -= size; 1346 pages += preallocate_image_memory(alloc); 1347 pages += pages_highmem; 1348 1349 /* 1350 * We only need as many page frames for the image as there are saveable 1351 * pages in memory, but we have allocated more. Release the excessive 1352 * ones now. 1353 */ 1354 free_unnecessary_pages(); 1355 1356 out: 1357 do_gettimeofday(&stop); 1358 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1359 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1360 1361 return 0; 1362 1363 err_out: 1364 printk(KERN_CONT "\n"); 1365 swsusp_free(); 1366 return -ENOMEM; 1367 } 1368 1369 #ifdef CONFIG_HIGHMEM 1370 /** 1371 * count_pages_for_highmem - compute the number of non-highmem pages 1372 * that will be necessary for creating copies of highmem pages. 1373 */ 1374 1375 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1376 { 1377 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1378 1379 if (free_highmem >= nr_highmem) 1380 nr_highmem = 0; 1381 else 1382 nr_highmem -= free_highmem; 1383 1384 return nr_highmem; 1385 } 1386 #else 1387 static unsigned int 1388 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1389 #endif /* CONFIG_HIGHMEM */ 1390 1391 /** 1392 * enough_free_mem - Make sure we have enough free memory for the 1393 * snapshot image. 1394 */ 1395 1396 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1397 { 1398 struct zone *zone; 1399 unsigned int free = alloc_normal; 1400 1401 for_each_populated_zone(zone) 1402 if (!is_highmem(zone)) 1403 free += zone_page_state(zone, NR_FREE_PAGES); 1404 1405 nr_pages += count_pages_for_highmem(nr_highmem); 1406 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1407 nr_pages, PAGES_FOR_IO, free); 1408 1409 return free > nr_pages + PAGES_FOR_IO; 1410 } 1411 1412 #ifdef CONFIG_HIGHMEM 1413 /** 1414 * get_highmem_buffer - if there are some highmem pages in the suspend 1415 * image, we may need the buffer to copy them and/or load their data. 1416 */ 1417 1418 static inline int get_highmem_buffer(int safe_needed) 1419 { 1420 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1421 return buffer ? 0 : -ENOMEM; 1422 } 1423 1424 /** 1425 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1426 * Try to allocate as many pages as needed, but if the number of free 1427 * highmem pages is lesser than that, allocate them all. 1428 */ 1429 1430 static inline unsigned int 1431 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1432 { 1433 unsigned int to_alloc = count_free_highmem_pages(); 1434 1435 if (to_alloc > nr_highmem) 1436 to_alloc = nr_highmem; 1437 1438 nr_highmem -= to_alloc; 1439 while (to_alloc-- > 0) { 1440 struct page *page; 1441 1442 page = alloc_image_page(__GFP_HIGHMEM); 1443 memory_bm_set_bit(bm, page_to_pfn(page)); 1444 } 1445 return nr_highmem; 1446 } 1447 #else 1448 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1449 1450 static inline unsigned int 1451 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1452 #endif /* CONFIG_HIGHMEM */ 1453 1454 /** 1455 * swsusp_alloc - allocate memory for the suspend image 1456 * 1457 * We first try to allocate as many highmem pages as there are 1458 * saveable highmem pages in the system. If that fails, we allocate 1459 * non-highmem pages for the copies of the remaining highmem ones. 1460 * 1461 * In this approach it is likely that the copies of highmem pages will 1462 * also be located in the high memory, because of the way in which 1463 * copy_data_pages() works. 1464 */ 1465 1466 static int 1467 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1468 unsigned int nr_pages, unsigned int nr_highmem) 1469 { 1470 int error = 0; 1471 1472 if (nr_highmem > 0) { 1473 error = get_highmem_buffer(PG_ANY); 1474 if (error) 1475 goto err_out; 1476 if (nr_highmem > alloc_highmem) { 1477 nr_highmem -= alloc_highmem; 1478 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1479 } 1480 } 1481 if (nr_pages > alloc_normal) { 1482 nr_pages -= alloc_normal; 1483 while (nr_pages-- > 0) { 1484 struct page *page; 1485 1486 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1487 if (!page) 