1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/mmu_context.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <asm/io.h> 34 35 #include "power.h" 36 37 static int swsusp_page_is_free(struct page *); 38 static void swsusp_set_page_forbidden(struct page *); 39 static void swsusp_unset_page_forbidden(struct page *); 40 41 /* List of PBEs needed for restoring the pages that were allocated before 42 * the suspend and included in the suspend image, but have also been 43 * allocated by the "resume" kernel, so their contents cannot be written 44 * directly to their "original" page frames. 45 */ 46 struct pbe *restore_pblist; 47 48 /* Pointer to an auxiliary buffer (1 page) */ 49 static void *buffer; 50 51 /** 52 * @safe_needed - on resume, for storing the PBE list and the image, 53 * we can only use memory pages that do not conflict with the pages 54 * used before suspend. The unsafe pages have PageNosaveFree set 55 * and we count them using unsafe_pages. 56 * 57 * Each allocated image page is marked as PageNosave and PageNosaveFree 58 * so that swsusp_free() can release it. 59 */ 60 61 #define PG_ANY 0 62 #define PG_SAFE 1 63 #define PG_UNSAFE_CLEAR 1 64 #define PG_UNSAFE_KEEP 0 65 66 static unsigned int allocated_unsafe_pages; 67 68 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 69 { 70 void *res; 71 72 res = (void *)get_zeroed_page(gfp_mask); 73 if (safe_needed) 74 while (res && swsusp_page_is_free(virt_to_page(res))) { 75 /* The page is unsafe, mark it for swsusp_free() */ 76 swsusp_set_page_forbidden(virt_to_page(res)); 77 allocated_unsafe_pages++; 78 res = (void *)get_zeroed_page(gfp_mask); 79 } 80 if (res) { 81 swsusp_set_page_forbidden(virt_to_page(res)); 82 swsusp_set_page_free(virt_to_page(res)); 83 } 84 return res; 85 } 86 87 unsigned long get_safe_page(gfp_t gfp_mask) 88 { 89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 90 } 91 92 static struct page *alloc_image_page(gfp_t gfp_mask) 93 { 94 struct page *page; 95 96 page = alloc_page(gfp_mask); 97 if (page) { 98 swsusp_set_page_forbidden(page); 99 swsusp_set_page_free(page); 100 } 101 return page; 102 } 103 104 /** 105 * free_image_page - free page represented by @addr, allocated with 106 * get_image_page (page flags set by it must be cleared) 107 */ 108 109 static inline void free_image_page(void *addr, int clear_nosave_free) 110 { 111 struct page *page; 112 113 BUG_ON(!virt_addr_valid(addr)); 114 115 page = virt_to_page(addr); 116 117 swsusp_unset_page_forbidden(page); 118 if (clear_nosave_free) 119 swsusp_unset_page_free(page); 120 121 __free_page(page); 122 } 123 124 /* struct linked_page is used to build chains of pages */ 125 126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 127 128 struct linked_page { 129 struct linked_page *next; 130 char data[LINKED_PAGE_DATA_SIZE]; 131 } __attribute__((packed)); 132 133 static inline void 134 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 135 { 136 while (list) { 137 struct linked_page *lp = list->next; 138 139 free_image_page(list, clear_page_nosave); 140 list = lp; 141 } 142 } 143 144 /** 145 * struct chain_allocator is used for allocating small objects out of 146 * a linked list of pages called 'the chain'. 147 * 148 * The chain grows each time when there is no room for a new object in 149 * the current page. The allocated objects cannot be freed individually. 150 * It is only possible to free them all at once, by freeing the entire 151 * chain. 152 * 153 * NOTE: The chain allocator may be inefficient if the allocated objects 154 * are not much smaller than PAGE_SIZE. 155 */ 156 157 struct chain_allocator { 158 struct linked_page *chain; /* the chain */ 159 unsigned int used_space; /* total size of objects allocated out 160 * of the current page 161 */ 162 gfp_t gfp_mask; /* mask for allocating pages */ 163 int safe_needed; /* if set, only "safe" pages are allocated */ 164 }; 165 166 static void 167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 168 { 169 ca->chain = NULL; 170 ca->used_space = LINKED_PAGE_DATA_SIZE; 171 ca->gfp_mask = gfp_mask; 172 ca->safe_needed = safe_needed; 173 } 174 175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 176 { 177 void *ret; 178 179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 180 struct linked_page *lp; 181 182 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 183 if (!lp) 184 return NULL; 185 186 lp->next = ca->chain; 187 ca->chain = lp; 188 ca->used_space = 0; 189 } 190 ret = ca->chain->data + ca->used_space; 191 ca->used_space += size; 192 return ret; 193 } 194 195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 196 { 197 free_list_of_pages(ca->chain, clear_page_nosave); 198 memset(ca, 0, sizeof(struct chain_allocator)); 199 } 200 201 /** 202 * Data types related to memory bitmaps. 203 * 204 * Memory bitmap is a structure consiting of many linked lists of 205 * objects. The main list's elements are of type struct zone_bitmap 206 * and each of them corresonds to one zone. For each zone bitmap 207 * object there is a list of objects of type struct bm_block that 208 * represent each blocks of bit chunks in which information is 209 * stored. 210 * 211 * struct memory_bitmap contains a pointer to the main list of zone 212 * bitmap objects, a struct bm_position used for browsing the bitmap, 213 * and a pointer to the list of pages used for allocating all of the 214 * zone bitmap objects and bitmap block objects. 215 * 216 * NOTE: It has to be possible to lay out the bitmap in memory 217 * using only allocations of order 0. Additionally, the bitmap is 218 * designed to work with arbitrary number of zones (this is over the 219 * top for now, but let's avoid making unnecessary assumptions ;-). 220 * 221 * struct zone_bitmap contains a pointer to a list of bitmap block 222 * objects and a pointer to the bitmap block object that has been 223 * most recently used for setting bits. Additionally, it contains the 224 * pfns that correspond to the start and end of the represented zone. 225 * 226 * struct bm_block contains a pointer to the memory page in which 227 * information is stored (in the form of a block of bit chunks 228 * of type unsigned long each). It also contains the pfns that 229 * correspond to the start and end of the represented memory area and 230 * the number of bit chunks in the block. 