xref: /linux/kernel/power/snapshot.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provide system snapshot/restore functionality.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  *
8  * This file is released under the GPLv2, and is based on swsusp.c.
9  *
10  */
11 
12 
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/suspend.h>
16 #include <linux/smp_lock.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/bootmem.h>
24 #include <linux/syscalls.h>
25 #include <linux/console.h>
26 #include <linux/highmem.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlbflush.h>
32 #include <asm/io.h>
33 
34 #include "power.h"
35 
36 #ifdef CONFIG_HIGHMEM
37 struct highmem_page {
38 	char *data;
39 	struct page *page;
40 	struct highmem_page *next;
41 };
42 
43 static struct highmem_page *highmem_copy;
44 
45 static int save_highmem_zone(struct zone *zone)
46 {
47 	unsigned long zone_pfn;
48 	mark_free_pages(zone);
49 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
50 		struct page *page;
51 		struct highmem_page *save;
52 		void *kaddr;
53 		unsigned long pfn = zone_pfn + zone->zone_start_pfn;
54 
55 		if (!(pfn%1000))
56 			printk(".");
57 		if (!pfn_valid(pfn))
58 			continue;
59 		page = pfn_to_page(pfn);
60 		/*
61 		 * This condition results from rvmalloc() sans vmalloc_32()
62 		 * and architectural memory reservations. This should be
63 		 * corrected eventually when the cases giving rise to this
64 		 * are better understood.
65 		 */
66 		if (PageReserved(page)) {
67 			printk("highmem reserved page?!\n");
68 			continue;
69 		}
70 		BUG_ON(PageNosave(page));
71 		if (PageNosaveFree(page))
72 			continue;
73 		save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
74 		if (!save)
75 			return -ENOMEM;
76 		save->next = highmem_copy;
77 		save->page = page;
78 		save->data = (void *) get_zeroed_page(GFP_ATOMIC);
79 		if (!save->data) {
80 			kfree(save);
81 			return -ENOMEM;
82 		}
83 		kaddr = kmap_atomic(page, KM_USER0);
84 		memcpy(save->data, kaddr, PAGE_SIZE);
85 		kunmap_atomic(kaddr, KM_USER0);
86 		highmem_copy = save;
87 	}
88 	return 0;
89 }
90 
91 
92 static int save_highmem(void)
93 {
94 	struct zone *zone;
95 	int res = 0;
96 
97 	pr_debug("swsusp: Saving Highmem\n");
98 	for_each_zone (zone) {
99 		if (is_highmem(zone))
100 			res = save_highmem_zone(zone);
101 		if (res)
102 			return res;
103 	}
104 	return 0;
105 }
106 
107 int restore_highmem(void)
108 {
109 	printk("swsusp: Restoring Highmem\n");
110 	while (highmem_copy) {
111 		struct highmem_page *save = highmem_copy;
112 		void *kaddr;
113 		highmem_copy = save->next;
114 
115 		kaddr = kmap_atomic(save->page, KM_USER0);
116 		memcpy(kaddr, save->data, PAGE_SIZE);
117 		kunmap_atomic(kaddr, KM_USER0);
118 		free_page((long) save->data);
119 		kfree(save);
120 	}
121 	return 0;
122 }
123 #else
124 static int save_highmem(void) { return 0; }
125 int restore_highmem(void) { return 0; }
126 #endif /* CONFIG_HIGHMEM */
127 
128 
129 static int pfn_is_nosave(unsigned long pfn)
130 {
131 	unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
132 	unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
133 	return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
134 }
135 
136 /**
137  *	saveable - Determine whether a page should be cloned or not.
138  *	@pfn:	The page
139  *
140  *	We save a page if it's Reserved, and not in the range of pages
141  *	statically defined as 'unsaveable', or if it isn't reserved, and
142  *	isn't part of a free chunk of pages.