1488 goto err_out; 1489 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1490 } 1491 } 1492 1493 return 0; 1494 1495 err_out: 1496 swsusp_free(); 1497 return error; 1498 } 1499 1500 asmlinkage int swsusp_save(void) 1501 { 1502 unsigned int nr_pages, nr_highmem; 1503 1504 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1505 1506 drain_local_pages(NULL); 1507 nr_pages = count_data_pages(); 1508 nr_highmem = count_highmem_pages(); 1509 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1510 1511 if (!enough_free_mem(nr_pages, nr_highmem)) { 1512 printk(KERN_ERR "PM: Not enough free memory\n"); 1513 return -ENOMEM; 1514 } 1515 1516 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1517 printk(KERN_ERR "PM: Memory allocation failed\n"); 1518 return -ENOMEM; 1519 } 1520 1521 /* During allocating of suspend pagedir, new cold pages may appear. 1522 * Kill them. 1523 */ 1524 drain_local_pages(NULL); 1525 copy_data_pages(©_bm, &orig_bm); 1526 1527 /* 1528 * End of critical section. From now on, we can write to memory, 1529 * but we should not touch disk. This specially means we must _not_ 1530 * touch swap space! Except we must write out our image of course. 1531 */ 1532 1533 nr_pages += nr_highmem; 1534 nr_copy_pages = nr_pages; 1535 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1536 1537 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1538 nr_pages); 1539 1540 return 0; 1541 } 1542 1543 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1544 static int init_header_complete(struct swsusp_info *info) 1545 { 1546 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1547 info->version_code = LINUX_VERSION_CODE; 1548 return 0; 1549 } 1550 1551 static char *check_image_kernel(struct swsusp_info *info) 1552 { 1553 if (info->version_code != LINUX_VERSION_CODE) 1554 return "kernel version"; 1555 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1556 return "system type"; 1557 if (strcmp(info->uts.release,init_utsname()->release)) 1558 return "kernel release"; 1559 if (strcmp(info->uts.version,init_utsname()->version)) 1560 return "version"; 1561 if (strcmp(info->uts.machine,init_utsname()->machine)) 1562 return "machine"; 1563 return NULL; 1564 } 1565 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1566 1567 unsigned long snapshot_get_image_size(void) 1568 { 1569 return nr_copy_pages + nr_meta_pages + 1; 1570 } 1571 1572 static int init_header(struct swsusp_info *info) 1573 { 1574 memset(info, 0, sizeof(struct swsusp_info)); 1575 info->num_physpages = num_physpages; 1576 info->image_pages = nr_copy_pages; 1577 info->pages = snapshot_get_image_size(); 1578 info->size = info->pages; 1579 info->size <<= PAGE_SHIFT; 1580 return init_header_complete(info); 1581 } 1582 1583 /** 1584 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1585 * are stored in the array @buf[] (1 page at a time) 1586 */ 1587 1588 static inline void 1589 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1590 { 1591 int j; 1592 1593 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1594 buf[j] = memory_bm_next_pfn(bm); 1595 if (unlikely(buf[j] == BM_END_OF_MAP)) 1596 break; 1597 } 1598 } 1599 1600 /** 1601 * snapshot_read_next - used for reading the system memory snapshot. 1602 * 1603 * On the first call to it @handle should point to a zeroed 1604 * snapshot_handle structure. The structure gets updated and a pointer 1605 * to it should be passed to this function every next time. 1606 * 1607 * The @count parameter should contain the number of bytes the caller 1608 * wants to read from the snapshot. It must not be zero. 1609 * 1610 * On success the function returns a positive number. Then, the caller 1611 * is allowed to read up to the returned number of bytes from the memory 1612 * location computed by the data_of() macro. The number returned 1613 * may be smaller than @count, but this only happens if the read would 1614 * cross a page boundary otherwise. 