231 */ 232 233 #define BM_END_OF_MAP (~0UL) 234 235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long)) 236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3) 237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 238 239 struct bm_block { 240 struct bm_block *next; /* next element of the list */ 241 unsigned long start_pfn; /* pfn represented by the first bit */ 242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 243 unsigned int size; /* number of bit chunks */ 244 unsigned long *data; /* chunks of bits representing pages */ 245 }; 246 247 struct zone_bitmap { 248 struct zone_bitmap *next; /* next element of the list */ 249 unsigned long start_pfn; /* minimal pfn in this zone */ 250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 251 struct bm_block *bm_blocks; /* list of bitmap blocks */ 252 struct bm_block *cur_block; /* recently used bitmap block */ 253 }; 254 255 /* strcut bm_position is used for browsing memory bitmaps */ 256 257 struct bm_position { 258 struct zone_bitmap *zone_bm; 259 struct bm_block *block; 260 int chunk; 261 int bit; 262 }; 263 264 struct memory_bitmap { 265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 266 struct linked_page *p_list; /* list of pages used to store zone 267 * bitmap objects and bitmap block 268 * objects 269 */ 270 struct bm_position cur; /* most recently used bit position */ 271 }; 272 273 /* Functions that operate on memory bitmaps */ 274 275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm) 276 { 277 bm->cur.chunk = 0; 278 bm->cur.bit = -1; 279 } 280 281 static void memory_bm_position_reset(struct memory_bitmap *bm) 282 { 283 struct zone_bitmap *zone_bm; 284 285 zone_bm = bm->zone_bm_list; 286 bm->cur.zone_bm = zone_bm; 287 bm->cur.block = zone_bm->bm_blocks; 288 memory_bm_reset_chunk(bm); 289 } 290 291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 292 293 /** 294 * create_bm_block_list - create a list of block bitmap objects 295 */ 296 297 static inline struct bm_block * 298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 299 { 300 struct bm_block *bblist = NULL; 301 302 while (nr_blocks-- > 0) { 303 struct bm_block *bb; 304 305 bb = chain_alloc(ca, sizeof(struct bm_block)); 306 if (!bb) 307 return NULL; 308 309 bb->next = bblist; 310 bblist = bb; 311 } 312 return bblist; 313 } 314 315 /** 316 * create_zone_bm_list - create a list of zone bitmap objects 317 */ 318 319 static inline struct zone_bitmap * 320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 321 { 322 struct zone_bitmap *zbmlist = NULL; 323 324 while (nr_zones-- > 0) { 325 struct zone_bitmap *zbm; 326 327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 328 if (!zbm) 329 return NULL; 330 331 zbm->next = zbmlist; 332 zbmlist = zbm; 333 } 334 return zbmlist; 335 } 336 337 /** 338 * memory_bm_create - allocate memory for a memory bitmap 339 */ 340 341 static int 342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 343 { 344 struct chain_allocator ca; 345 struct zone *zone; 346 struct zone_bitmap *zone_bm; 347 struct bm_block *bb; 348 unsigned int nr; 349 350 chain_init(&ca, gfp_mask, safe_needed); 351 352 /* Compute the number of zones */ 353 nr = 0; 354 for_each_zone(zone) 355 if (populated_zone(zone)) 356 nr++; 357 358 /* Allocate the list of zones bitmap objects */ 359 zone_bm = create_zone_bm_list(nr, &ca); 360 bm->zone_bm_list = zone_bm; 361 if (!zone_bm) { 362 chain_free(&ca, PG_UNSAFE_CLEAR); 363 return -ENOMEM; 364 } 365 366 /* Initialize the zone bitmap objects */ 367 for_each_zone(zone) { 368 unsigned long pfn; 369 370 if (!populated_zone(zone)) 371 continue; 372 373 zone_bm->start_pfn = zone->zone_start_pfn; 374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 375 /* Allocate the list of bitmap block objects */ 376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 377 bb = create_bm_block_list(nr, &ca); 378 zone_bm->bm_blocks = bb; 379 zone_bm->cur_block = bb; 380 if (!bb) 381 goto Free; 382 383 nr = zone->spanned_pages; 384 pfn = zone->zone_start_pfn; 385 /* Initialize the bitmap block objects */ 386 while (bb) { 387 unsigned long *ptr; 388 389 ptr = get_image_page(gfp_mask, safe_needed); 390 bb->data = ptr; 391 if (!ptr) 392 goto Free; 393 394 bb->start_pfn = pfn; 395 if (nr >= BM_BITS_PER_BLOCK) { 396 pfn += BM_BITS_PER_BLOCK; 397 bb->size = BM_CHUNKS_PER_BLOCK; 398 nr -= BM_BITS_PER_BLOCK; 399 } else { 400 /* This is executed only once in the loop */ 401 pfn += nr; 402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK); 403 } 404 bb->end_pfn = pfn; 405 bb = bb->next; 406 } 407 zone_bm = zone_bm->next; 408 } 409 bm->p_list = ca.chain; 410 memory_bm_position_reset(bm); 411 return 0; 412 413 Free: 414 bm->p_list = ca.chain; 415 memory_bm_free(bm, PG_UNSAFE_CLEAR); 416 return -ENOMEM; 417 } 418 419 /** 420 * memory_bm_free - free memory occupied by the memory bitmap @bm 421 */ 422 423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 424 { 425 struct zone_bitmap *zone_bm; 426 427 /* Free the list of bit blocks for each zone_bitmap object */ 428 zone_bm = bm->zone_bm_list; 429 while (zone_bm) { 430 struct bm_block *bb; 431 432 bb = zone_bm->bm_blocks; 433 while (bb) { 434 if (bb->data) 435 free_image_page(bb->data, clear_nosave_free); 436 bb = bb->next; 437 } 438 zone_bm = zone_bm->next; 439 } 440 free_list_of_pages(bm->p_list, clear_nosave_free); 441 bm->zone_bm_list = NULL; 442 } 443 444 /** 445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 447 * of @bm->cur_zone_bm are updated. 448 */ 449 450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 451 void **addr, unsigned int *bit_nr) 452 { 453 struct zone_bitmap *zone_bm; 454 struct bm_block *bb; 455 456 /* Check if the pfn is from the current zone */ 457 zone_bm = bm->cur.zone_bm; 458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 459 zone_bm = bm->zone_bm_list; 460 /* We don't assume that the zones are sorted by pfns */ 461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 462 zone_bm = zone_bm->next; 463 464 BUG_ON(!zone_bm); 465 } 466 bm->cur.zone_bm = zone_bm; 467 } 468 /* Check if the pfn corresponds to the current bitmap block */ 469 bb = zone_bm->cur_block; 470 if (pfn < bb->start_pfn) 471 bb = zone_bm->bm_blocks; 472 473 while (pfn >= bb->end_pfn) { 474 bb = bb->next; 475 476 BUG_ON(!bb); 477 } 478 zone_bm->cur_block = bb; 479 pfn -= bb->start_pfn; 480 *bit_nr = pfn % BM_BITS_PER_CHUNK; 481 *addr = bb->data + pfn / BM_BITS_PER_CHUNK; 482 } 483 484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 485 { 486 void *addr; 487 unsigned int bit; 488 489 memory_bm_find_bit(bm, pfn, &addr, &bit); 490 set_bit(bit, addr); 491 } 492 493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 494 { 495 void *addr; 496 unsigned int bit; 497 498 memory_bm_find_bit(bm, pfn, &addr, &bit); 499 clear_bit(bit, addr); 500 } 501 502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 503 { 504 void *addr; 505 unsigned int bit; 506 507 memory_bm_find_bit(bm, pfn, &addr, &bit); 508 return test_bit(bit, addr); 509 } 510 511 /* Two auxiliary functions for memory_bm_next_pfn */ 512 513 /* Find the first set bit in the given chunk, if there is one */ 514 515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p) 516 { 517 bit++; 518 while (bit < BM_BITS_PER_CHUNK) { 519 if (test_bit(bit, chunk_p)) 520 return bit; 521 522 bit++; 523 } 524 return -1; 525 } 526 527 /* Find a chunk containing some bits set in given block of bits */ 528 529 static inline int next_chunk_in_block(int n, struct bm_block *bb) 530 { 531 n++; 532 while (n < bb->size) { 533 if (bb->data[n]) 534 return n; 535 536 n++; 537 } 538 return -1; 539 } 540 541 /** 542 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 543 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 544 * returned. 545 * 546 * It is required to run memory_bm_position_reset() before the first call to 547 * this function. 548 */ 549 550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 551 { 552 struct zone_bitmap *zone_bm; 553 struct bm_block *bb; 554 int chunk; 555 int bit; 556 557 do { 558 bb = bm->cur.block; 559 do { 560 chunk = bm->cur.chunk; 561 bit = bm->cur.bit; 562 do { 563 bit = next_bit_in_chunk(bit, bb->data + chunk); 564 if (bit >= 0) 565 goto Return_pfn; 566 567 chunk = next_chunk_in_block(chunk, bb); 568 bit = -1; 569 } while (chunk >= 0); 570 bb = bb->next; 571 bm->cur.block = bb; 572 memory_bm_reset_chunk(bm); 573 } while (bb); 574 zone_bm = bm->cur.zone_bm->next; 575 if (zone_bm) { 576 bm->cur.zone_bm = zone_bm; 577 bm->cur.block = zone_bm->bm_blocks; 578 memory_bm_reset_chunk(bm); 579 } 580 } while (zone_bm); 581 memory_bm_position_reset(bm); 582 return BM_END_OF_MAP; 583 584 Return_pfn: 585 bm->cur.chunk = chunk; 586 bm->cur.bit = bit; 587 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 588 } 589 590 /** 591 * This structure represents a range of page frames the contents of which 592 * should not be saved during the suspend. 593 */ 594 595 struct nosave_region { 596 struct list_head list; 597 unsigned long start_pfn; 598 unsigned long end_pfn; 599 }; 600 601 static LIST_HEAD(nosave_regions); 602 603 /** 604 * register_nosave_region - register a range of page frames the contents 605 * of which should not be saved during the suspend (to be used in the early 606 * initialization code) 607 */ 608 609 void __init 610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 611 int use_kmalloc) 612 { 613 struct nosave_region *region; 614 615 if (start_pfn >= end_pfn) 616 return; 617 618 if (!list_empty(&nosave_regions)) { 619 /* Try to extend the previous region (they should be sorted) */ 620 region = list_entry(nosave_regions.prev, 621 struct nosave_region, list); 622 if (region->end_pfn == start_pfn) { 623 region->end_pfn = end_pfn; 624 goto Report; 625 } 626 } 627 if (use_kmalloc) { 628 /* during init, this shouldn't fail */ 629 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 630 BUG_ON(!region); 631 } else 632 /* This allocation cannot fail */ 633 region = alloc_bootmem_low(sizeof(struct nosave_region)); 634 region->start_pfn = start_pfn; 635 region->end_pfn = end_pfn; 636 list_add_tail(®ion->list, &nosave_regions); 637 Report: 638 printk("swsusp: Registered nosave memory region: %016lx - %016lx\n", 639 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 640 } 641 642 /* 643 * Set bits in this map correspond to the page frames the contents of which 644 * should not be saved during the suspend. 645 */ 646 static struct memory_bitmap *forbidden_pages_map; 647 648 /* Set bits in this map correspond to free page frames. */ 649 static struct memory_bitmap *free_pages_map; 650 651 /* 652 * Each page frame allocated for creating the image is marked by setting the 653 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 654 */ 655 656 void swsusp_set_page_free(struct page *page) 657 { 658 if (free_pages_map) 659 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 660 } 661 662 static int swsusp_page_is_free(struct page *page) 663 { 664 return free_pages_map ? 665 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 666 } 667 668 void swsusp_unset_page_free(struct page *page) 669 { 670 if (free_pages_map) 671 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 672 } 673 674 static void swsusp_set_page_forbidden(struct page *page) 675 { 676 if (forbidden_pages_map) 677 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 678 } 679 680 int swsusp_page_is_forbidden(struct page *page) 681 { 682 return forbidden_pages_map ? 683 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 684 } 685 686 static void swsusp_unset_page_forbidden(struct page *page) 687 { 688 if (forbidden_pages_map) 689 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 690 } 691 692 /** 693 * mark_nosave_pages - set bits corresponding to the page frames the 694 * contents of which should not be saved in a given bitmap. 695 */ 696 697 static void mark_nosave_pages(struct memory_bitmap *bm) 698 { 699 struct nosave_region *region; 700 701 if (list_empty(&nosave_regions)) 702 return; 703 704 list_for_each_entry(region, &nosave_regions, list) { 705 unsigned long pfn; 706 707 printk("swsusp: Marking nosave pages: %016lx - %016lx\n", 708 region->start_pfn << PAGE_SHIFT, 709 region->end_pfn << PAGE_SHIFT); 710 711 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 712 if (pfn_valid(pfn)) 713 memory_bm_set_bit(bm, pfn); 714 } 715 } 716 717 /** 718 * create_basic_memory_bitmaps - create bitmaps needed for marking page 719 * frames that should not be saved and free page frames. The pointers 720 * forbidden_pages_map and free_pages_map are only modified if everything 721 * goes well, because we don't want the bits to be used before both bitmaps 722 * are set up. 723 */ 724 725 int create_basic_memory_bitmaps(void) 726 { 727 struct memory_bitmap *bm1, *bm2; 728 int error = 0; 729 730 BUG_ON(forbidden_pages_map || free_pages_map); 731 732 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 733 if (!bm1) 734 return -ENOMEM; 735 736 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 737 if (error) 738 goto Free_first_object; 739 740 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 741 if (!bm2) 742 goto Free_first_bitmap; 743 744 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 745 if (error) 746 goto Free_second_object; 747 748 forbidden_pages_map = bm1; 749 free_pages_map = bm2; 750 mark_nosave_pages(forbidden_pages_map); 751 752 printk("swsusp: Basic memory bitmaps created\n"); 753 754 return 0; 755 756 Free_second_object: 757 kfree(bm2); 758 Free_first_bitmap: 759 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 760 Free_first_object: 761 kfree(bm1); 762 return -ENOMEM; 763 } 764 765 /** 766 * free_basic_memory_bitmaps - free memory bitmaps allocated by 767 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 768 * so that the bitmaps themselves are not referred to while they are being 769 * freed. 770 */ 771 772 void free_basic_memory_bitmaps(void) 773 { 774 struct memory_bitmap *bm1, *bm2; 775 776 BUG_ON(!