1615 * 1616 * The function returns 0 to indicate the end of data stream condition, 1617 * and a negative number is returned on error. In such cases the 1618 * structure pointed to by @handle is not updated and should not be used 1619 * any more. 1620 */ 1621 1622 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1623 { 1624 if (handle->cur > nr_meta_pages + nr_copy_pages) 1625 return 0; 1626 1627 if (!buffer) { 1628 /* This makes the buffer be freed by swsusp_free() */ 1629 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1630 if (!buffer) 1631 return -ENOMEM; 1632 } 1633 if (!handle->offset) { 1634 int error; 1635 1636 error = init_header((struct swsusp_info *)buffer); 1637 if (error) 1638 return error; 1639 handle->buffer = buffer; 1640 memory_bm_position_reset(&orig_bm); 1641 memory_bm_position_reset(©_bm); 1642 } 1643 if (handle->prev < handle->cur) { 1644 if (handle->cur <= nr_meta_pages) { 1645 memset(buffer, 0, PAGE_SIZE); 1646 pack_pfns(buffer, &orig_bm); 1647 } else { 1648 struct page *page; 1649 1650 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1651 if (PageHighMem(page)) { 1652 /* Highmem pages are copied to the buffer, 1653 * because we can't return with a kmapped 1654 * highmem page (we may not be called again). 1655 */ 1656 void *kaddr; 1657 1658 kaddr = kmap_atomic(page, KM_USER0); 1659 memcpy(buffer, kaddr, PAGE_SIZE); 1660 kunmap_atomic(kaddr, KM_USER0); 1661 handle->buffer = buffer; 1662 } else { 1663 handle->buffer = page_address(page); 1664 } 1665 } 1666 handle->prev = handle->cur; 1667 } 1668 handle->buf_offset = handle->cur_offset; 1669 if (handle->cur_offset + count >= PAGE_SIZE) { 1670 count = PAGE_SIZE - handle->cur_offset; 1671 handle->cur_offset = 0; 1672 handle->cur++; 1673 } else { 1674 handle->cur_offset += count; 1675 } 1676 handle->offset += count; 1677 return count; 1678 } 1679 1680 /** 1681 * mark_unsafe_pages - mark the pages that cannot be used for storing 1682 * the image during resume, because they conflict with the pages that 1683 * had been used before suspend 1684 */ 1685 1686 static int mark_unsafe_pages(struct memory_bitmap *bm) 1687 { 1688 struct zone *zone; 1689 unsigned long pfn, max_zone_pfn; 1690 1691 /* Clear page flags */ 1692 for_each_populated_zone(zone) { 1693 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1694 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1695 if (pfn_valid(pfn)) 1696 swsusp_unset_page_free(pfn_to_page(pfn)); 1697 } 1698 1699 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1700 memory_bm_position_reset(bm); 1701 do { 1702 pfn = memory_bm_next_pfn(bm); 1703 if (likely(pfn != BM_END_OF_MAP)) { 1704 if (likely(pfn_valid(pfn))) 1705 swsusp_set_page_free(pfn_to_page(pfn)); 1706 else 1707 return -EFAULT; 1708 } 1709 } while (pfn != BM_END_OF_MAP); 1710 1711 allocated_unsafe_pages = 0; 1712 1713 return 0; 1714 } 1715 1716 static void 1717 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1718 { 1719 unsigned long pfn; 1720 1721 memory_bm_position_reset(src); 1722 pfn = memory_bm_next_pfn(src); 1723 while (pfn != BM_END_OF_MAP) { 1724 memory_bm_set_bit(dst, pfn); 1725 pfn = memory_bm_next_pfn(src); 1726 } 1727 } 1728 1729 static int check_header(struct swsusp_info *info) 1730 { 1731 char *reason; 1732 1733 reason = check_image_kernel(info); 1734 if (!reason && info->num_physpages != num_physpages) 1735 reason = "memory size"; 1736 if (reason) { 1737 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1738 return -EPERM; 1739 } 1740 return 0; 1741 } 1742 1743 /** 1744 * load header - check the image header and copy data from it 1745 */ 1746 1747 static int 1748 load_header(struct swsusp_info *info) 1749 { 1750 int error; 1751 1752 restore_pblist = NULL; 1753 error = check_header(info); 1754 if (!error) { 1755 nr_copy_pages = info->image_pages; 1756 nr_meta_pages = info->pages - info->image_pages - 1; 1757 } 1758 return error; 1759 } 1760 1761 /** 1762 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1763 * the corresponding bit in the memory bitmap @bm 1764 */ 1765 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1766 { 1767 int j; 1768 1769 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1770 if (unlikely(buf[j] == BM_END_OF_MAP)) 