(forbidden_pages_map && free_pages_map)); 777 778 bm1 = forbidden_pages_map; 779 bm2 = free_pages_map; 780 forbidden_pages_map = NULL; 781 free_pages_map = NULL; 782 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 783 kfree(bm1); 784 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 785 kfree(bm2); 786 787 printk("swsusp: Basic memory bitmaps freed\n"); 788 } 789 790 /** 791 * snapshot_additional_pages - estimate the number of additional pages 792 * be needed for setting up the suspend image data structures for given 793 * zone (usually the returned value is greater than the exact number) 794 */ 795 796 unsigned int snapshot_additional_pages(struct zone *zone) 797 { 798 unsigned int res; 799 800 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 801 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 802 return 2 * res; 803 } 804 805 #ifdef CONFIG_HIGHMEM 806 /** 807 * count_free_highmem_pages - compute the total number of free highmem 808 * pages, system-wide. 809 */ 810 811 static unsigned int count_free_highmem_pages(void) 812 { 813 struct zone *zone; 814 unsigned int cnt = 0; 815 816 for_each_zone(zone) 817 if (populated_zone(zone) && is_highmem(zone)) 818 cnt += zone_page_state(zone, NR_FREE_PAGES); 819 820 return cnt; 821 } 822 823 /** 824 * saveable_highmem_page - Determine whether a highmem page should be 825 * included in the suspend image. 826 * 827 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 828 * and it isn't a part of a free chunk of pages. 829 */ 830 831 static struct page *saveable_highmem_page(unsigned long pfn) 832 { 833 struct page *page; 834 835 if (!pfn_valid(pfn)) 836 return NULL; 837 838 page = pfn_to_page(pfn); 839 840 BUG_ON(!PageHighMem(page)); 841 842 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 843 PageReserved(page)) 844 return NULL; 845 846 return page; 847 } 848 849 /** 850 * count_highmem_pages - compute the total number of saveable highmem 851 * pages. 852 */ 853 854 unsigned int count_highmem_pages(void) 855 { 856 struct zone *zone; 857 unsigned int n = 0; 858 859 for_each_zone(zone) { 860 unsigned long pfn, max_zone_pfn; 861 862 if (!is_highmem(zone)) 863 continue; 864 865 mark_free_pages(zone); 866 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 867 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 868 if (saveable_highmem_page(pfn)) 869 n++; 870 } 871 return n; 872 } 873 #else 874 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 875 static inline unsigned int count_highmem_pages(void) { return 0; } 876 #endif /* CONFIG_HIGHMEM */ 877 878 /** 879 * saveable - Determine whether a non-highmem page should be included in 880 * the suspend image. 881 * 882 * We should save the page if it isn't Nosave, and is not in the range 883 * of pages statically defined as 'unsaveable', and it isn't a part of 884 * a free chunk of pages. 885 */ 886 887 static struct page *saveable_page(unsigned long pfn) 888 { 889 struct page *page; 890 891 if (!pfn_valid(pfn)) 892 return NULL; 893 894 page = pfn_to_page(pfn); 895 896 BUG_ON(PageHighMem(page)); 897 898 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 899 return NULL; 900 901 if (PageReserved(page) && pfn_is_nosave(pfn)) 902 return NULL; 903 904 return page; 905 } 906 907 /** 908 * count_data_pages - compute the total number of saveable non-highmem 909 * pages. 910 */ 911 912 unsigned int count_data_pages(void) 913 { 914 struct zone *zone; 915 unsigned long pfn, max_zone_pfn; 916 unsigned int n = 0; 917 918 for_each_zone(zone) { 919 if (is_highmem(zone)) 920 continue; 921 922 mark_free_pages(zone); 923 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 924 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 925 if(saveable_page(pfn)) 926 n++; 927 } 928 return n; 929 } 930 931 /* This is needed, because copy_page and memcpy are not usable for copying 932 * task structs. 933 */ 934 static inline void do_copy_page(long *dst, long *src) 935 { 936 int n; 937 938 for (n = PAGE_SIZE / sizeof(long); n; n--) 939 *dst++ = *src++; 940 } 941 942 #ifdef CONFIG_HIGHMEM 943 static inline struct page * 944 page_is_saveable(struct zone *zone, unsigned long pfn) 945 { 946 return is_highmem(zone) ? 947 saveable_highmem_page(pfn) : saveable_page(pfn); 948 } 949 950 static inline void 951 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 952 { 953 struct page *s_page, *d_page; 954 void *src, *dst; 955 956 s_page = pfn_to_page(src_pfn); 957 d_page = pfn_to_page(dst_pfn); 958 if (PageHighMem(s_page)) { 959 src = kmap_atomic(s_page, KM_USER0); 960 dst = kmap_atomic(d_page, KM_USER1); 961 do_copy_page(dst, src); 962 kunmap_atomic(src, KM_USER0); 963 kunmap_atomic(dst, KM_USER1); 964 } else { 965 src = page_address(s_page); 966 if (PageHighMem(d_page)) { 967 /* Page pointed to by src may contain some kernel 968 * data modified by kmap_atomic() 969 */ 970 do_copy_page(buffer, src); 971 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 972 memcpy(dst, buffer, PAGE_SIZE); 973 kunmap_atomic(dst, KM_USER0); 974 } else { 975 dst = page_address(d_page); 976 do_copy_page(dst, src); 977 } 978 } 979 } 980 #else 981 #define page_is_saveable(zone, pfn) saveable_page(pfn) 982 983 static inline void 984 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 985 { 986 do_copy_page(page_address(pfn_to_page(dst_pfn)), 987 page_address(pfn_to_page(src_pfn))); 988 } 989 #endif /* CONFIG_HIGHMEM */ 990 991 static void 992 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 993 { 994 struct zone *zone; 995 unsigned long pfn; 996 997 for_each_zone(zone) { 998 unsigned long max_zone_pfn; 999 1000 mark_free_pages(zone); 1001 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1002 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1003 if (page_is_saveable(zone, pfn)) 1004 memory_bm_set_bit(orig_bm, pfn); 1005 } 1006 memory_bm_position_reset(orig_bm); 1007 memory_bm_position_reset(copy_bm); 1008 for(;;) { 1009 pfn = memory_bm_next_pfn(orig_bm); 1010 if (unlikely(pfn == BM_END_OF_MAP)) 1011 break; 1012 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1013 } 1014 } 1015 1016 /* Total number of image pages */ 1017 static unsigned int nr_copy_pages; 1018 /* Number of pages needed for saving the original pfns of the image pages */ 1019 static unsigned int nr_meta_pages; 1020 1021 /** 1022 * swsusp_free - free pages allocated for the suspend. 1023 * 1024 * Suspend pages are alocated before the atomic copy is made, so we 1025 * need to release them after the resume. 1026 */ 1027 1028 void swsusp_free(void) 1029 { 1030 struct zone *zone; 1031 unsigned long pfn, max_zone_pfn; 1032 1033 for_each_zone(zone) { 1034 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1035 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1036 if (pfn_valid(pfn)) { 1037 struct page *page = pfn_to_page(pfn); 1038 1039 if (swsusp_page_is_forbidden(page) && 1040 swsusp_page_is_free(page)) { 1041 swsusp_unset_page_forbidden(page); 1042 swsusp_unset_page_free(page); 1043 __free_page(page); 1044 } 1045 } 1046 } 1047 nr_copy_pages = 0; 1048 nr_meta_pages = 0; 1049 restore_pblist = NULL; 1050 buffer = NULL; 1051 } 1052 1053 #ifdef CONFIG_HIGHMEM 1054 /** 1055 * count_pages_for_highmem - compute the number of non-highmem pages 1056 * that will be necessary for creating copies of highmem pages. 1057 */ 1058 1059 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1060 { 1061 unsigned int free_highmem = count_free_highmem_pages(); 1062 1063 if (free_highmem >= nr_highmem) 1064 nr_highmem = 0; 1065 else 1066 nr_highmem -= free_highmem; 1067 1068 return nr_highmem; 1069 } 1070 #else 1071 static unsigned int 1072 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1073 #endif /* CONFIG_HIGHMEM */ 1074 1075 /** 1076 * enough_free_mem - Make sure we have enough free memory for the 1077 * snapshot image. 1078 */ 1079 1080 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1081 { 1082 struct zone *zone; 1083 unsigned int free = 0, meta = 0; 1084 1085 for_each_zone(zone) { 1086 meta += snapshot_additional_pages(zone); 1087 if (!is_highmem(zone)) 1088 free += zone_page_state(zone, NR_FREE_PAGES); 1089 } 1090 1091 nr_pages += count_pages_for_highmem(nr_highmem); 1092 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n", 1093 nr_pages, PAGES_FOR_IO, meta, free); 1094 1095 return free > nr_pages + PAGES_FOR_IO + meta; 1096 } 1097 1098 #ifdef CONFIG_HIGHMEM 1099 /** 1100 * get_highmem_buffer - if there are some highmem pages in the suspend 1101 * image, we may need the buffer to copy them and/or load their data. 1102 */ 1103 1104 static inline int get_highmem_buffer(int safe_needed) 1105 { 1106 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1107 return buffer ? 0 : -ENOMEM; 1108 } 1109 1110 /** 1111 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1112 * Try to allocate as many pages as needed, but if the number of free 1113 * highmem pages is lesser than that, allocate them all. 1114 */ 1115 1116 static inline unsigned int 1117 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1118 { 1119 unsigned int to_alloc = count_free_highmem_pages(); 1120 1121 if (to_alloc > nr_highmem) 1122 to_alloc = nr_highmem; 1123 1124 nr_highmem -= to_alloc; 1125 while (to_alloc-- > 0) { 1126 struct page *page; 1127 1128 page = alloc_image_page(__GFP_HIGHMEM); 1129 memory_bm_set_bit(bm, page_to_pfn(page)); 1130 } 1131 return nr_highmem; 1132 } 1133 #else 1134 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1135 1136 static inline unsigned int 1137 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1138 #endif /* CONFIG_HIGHMEM */ 1139 1140 /** 1141 * swsusp_alloc - allocate memory for the suspend image 1142 * 1143 * We first try to allocate as many highmem pages as there are 1144 * saveable highmem pages in the system. If that fails, we allocate 1145 * non-highmem pages for the copies of the remaining highmem ones. 1146 * 1147 * In this approach it is likely that the copies of highmem pages will 1148 * also be located in the high memory, because of the way in which 1149 * copy_data_pages() works. 1150 */ 1151 1152 static int 1153 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1154 unsigned int nr_pages, unsigned int nr_highmem) 1155 { 1156 int error; 1157 1158 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1159 if (error) 1160 goto Free; 1161 1162 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1163 if (error) 1164 goto Free; 1165 1166 if (nr_highmem > 0) { 1167 error = get_highmem_buffer(PG_ANY); 1168 if (error) 1169 goto Free; 1170 1171 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1172 } 1173 while (nr_pages-- > 0) { 1174 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1175 1176 if (!page) 1177 goto Free; 1178 1179 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1180 } 1181 return 0; 1182 1183 Free: 1184 swsusp_free(); 1185 return -ENOMEM; 1186 } 1187 1188 /* Memory bitmap used for marking saveable pages (during suspend) or the 1189 * suspend image pages (during resume) 1190 */ 1191 static struct memory_bitmap orig_bm; 1192 /* Memory bitmap used on suspend for marking allocated pages that will contain 1193 * the copies of saveable pages. During resume it is initially used for 1194 * marking the suspend image pages, but then its set bits are duplicated in 1195 * @orig_bm and it is released. Next, on systems with high memory, it may be 1196 * used for marking "safe" highmem pages, but it has to be reinitialized for 1197 * this purpose. 1198 */ 1199 static struct memory_bitmap copy_bm; 1200 1201 asmlinkage int swsusp_save(void) 1202 { 1203 unsigned int nr_pages, nr_highmem; 1204 1205 printk("swsusp: critical section: \n"); 1206 1207 drain_local_pages(); 1208 nr_pages = count_data_pages(); 1209 nr_highmem = count_highmem_pages(); 1210 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem); 1211 1212 if (!enough_free_mem(nr_pages, nr_highmem)) { 1213 printk(KERN_ERR "swsusp: Not enough free memory\n"); 1214 return -ENOMEM; 1215 } 1216 1217 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1218 printk(KERN_ERR "swsusp: Memory allocation failed\n"); 1219 return -ENOMEM; 1220 } 1221 1222 /* During allocating of suspend pagedir, new cold pages may appear. 1223 * Kill them. 1224 */ 1225 drain_local_pages(); 1226 copy_data_pages(©_bm, &orig_bm); 1227 1228 /* 1229 * End of critical section. From now on, we can write to memory, 1230 * but we should not touch disk. This specially means we must _not_ 1231 * touch swap space! Except we must write out our image of course. 1232 */ 1233 1234 nr_pages += nr_highmem; 1235 nr_copy_pages = nr_pages; 1236 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1237 1238 printk("swsusp: critical section: done (%d pages copied)\n", nr_pages); 1239 1240 return 0; 1241 } 1242 1243 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1244 static int init_header_complete(struct swsusp_info *info) 1245 { 1246 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1247 info->version_code = LINUX_VERSION_CODE; 1248 return 0; 1249 } 1250 1251 static char *check_image_kernel(struct swsusp_info *info) 1252 { 1253 if (info->version_code != LINUX_VERSION_CODE) 1254 return "kernel version"; 1255 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1256 return "system type"; 1257 if (strcmp(info->uts.release,init_utsname()->release)) 1258 return "kernel release"; 1259 if (strcmp(info->uts.version,init_utsname()->version)) 1260 return "version"; 1261 if (strcmp(info->uts.machine,init_utsname()->machine)) 1262 return "machine"; 1263 return NULL; 1264 } 1265 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1266 1267 static int init_header(struct swsusp_info *info) 1268 { 1269 memset(info, 0, sizeof(struct swsusp_info)); 1270 info->num_physpages = num_physpages; 1271 info->image_pages = nr_copy_pages; 1272 info->pages = nr_copy_pages + nr_meta_pages + 1; 1273 info->size = info->pages; 1274 info->size <<= PAGE_SHIFT; 1275 return init_header_complete(info); 1276 } 1277 1278 /** 1279 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1280 * are stored in the array @buf[] (1 page at a time) 1281 */ 1282 1283 static inline void 1284 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1285 { 1286 int j; 1287 1288 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1289 buf[j] = memory_bm_next_pfn(bm); 1290 if (unlikely(buf[j] == BM_END_OF_MAP)) 1291 break; 1292 } 1293 } 1294 1295 /** 1296 * snapshot_read_next - used for reading the system memory snapshot. 