1771 break; 1772 1773 if (memory_bm_pfn_present(bm, buf[j])) 1774 memory_bm_set_bit(bm, buf[j]); 1775 else 1776 return -EFAULT; 1777 } 1778 1779 return 0; 1780 } 1781 1782 /* List of "safe" pages that may be used to store data loaded from the suspend 1783 * image 1784 */ 1785 static struct linked_page *safe_pages_list; 1786 1787 #ifdef CONFIG_HIGHMEM 1788 /* struct highmem_pbe is used for creating the list of highmem pages that 1789 * should be restored atomically during the resume from disk, because the page 1790 * frames they have occupied before the suspend are in use. 1791 */ 1792 struct highmem_pbe { 1793 struct page *copy_page; /* data is here now */ 1794 struct page *orig_page; /* data was here before the suspend */ 1795 struct highmem_pbe *next; 1796 }; 1797 1798 /* List of highmem PBEs needed for restoring the highmem pages that were 1799 * allocated before the suspend and included in the suspend image, but have 1800 * also been allocated by the "resume" kernel, so their contents cannot be 1801 * written directly to their "original" page frames. 1802 */ 1803 static struct highmem_pbe *highmem_pblist; 1804 1805 /** 1806 * count_highmem_image_pages - compute the number of highmem pages in the 1807 * suspend image. The bits in the memory bitmap @bm that correspond to the 1808 * image pages are assumed to be set. 1809 */ 1810 1811 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1812 { 1813 unsigned long pfn; 1814 unsigned int cnt = 0; 1815 1816 memory_bm_position_reset(bm); 1817 pfn = memory_bm_next_pfn(bm); 1818 while (pfn != BM_END_OF_MAP) { 1819 if (PageHighMem(pfn_to_page(pfn))) 1820 cnt++; 1821 1822 pfn = memory_bm_next_pfn(bm); 1823 } 1824 return cnt; 1825 } 1826 1827 /** 1828 * prepare_highmem_image - try to allocate as many highmem pages as 1829 * there are highmem image pages (@nr_highmem_p points to the variable 1830 * containing the number of highmem image pages). The pages that are 1831 * "safe" (ie. will not be overwritten when the suspend image is 1832 * restored) have the corresponding bits set in @bm (it must be 1833 * unitialized). 1834 * 1835 * NOTE: This function should not be called if there are no highmem 1836 * image pages. 1837 */ 1838 1839 static unsigned int safe_highmem_pages; 1840 1841 static struct memory_bitmap *safe_highmem_bm; 1842 1843 static int 1844 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1845 { 1846 unsigned int to_alloc; 1847 1848 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1849 return -ENOMEM; 1850 1851 if (get_highmem_buffer(PG_SAFE)) 1852 return -ENOMEM; 1853 1854 to_alloc = count_free_highmem_pages(); 1855 if (to_alloc > *nr_highmem_p) 1856 to_alloc = *nr_highmem_p; 1857 else 1858 *nr_highmem_p = to_alloc; 1859 1860 safe_highmem_pages = 0; 1861 while (to_alloc-- > 0) { 1862 struct page *page; 1863 1864 page = alloc_page(__GFP_HIGHMEM); 1865 if (!swsusp_page_is_free(page)) { 1866 /* The page is "safe", set its bit the bitmap */ 1867 memory_bm_set_bit(bm, page_to_pfn(page)); 1868 safe_highmem_pages++; 1869 } 1870 /* Mark the page as allocated */ 1871 swsusp_set_page_forbidden(page); 1872 swsusp_set_page_free(page); 1873 } 1874 memory_bm_position_reset(bm); 1875 safe_highmem_bm = bm; 1876 return 0; 1877 } 1878 1879 /** 1880 * get_highmem_page_buffer - for given highmem image page find the buffer 1881 * that suspend_write_next() should set for its caller to write to. 1882 * 1883 * If the page is to be saved to its "original" page frame or a copy of 1884 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1885 * the copy of the page is to be made in normal memory, so the address of 1886 * the copy is returned. 1887 * 1888 * If @buffer is returned, the caller of suspend_write_next() will write 1889 * the page's contents to @buffer, so they will have to be copied to the 1890 * right location on the next call to suspend_write_next() and it is done 1891 * with the help of copy_last_highmem_page(). For this purpose, if 1892 * @buffer is returned, @last_highmem page is set to the page to which 1893 * the data will have to be copied from @buffer. 1894 */ 1895 1896 static struct page *last_highmem_page; 1897 1898 static void * 1899 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1900 { 1901 struct highmem_pbe *pbe; 1902 void *kaddr; 1903 1904 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1905 /* We have allocated the "original" page frame and we can 1906 * use it directly to store the loaded page. 1907 */ 1908 last_highmem_page = page; 1909 return buffer; 1910 } 1911 /* The "original" page frame has not been allocated and we have to 1912 * use a "safe" page frame to store the loaded page. 1913 */ 1914 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1915 if (!pbe) { 1916 swsusp_free(); 1917 return ERR_PTR(-ENOMEM); 1918 } 1919 pbe->orig_page = page; 1920 if (safe_highmem_pages > 0) { 1921 struct page *tmp; 1922 1923 /* Copy of the page will be stored in high memory */ 1924 kaddr = buffer; 1925 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1926 safe_highmem_pages--; 1927 last_highmem_page = tmp; 1928 pbe->copy_page = tmp; 1929 } else { 1930 /* Copy of the page will be stored in normal memory */ 1931 kaddr = safe_pages_list; 1932 safe_pages_list = safe_pages_list->next; 1933 pbe->copy_page = virt_to_page(kaddr); 1934 } 1935 pbe->next = highmem_pblist; 1936 highmem_pblist = pbe; 1937 return kaddr; 1938 } 1939 1940 /** 1941 * copy_last_highmem_page - copy the contents of a highmem image from 1942 * @buffer, where the caller of snapshot_write_next() has place them, 1943 * to the right location represented by @last_highmem_page . 1944 */ 1945 1946 static void copy_last_highmem_page(void) 1947 { 1948 if (last_highmem_page) { 1949 void *dst; 1950 1951 dst = kmap_atomic(last_highmem_page, KM_USER0); 1952 memcpy(dst, buffer, PAGE_SIZE); 1953 kunmap_atomic(dst, KM_USER0); 1954 last_highmem_page = NULL; 1955 } 1956 } 1957 1958 static inline int last_highmem_page_copied(void) 1959 { 1960 return !last_highmem_page; 1961 } 1962 1963 static inline void free_highmem_data(void) 1964 { 1965 if (safe_highmem_bm) 1966 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1967 1968 if (buffer) 1969 free_image_page(buffer, PG_UNSAFE_CLEAR); 1970 } 1971 #else 1972 static inline int get_safe_write_buffer(void) { return 0; } 1973 1974 static unsigned int 1975 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1976 1977 static inline int 1978 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1979 { 1980 return 0; 1981 } 1982 1983 static inline void * 1984 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1985 { 1986 return ERR_PTR(-EINVAL); 1987 } 1988 1989 static inline void copy_last_highmem_page(void) {} 1990 static inline int last_highmem_page_copied(void) { return 1; } 1991 static inline void free_highmem_data(void) {} 1992 #endif /* CONFIG_HIGHMEM */ 1993 1994 /** 1995 * prepare_image - use the memory bitmap @bm to mark the pages that will 1996 * be overwritten in the process of restoring the system memory state 1997 * from the suspend image ("unsafe" pages) and allocate memory for the 1998 * image. 1999 * 2000 * The idea is to allocate a new memory bitmap first and then allocate 2001 * as many pages as needed for the image data, but not to assign these 2002 * pages to specific tasks initially. Instead, we just mark them as 2003 * allocated and create a lists of "safe" pages that will be used 2004 * later. On systems with high memory a list of "safe" highmem pages is 2005 * also created. 2006 */ 2007 2008 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2009 2010 static int 2011 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2012 { 2013 unsigned int nr_pages, nr_highmem; 2014 struct linked_page *sp_list, *lp; 2015 int error; 2016 2017 /* If there is no highmem, the buffer will not be necessary */ 2018 free_image_page(buffer, PG_UNSAFE_CLEAR); 2019 buffer = NULL; 2020 2021 nr_highmem = count_highmem_image_pages(bm); 2022 error = mark_unsafe_pages(bm); 2023 if (error) 2024 goto Free; 2025 2026 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2027 if (error) 2028 goto Free; 2029 