1297 * 1298 * On the first call to it @handle should point to a zeroed 1299 * snapshot_handle structure. The structure gets updated and a pointer 1300 * to it should be passed to this function every next time. 1301 * 1302 * The @count parameter should contain the number of bytes the caller 1303 * wants to read from the snapshot. It must not be zero. 1304 * 1305 * On success the function returns a positive number. Then, the caller 1306 * is allowed to read up to the returned number of bytes from the memory 1307 * location computed by the data_of() macro. The number returned 1308 * may be smaller than @count, but this only happens if the read would 1309 * cross a page boundary otherwise. 1310 * 1311 * The function returns 0 to indicate the end of data stream condition, 1312 * and a negative number is returned on error. In such cases the 1313 * structure pointed to by @handle is not updated and should not be used 1314 * any more. 1315 */ 1316 1317 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1318 { 1319 if (handle->cur > nr_meta_pages + nr_copy_pages) 1320 return 0; 1321 1322 if (!buffer) { 1323 /* This makes the buffer be freed by swsusp_free() */ 1324 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1325 if (!buffer) 1326 return -ENOMEM; 1327 } 1328 if (!handle->offset) { 1329 int error; 1330 1331 error = init_header((struct swsusp_info *)buffer); 1332 if (error) 1333 return error; 1334 handle->buffer = buffer; 1335 memory_bm_position_reset(&orig_bm); 1336 memory_bm_position_reset(©_bm); 1337 } 1338 if (handle->prev < handle->cur) { 1339 if (handle->cur <= nr_meta_pages) { 1340 memset(buffer, 0, PAGE_SIZE); 1341 pack_pfns(buffer, &orig_bm); 1342 } else { 1343 struct page *page; 1344 1345 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1346 if (PageHighMem(page)) { 1347 /* Highmem pages are copied to the buffer, 1348 * because we can't return with a kmapped 1349 * highmem page (we may not be called again). 1350 */ 1351 void *kaddr; 1352 1353 kaddr = kmap_atomic(page, KM_USER0); 1354 memcpy(buffer, kaddr, PAGE_SIZE); 1355 kunmap_atomic(kaddr, KM_USER0); 1356 handle->buffer = buffer; 1357 } else { 1358 handle->buffer = page_address(page); 1359 } 1360 } 1361 handle->prev = handle->cur; 1362 } 1363 handle->buf_offset = handle->cur_offset; 1364 if (handle->cur_offset + count >= PAGE_SIZE) { 1365 count = PAGE_SIZE - handle->cur_offset; 1366 handle->cur_offset = 0; 1367 handle->cur++; 1368 } else { 1369 handle->cur_offset += count; 1370 } 1371 handle->offset += count; 1372 return count; 1373 } 1374 1375 /** 1376 * mark_unsafe_pages - mark the pages that cannot be used for storing 1377 * the image during resume, because they conflict with the pages that 1378 * had been used before suspend 1379 */ 1380 1381 static int mark_unsafe_pages(struct memory_bitmap *bm) 1382 { 1383 struct zone *zone; 1384 unsigned long pfn, max_zone_pfn; 1385 1386 /* Clear page flags */ 1387 for_each_zone(zone) { 1388 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1389 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1390 if (pfn_valid(pfn)) 1391 swsusp_unset_page_free(pfn_to_page(pfn)); 1392 } 1393 1394 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1395 memory_bm_position_reset(bm); 1396 do { 1397 pfn = memory_bm_next_pfn(bm); 1398 if (likely(pfn != BM_END_OF_MAP)) { 1399 if (likely(pfn_valid(pfn))) 1400 swsusp_set_page_free(pfn_to_page(pfn)); 1401 else 1402 return -EFAULT; 1403 } 1404 } while (pfn != BM_END_OF_MAP); 1405 1406 allocated_unsafe_pages = 0; 1407 1408 return 0; 1409 } 1410 1411 static void 1412 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1413 { 1414 unsigned long pfn; 1415 1416 memory_bm_position_reset(src); 1417 pfn = memory_bm_next_pfn(src); 1418 while (pfn != BM_END_OF_MAP) { 1419 memory_bm_set_bit(dst, pfn); 1420 pfn = memory_bm_next_pfn(src); 1421 } 1422 } 1423 1424 static int check_header(struct swsusp_info *info) 1425 { 1426 char *reason; 1427 1428 reason = check_image_kernel(info); 1429 if (!reason && info->num_physpages != num_physpages) 1430 reason = "memory size"; 1431 if (reason) { 1432 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); 1433 return -EPERM; 1434 } 1435 return 0; 1436 } 1437 1438 /** 1439 * load header - check the image header and copy data from it 1440 */ 1441 1442 static int 1443 load_header(struct swsusp_info *info) 1444 { 1445 int error; 1446 1447 restore_pblist = NULL; 1448 error = check_header(info); 1449 if (!error) { 1450 nr_copy_pages = info->image_pages; 1451 nr_meta_pages = info->pages - info->image_pages - 1; 1452 } 1453 return error; 1454 } 1455 1456 /** 1457 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1458 * the corresponding bit in the memory bitmap @bm 1459 */ 1460 1461 static inline void 1462 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1463 { 1464 int j; 1465 1466 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1467 if (unlikely(buf[j] == BM_END_OF_MAP)) 1468 break; 1469 1470 memory_bm_set_bit(bm, buf[j]); 1471 } 1472 } 1473 1474 /* List of "safe" pages that may be used to store data loaded from the suspend 1475 * image 1476 */ 1477 static struct linked_page *safe_pages_list; 1478 1479 #ifdef CONFIG_HIGHMEM 1480 /* struct highmem_pbe is used for creating the list of highmem pages that 1481 * should be restored atomically during the resume from disk, because the page 1482 * frames they have occupied before the suspend are in use. 1483 */ 1484 struct highmem_pbe { 1485 struct page *copy_page; /* data is here now */ 1486 struct page *orig_page; /* data was here before the suspend */ 1487 struct highmem_pbe *next; 1488 }; 1489 1490 /* List of highmem PBEs needed for restoring the highmem pages that were 1491 * allocated before the suspend and included in the suspend image, but have 1492 * also been allocated by the "resume" kernel, so their contents cannot be 1493 * written directly to their "original" page frames. 1494 */ 1495 static struct highmem_pbe *highmem_pblist; 1496 1497 /** 1498 * count_highmem_image_pages - compute the number of highmem pages in the 1499 * suspend image. The bits in the memory bitmap @bm that correspond to the 1500 * image pages are assumed to be set. 1501 */ 1502 1503 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1504 { 1505 unsigned long pfn; 1506 unsigned int cnt = 0; 1507 1508 memory_bm_position_reset(bm); 1509 pfn = memory_bm_next_pfn(bm); 1510 while (pfn != BM_END_OF_MAP) { 1511 if (PageHighMem(pfn_to_page(pfn))) 1512 cnt++; 1513 1514 pfn = memory_bm_next_pfn(bm); 1515 } 1516 return cnt; 1517 } 1518 1519 /** 1520 * prepare_highmem_image - try to allocate as many highmem pages as 1521 * there are highmem image pages (@nr_highmem_p points to the variable 1522 * containing the number of highmem image pages). The pages that are 1523 * "safe" (ie. will not be overwritten when the suspend image is 1524 * restored) have the corresponding bits set in @bm (it must be 1525 * unitialized). 