2030 duplicate_memory_bitmap(new_bm, bm); 2031 memory_bm_free(bm, PG_UNSAFE_KEEP); 2032 if (nr_highmem > 0) { 2033 error = prepare_highmem_image(bm, &nr_highmem); 2034 if (error) 2035 goto Free; 2036 } 2037 /* Reserve some safe pages for potential later use. 2038 * 2039 * NOTE: This way we make sure there will be enough safe pages for the 2040 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2041 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2042 */ 2043 sp_list = NULL; 2044 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2045 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2046 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2047 while (nr_pages > 0) { 2048 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2049 if (!lp) { 2050 error = -ENOMEM; 2051 goto Free; 2052 } 2053 lp->next = sp_list; 2054 sp_list = lp; 2055 nr_pages--; 2056 } 2057 /* Preallocate memory for the image */ 2058 safe_pages_list = NULL; 2059 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2060 while (nr_pages > 0) { 2061 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2062 if (!lp) { 2063 error = -ENOMEM; 2064 goto Free; 2065 } 2066 if (!swsusp_page_is_free(virt_to_page(lp))) { 2067 /* The page is "safe", add it to the list */ 2068 lp->next = safe_pages_list; 2069 safe_pages_list = lp; 2070 } 2071 /* Mark the page as allocated */ 2072 swsusp_set_page_forbidden(virt_to_page(lp)); 2073 swsusp_set_page_free(virt_to_page(lp)); 2074 nr_pages--; 2075 } 2076 /* Free the reserved safe pages so that chain_alloc() can use them */ 2077 while (sp_list) { 2078 lp = sp_list->next; 2079 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2080 sp_list = lp; 2081 } 2082 return 0; 2083 2084 Free: 2085 swsusp_free(); 2086 return error; 2087 } 2088 2089 /** 2090 * get_buffer - compute the address that snapshot_write_next() should 2091 * set for its caller to write to. 2092 */ 2093 2094 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2095 { 2096 struct pbe *pbe; 2097 struct page *page; 2098 unsigned long pfn = memory_bm_next_pfn(bm); 2099 2100 if (pfn == BM_END_OF_MAP) 2101 return ERR_PTR(-EFAULT); 2102 2103 page = pfn_to_page(pfn); 2104 if (PageHighMem(page)) 2105 return get_highmem_page_buffer(page, ca); 2106 2107 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2108 /* We have allocated the "original" page frame and we can 2109 * use it directly to store the loaded page. 2110 */ 2111 return page_address(page); 2112 2113 /* The "original" page frame has not been allocated and we have to 2114 * use a "safe" page frame to store the loaded page. 2115 */ 2116 pbe = chain_alloc(ca, sizeof(struct pbe)); 2117 if (!pbe) { 2118 swsusp_free(); 2119 return ERR_PTR(-ENOMEM); 2120 } 2121 pbe->orig_address = page_address(page); 2122 pbe->address = safe_pages_list; 2123 safe_pages_list = safe_pages_list->next; 2124 pbe->next = restore_pblist; 2125 restore_pblist = pbe; 2126 return pbe->address; 2127 } 2128 2129 /** 2130 * snapshot_write_next - used for writing the system memory snapshot. 2131 * 2132 * On the first call to it @handle should point to a zeroed 2133 * snapshot_handle structure. The structure gets updated and a pointer 2134 * to it should be passed to this function every next time. 2135 * 2136 * The @count parameter should contain the number of bytes the caller 2137 * wants to write to the image. It must not be zero. 2138 * 2139 * On success the function returns a positive number. Then, the caller 2140 * is allowed to write up to the returned number of bytes to the memory 2141 * location computed by the data_of() macro. The number returned 2142 * may be smaller than @count, but this only happens if the write would 2143 * cross a page boundary otherwise. 