1526 * 1527 * NOTE: This function should not be called if there are no highmem 1528 * image pages. 1529 */ 1530 1531 static unsigned int safe_highmem_pages; 1532 1533 static struct memory_bitmap *safe_highmem_bm; 1534 1535 static int 1536 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1537 { 1538 unsigned int to_alloc; 1539 1540 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1541 return -ENOMEM; 1542 1543 if (get_highmem_buffer(PG_SAFE)) 1544 return -ENOMEM; 1545 1546 to_alloc = count_free_highmem_pages(); 1547 if (to_alloc > *nr_highmem_p) 1548 to_alloc = *nr_highmem_p; 1549 else 1550 *nr_highmem_p = to_alloc; 1551 1552 safe_highmem_pages = 0; 1553 while (to_alloc-- > 0) { 1554 struct page *page; 1555 1556 page = alloc_page(__GFP_HIGHMEM); 1557 if (!swsusp_page_is_free(page)) { 1558 /* The page is "safe", set its bit the bitmap */ 1559 memory_bm_set_bit(bm, page_to_pfn(page)); 1560 safe_highmem_pages++; 1561 } 1562 /* Mark the page as allocated */ 1563 swsusp_set_page_forbidden(page); 1564 swsusp_set_page_free(page); 1565 } 1566 memory_bm_position_reset(bm); 1567 safe_highmem_bm = bm; 1568 return 0; 1569 } 1570 1571 /** 1572 * get_highmem_page_buffer - for given highmem image page find the buffer 1573 * that suspend_write_next() should set for its caller to write to. 1574 * 1575 * If the page is to be saved to its "original" page frame or a copy of 1576 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1577 * the copy of the page is to be made in normal memory, so the address of 1578 * the copy is returned. 1579 * 1580 * If @buffer is returned, the caller of suspend_write_next() will write 1581 * the page's contents to @buffer, so they will have to be copied to the 1582 * right location on the next call to suspend_write_next() and it is done 1583 * with the help of copy_last_highmem_page(). For this purpose, if 1584 * @buffer is returned, @last_highmem page is set to the page to which 1585 * the data will have to be copied from @buffer. 1586 */ 1587 1588 static struct page *last_highmem_page; 1589 1590 static void * 1591 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1592 { 1593 struct highmem_pbe *pbe; 1594 void *kaddr; 1595 1596 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1597 /* We have allocated the "original" page frame and we can 1598 * use it directly to store the loaded page. 1599 */ 1600 last_highmem_page = page; 1601 return buffer; 1602 } 1603 /* The "original" page frame has not been allocated and we have to 1604 * use a "safe" page frame to store the loaded page. 1605 */ 1606 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1607 if (!pbe) { 1608 swsusp_free(); 1609 return NULL; 1610 } 1611 pbe->orig_page = page; 1612 if (safe_highmem_pages > 0) { 1613 struct page *tmp; 1614 1615 /* Copy of the page will be stored in high memory */ 1616 kaddr = buffer; 1617 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1618 safe_highmem_pages--; 1619 last_highmem_page = tmp; 1620 pbe->copy_page = tmp; 1621 } else { 1622 /* Copy of the page will be stored in normal memory */ 1623 kaddr = safe_pages_list; 1624 safe_pages_list = safe_pages_list->next; 1625 pbe->copy_page = virt_to_page(kaddr); 1626 } 1627 pbe->next = highmem_pblist; 1628 highmem_pblist = pbe; 1629 return kaddr; 1630 } 1631 1632 /** 1633 * copy_last_highmem_page - copy the contents of a highmem image from 1634 * @buffer, where the caller of snapshot_write_next() has place them, 1635 * to the right location represented by @last_highmem_page . 1636 */ 1637 1638 static void copy_last_highmem_page(void) 1639 { 1640 if (last_highmem_page) { 1641 void *dst; 1642 1643 dst = kmap_atomic(last_highmem_page, KM_USER0); 1644 memcpy(dst, buffer, PAGE_SIZE); 1645 kunmap_atomic(dst, KM_USER0); 1646 last_highmem_page = NULL; 1647 } 1648 } 1649 1650 static inline int last_highmem_page_copied(void) 1651 { 1652 return !last_highmem_page; 1653 } 1654 1655 static inline void free_highmem_data(void) 1656 { 1657 if (safe_highmem_bm) 1658 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1659 1660 if (buffer) 1661 free_image_page(buffer, PG_UNSAFE_CLEAR); 1662 } 1663 #else 1664 static inline int get_safe_write_buffer(void) { return 0; } 1665 1666 static unsigned int 1667 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1668 1669 static inline int 1670 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1671 { 1672 return 0; 1673 } 1674 1675 static inline void * 1676 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1677 { 1678 return NULL; 1679 } 1680 1681 static inline void copy_last_highmem_page(void) {} 1682 static inline int last_highmem_page_copied(void) { return 1; } 1683 static inline void free_highmem_data(void) {} 1684 #endif /* CONFIG_HIGHMEM */ 1685 1686 /** 1687 * prepare_image - use the memory bitmap @bm to mark the pages that will 1688 * be overwritten in the process of restoring the system memory state 1689 * from the suspend image ("unsafe" pages) and allocate memory for the 1690 * image. 1691 * 1692 * The idea is to allocate a new memory bitmap first and then allocate 1693 * as many pages as needed for the image data, but not to assign these 1694 * pages to specific tasks initially. Instead, we just mark them as 1695 * allocated and create a lists of "safe" pages that will be used 1696 * later. On systems with high memory a list of "safe" highmem pages is 1697 * also created. 1698 */ 1699 1700 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1701 1702 static int 1703 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1704 { 1705 unsigned int nr_pages, nr_highmem; 1706 struct linked_page *sp_list, *lp; 1707 int error; 1708 1709 /* If there is no highmem, the buffer will not be necessary */ 1710 free_image_page(buffer, PG_UNSAFE_CLEAR); 1711 buffer = NULL; 1712 1713 nr_highmem = count_highmem_image_pages(bm); 1714 error = mark_unsafe_pages(bm); 1715 if (error) 1716 goto Free; 1717 1718 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1719 if (error) 1720 goto Free; 1721 1722 duplicate_memory_bitmap(new_bm, bm); 1723 memory_bm_free(bm, PG_UNSAFE_KEEP); 1724 if (nr_highmem > 0) { 1725 error = prepare_highmem_image(bm, &nr_highmem); 1726 if (error) 1727 goto Free; 1728 } 1729 /* Reserve some safe pages for potential later use. 1730 * 1731 * NOTE: This way we make sure there will be enough safe pages for the 1732 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1733 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1734 */ 1735 sp_list = NULL; 1736 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1737 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1738 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1739 while (nr_pages > 0) { 1740 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1741 if (!lp) { 1742 error = -ENOMEM; 1743 goto Free; 1744 } 1745 lp->next = sp_list; 1746 sp_list = lp; 1747 nr_pages--; 1748 } 1749 /* Preallocate memory for the image */ 1750 safe_pages_list = NULL; 1751 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1752 while (nr_pages > 0) { 1753 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1754 if (!lp) { 1755 error = -ENOMEM; 1756 goto Free; 1757 } 1758 if (!swsusp_page_is_free(virt_to_page(lp))) { 1759 /* The page is "safe", add it to the list */ 1760 lp->next = safe_pages_list; 1761 safe_pages_list = lp; 1762 } 1763 /* Mark the page as allocated */ 1764 swsusp_set_page_forbidden(virt_to_page(lp)); 1765 swsusp_set_page_free(virt_to_page(lp)); 1766 nr_pages--; 1767 } 1768 /* Free the reserved safe pages so that chain_alloc() can use them */ 1769 while (sp_list) { 1770 lp = sp_list->next; 1771 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1772 sp_list = lp; 1773 } 1774 return 0; 1775 1776 Free: 1777 swsusp_free(); 1778 return error; 1779 } 1780 1781 /** 1782 * get_buffer - compute the address that snapshot_write_next() should 1783 * set for its caller to write to. 1784 */ 1785 1786 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1787 { 1788 struct pbe *pbe; 1789 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1790 1791 if (PageHighMem(page)) 1792 return get_highmem_page_buffer(page, ca); 1793 1794 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1795 /* We have allocated the "original" page frame and we can 1796 * use it directly to store the loaded page. 1797 */ 1798 return page_address(page); 1799 1800 /* The "original" page frame has not been allocated and we have to 1801 * use a "safe" page frame to store the loaded page. 1802 */ 1803 pbe = chain_alloc(ca, sizeof(struct pbe)); 1804 if (!pbe) { 1805 swsusp_free(); 1806 return NULL; 1807 } 1808 pbe->orig_address = page_address(page); 1809 pbe->address = safe_pages_list; 1810 safe_pages_list = safe_pages_list->next; 1811 pbe->next = restore_pblist; 1812 restore_pblist = pbe; 1813 return pbe->address; 1814 } 1815 1816 /** 1817 * snapshot_write_next - used for writing the system memory snapshot. 1818 * 1819 * On the first call to it @handle should point to a zeroed 1820 * snapshot_handle structure. The structure gets updated and a pointer 1821 * to it should be passed to this function every next time. 1822 * 1823 * The @count parameter should contain the number of bytes the caller 1824 * wants to write to the image. It must not be zero. 1825 * 1826 * On success the function returns a positive number. Then, the caller 1827 * is allowed to write up to the returned number of bytes to the memory 1828 * location computed by the data_of() macro. The number returned 1829 * may be smaller than @count, but this only happens if the write would 1830 * cross a page boundary otherwise. 1831 * 1832 * The function returns 0 to indicate the "end of file" condition, 1833 * and a negative number is returned on error. In such cases the 1834 * structure pointed to by @handle is not updated and should not be used 1835 * any more. 1836 */ 1837 1838 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1839 { 1840 static struct chain_allocator ca; 1841 int error = 0; 1842 1843 /* Check if we have already loaded the entire image */ 1844 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1845 return 0; 1846 1847 if (handle->offset == 0) { 1848 if (!buffer) 1849 /* This makes the buffer be freed by swsusp_free() */ 1850 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1851 1852 if (!buffer) 1853 return -ENOMEM; 1854 1855 handle->buffer = buffer; 1856 } 1857 handle->sync_read = 1; 1858 if (handle->prev < handle->cur) { 1859 if (handle->prev == 0) { 1860 error = load_header(buffer); 1861 if (error) 1862 return error; 1863 1864 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1865 if (error) 1866 return error; 1867 1868 } else if (handle->prev <= nr_meta_pages) { 1869 unpack_orig_pfns(buffer, ©_bm); 1870 if (handle->prev == nr_meta_pages) { 1871 error = prepare_image(&orig_bm, ©_bm); 1872 if (error) 1873 return error; 1874 1875 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1876 memory_bm_position_reset(&orig_bm); 1877 restore_pblist = NULL; 1878 handle->buffer = get_buffer(&orig_bm, &ca); 1879 handle->sync_read = 0; 1880 if (!handle->buffer) 1881 return -ENOMEM; 1882 } 1883 } else { 1884 copy_last_highmem_page(); 1885 handle->buffer = get_buffer(&orig_bm, &ca); 1886 if (handle->buffer != buffer) 1887 handle->sync_read = 0; 1888 } 1889 handle->prev = handle->cur; 1890 } 1891 handle->buf_offset = handle->cur_offset; 1892 if (handle->cur_offset + count >= PAGE_SIZE) { 1893 count = PAGE_SIZE - handle->cur_offset; 1894 handle->cur_offset = 0; 1895 handle->cur++; 1896 } else { 1897 handle->cur_offset += count; 1898 } 1899 handle->offset += count; 1900 return count; 1901 } 1902 1903 /** 1904 * snapshot_write_finalize - must be called after the last call to 1905 * snapshot_write_next() in case the last page in the image happens 1906 * to be a highmem page and its contents should be stored in the 1907 * highmem. Additionally, it releases the memory that will not be 1908 * used any more. 1909 */ 1910 1911 void snapshot_write_finalize(struct snapshot_handle *handle) 1912 { 1913 copy_last_highmem_page(); 1914 /* Free only if we have loaded the image entirely */ 1915 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1916 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1917 free_highmem_data(); 1918 } 1919 } 1920 1921 int snapshot_image_loaded(struct snapshot_handle *handle) 1922 { 1923 return !(!nr_copy_pages || !last_highmem_page_copied() || 1924 handle->cur <= nr_meta_pages + nr_copy_pages); 1925 } 1926 1927 #ifdef CONFIG_HIGHMEM 1928 /* Assumes that @buf is ready and points to a "safe" page */ 1929 static inline void 1930 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1931 { 1932 void *kaddr1, *kaddr2; 1933 1934 kaddr1 = kmap_atomic(p1, KM_USER0); 1935 kaddr2 = kmap_atomic(p2, KM_USER1); 1936 memcpy(buf, kaddr1, PAGE_SIZE); 1937 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1938 memcpy(kaddr2, buf, PAGE_SIZE); 1939 kunmap_atomic(kaddr1, KM_USER0); 1940 kunmap_atomic(kaddr2, KM_USER1); 1941 } 1942 1943 /** 1944 * restore_highmem - for each highmem page that was allocated before 1945 * the suspend and included in the suspend image, and also has been 1946 * allocated by the "resume" kernel swap its current (ie. "before 1947 * resume") contents with the previous (ie. "before suspend") one. 1948 * 1949 * If the resume eventually fails, we can call this function once 1950 * again and restore the "before resume" highmem state. 1951 */ 1952 1953 int restore_highmem(void) 1954 { 1955 struct highmem_pbe *pbe = highmem_pblist; 1956 void *buf; 1957 1958 if (!pbe) 1959 return 0; 1960 1961 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1962 if (!buf) 1963 return -ENOMEM; 1964 1965 while (pbe) { 1966 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1967 pbe = pbe->next; 1968 } 1969 free_image_page(buf, PG_UNSAFE_CLEAR); 1970 return 0; 1971 } 1972 #endif /* CONFIG_HIGHMEM */ 1973