2144 * 2145 * The function returns 0 to indicate the "end of file" condition, 2146 * and a negative number is returned on error. In such cases the 2147 * structure pointed to by @handle is not updated and should not be used 2148 * any more. 2149 */ 2150 2151 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 2152 { 2153 static struct chain_allocator ca; 2154 int error = 0; 2155 2156 /* Check if we have already loaded the entire image */ 2157 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 2158 return 0; 2159 2160 if (handle->offset == 0) { 2161 if (!buffer) 2162 /* This makes the buffer be freed by swsusp_free() */ 2163 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2164 2165 if (!buffer) 2166 return -ENOMEM; 2167 2168 handle->buffer = buffer; 2169 } 2170 handle->sync_read = 1; 2171 if (handle->prev < handle->cur) { 2172 if (handle->prev == 0) { 2173 error = load_header(buffer); 2174 if (error) 2175 return error; 2176 2177 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2178 if (error) 2179 return error; 2180 2181 } else if (handle->prev <= nr_meta_pages) { 2182 error = unpack_orig_pfns(buffer, ©_bm); 2183 if (error) 2184 return error; 2185 2186 if (handle->prev == nr_meta_pages) { 2187 error = prepare_image(&orig_bm, ©_bm); 2188 if (error) 2189 return error; 2190 2191 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2192 memory_bm_position_reset(&orig_bm); 2193 restore_pblist = NULL; 2194 handle->buffer = get_buffer(&orig_bm, &ca); 2195 handle->sync_read = 0; 2196 if (IS_ERR(handle->buffer)) 2197 return PTR_ERR(handle->buffer); 2198 } 2199 } else { 2200 copy_last_highmem_page(); 2201 handle->buffer = get_buffer(&orig_bm, &ca); 2202 if (IS_ERR(handle->buffer)) 2203 return PTR_ERR(handle->buffer); 2204 if (handle->buffer != buffer) 2205 handle->sync_read = 0; 2206 } 2207 handle->prev = handle->cur; 2208 } 2209 handle->buf_offset = handle->cur_offset; 2210 if (handle->cur_offset + count >= PAGE_SIZE) { 2211 count = PAGE_SIZE - handle->cur_offset; 2212 handle->cur_offset = 0; 2213 handle->cur++; 2214 } else { 2215 handle->cur_offset += count; 2216 } 2217 handle->offset += count; 2218 return count; 2219 } 2220 2221 /** 2222 * snapshot_write_finalize - must be called after the last call to 2223 * snapshot_write_next() in case the last page in the image happens 2224 * to be a highmem page and its contents should be stored in the 2225 * highmem. Additionally, it releases the memory that will not be 2226 * used any more. 2227 */ 2228 2229 void snapshot_write_finalize(struct snapshot_handle *handle) 2230 { 2231 copy_last_highmem_page(); 2232 /* Free only if we have loaded the image entirely */ 2233 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 2234 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2235 free_highmem_data(); 2236 } 2237 } 2238 2239 int snapshot_image_loaded(struct snapshot_handle *handle) 2240 { 2241 return !(!nr_copy_pages || !last_highmem_page_copied() || 2242 handle->cur <= nr_meta_pages + nr_copy_pages); 2243 } 2244 2245 #ifdef CONFIG_HIGHMEM 2246 /* Assumes that @buf is ready and points to a "safe" page */ 2247 static inline void 2248 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2249 { 2250 void *kaddr1, *kaddr2; 2251 2252 kaddr1 = kmap_atomic(p1, KM_USER0); 2253 kaddr2 = kmap_atomic(p2, KM_USER1); 2254 memcpy(buf, kaddr1, PAGE_SIZE); 2255 memcpy(kaddr1, kaddr2, PAGE_SIZE); 2256 memcpy(kaddr2, buf, PAGE_SIZE); 2257 kunmap_atomic(kaddr1, KM_USER0); 2258 kunmap_atomic(kaddr2, KM_USER1); 2259 } 2260 2261 /** 2262 * restore_highmem - for each highmem page that was allocated before 2263 * the suspend and included in the suspend image, and also has been 2264 * allocated by the "resume" kernel swap its current (ie. "before 2265 * resume") contents with the previous (ie. "before suspend") one. 2266 * 2267 * If the resume eventually fails, we can call this function once 2268 * again and restore the "before resume" highmem state. 2269 */ 2270 2271 int restore_highmem(void) 2272 { 2273 struct highmem_pbe *pbe = highmem_pblist; 2274 void *buf; 2275 2276 if (!pbe) 2277 return 0; 2278 2279 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2280 if (!buf) 2281 return -ENOMEM; 2282 2283 while (pbe) { 2284 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2285 pbe = pbe->next; 2286 } 2287 free_image_page(buf, PG_UNSAFE_CLEAR); 2288 return 0; 2289 } 2290 #endif /* CONFIG_HIGHMEM */ 2291