143  */
144 
145 static int saveable(struct zone *zone, unsigned long *zone_pfn)
146 {
147 	unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
148 	struct page *page;
149 
150 	if (!pfn_valid(pfn))
151 		return 0;
152 
153 	page = pfn_to_page(pfn);
154 	BUG_ON(PageReserved(page) && PageNosave(page));
155 	if (PageNosave(page))
156 		return 0;
157 	if (PageReserved(page) && pfn_is_nosave(pfn)) {
158 		pr_debug("[nosave pfn 0x%lx]", pfn);
159 		return 0;
160 	}
161 	if (PageNosaveFree(page))
162 		return 0;
163 
164 	return 1;
165 }
166 
167 static unsigned count_data_pages(void)
168 {
169 	struct zone *zone;
170 	unsigned long zone_pfn;
171 	unsigned int n = 0;
172 
173 	for_each_zone (zone) {
174 		if (is_highmem(zone))
175 			continue;
176 		mark_free_pages(zone);
177 		for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
178 			n += saveable(zone, &zone_pfn);
179 	}
180 	return n;
181 }
182 
183 static void copy_data_pages(struct pbe *pblist)
184 {
185 	struct zone *zone;
186 	unsigned long zone_pfn;
187 	struct pbe *pbe, *p;
188 
189 	pbe = pblist;
190 	for_each_zone (zone) {
191 		if (is_highmem(zone))
192 			continue;
193 		mark_free_pages(zone);
194 		/* This is necessary for swsusp_free() */
195 		for_each_pb_page (p, pblist)
196 			SetPageNosaveFree(virt_to_page(p));
197 		for_each_pbe (p, pblist)
198 			SetPageNosaveFree(virt_to_page(p->address));
199 		for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
200 			if (saveable(zone, &zone_pfn)) {
201 				struct page *page;
202 				page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
203 				BUG_ON(!pbe);
204 				pbe->orig_address = (unsigned long)page_address(page);
205 				/* copy_page is not usable for copying task structs. */
206 				memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
207 				pbe = pbe->next;
208 			}
209 		}
210 	}
211 	BUG_ON(pbe);
212 }
213 
214 
215 /**
216  *	free_pagedir - free pages allocated with alloc_pagedir()
217  */
218 
219 static void free_pagedir(struct pbe *pblist)
220 {
221 	struct pbe *pbe;
222 
223 	while (pblist) {
224 		pbe = (pblist + PB_PAGE_SKIP)->next;
225 		ClearPageNosave(virt_to_page(pblist));
226 		ClearPageNosaveFree(virt_to_page(pblist));
227 		free_page((unsigned long)pblist);
228 		pblist = pbe;
229 	}
230 }
231 
232 /**
233  *	fill_pb_page - Create a list of PBEs on a given memory page
234  */
235 
236 static inline void fill_pb_page(struct pbe *pbpage)
237 {
238 	struct pbe *p;
239 
240 	p = pbpage;
241 	pbpage += PB_PAGE_SKIP;
242 	do
243 		p->next = p + 1;
244 	while (++p < pbpage);
245 }
246 
247 /**
248  *	create_pbe_list - Create a list of PBEs on top of a given chain
249  *	of memory pages allocated with alloc_pagedir()
250  */
251 
252 void create_pbe_list(struct pbe *pblist, unsigned int nr_pages)
253 {
254 	struct pbe *pbpage, *p;
255 	unsigned int num = PBES_PER_PAGE;
256 
257 	for_each_pb_page (pbpage, pblist) {
258 		if (num >= nr_pages)
259 			break;
260 
261 		fill_pb_page(pbpage);
262 		num += PBES_PER_PAGE;
263 	}
264 	if (pbpage) {
265 		for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
266 			p->next = p + 1;
267 		p->next = NULL;
268 	}
269 	pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
270 }
271 
272 static void *alloc_image_page(void)
273 {
274 	void *res = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
275 	if (res) {
276 		SetPageNosave(virt_to_page(res));
277 		SetPageNosaveFree(virt_to_page(res));
278 	}
279 	return res;
280 }
281 
282 /**
283  *	alloc_pagedir - Allocate the page directory.
284  *
285  *	First, determine exactly how many pages we need and
286  *	allocate them.
287  *
288  *	We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
289  *	struct pbe elements (pbes) and the last element in the page points
290  *	to the next page.
291  *
292  *	On each page we set up a list of struct_pbe elements.
293  */
294 
295 struct pbe *alloc_pagedir(unsigned int nr_pages)
296 {
297 	unsigned int num;
298 	struct pbe *pblist, *pbe;
299 
300 	if (!nr_pages)
301 		return NULL;
302 
303 	pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
304 	pblist = alloc_image_page();
305 	/* FIXME: rewrite this ugly loop */
306 	for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
307         		pbe = pbe->next, num += PBES_PER_PAGE) {
308 		pbe += PB_PAGE_SKIP;
309 		pbe->next = alloc_image_page();
310 	}
311 	if (!pbe) { /* get_zeroed_page() failed */
312 		free_pagedir(pblist);
313 		pblist = NULL;
314         }
315 	return pblist;
316 }
317 
318 /**
319  * Free pages we allocated for suspend. Suspend pages are alocated
320  * before atomic copy, so we need to free them after resume.
321  */
322 
323 void swsusp_free(void)
324 {
325 	struct zone *zone;
326 	unsigned long zone_pfn;
327 
328 	for_each_zone(zone) {
329 		for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
330 			if (pfn_valid(zone_pfn + zone->zone_start_pfn)) {
331 				struct page *page;
332 				page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
333 				if (PageNosave(page) && PageNosaveFree(page)) {
334 					ClearPageNosave(page);
335 					ClearPageNosaveFree(page);
336 					free_page((long) page_address(page));
337 				}
338 			}
339 	}
340 }
341 
342 
343 /**
344  *	enough_free_mem - Make sure we enough free memory to snapshot.
345  *
346  *	Returns TRUE or FALSE after checking the number of available
347  *	free pages.
348  */
349 
350 static int enough_free_mem(unsigned int nr_pages)
351 {
352 	pr_debug("swsusp: available memory: %u pages\n", nr_free_pages());
353 	return nr_free_pages() > (nr_pages + PAGES_FOR_IO +
354 		(nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE);
355 }
356 
357 
358 static struct pbe *swsusp_alloc(unsigned int nr_pages)
359 {
360 	struct pbe *pblist, *p;
361 
362 	if (!(pblist = alloc_pagedir(nr_pages))) {
363 		printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
364 		return NULL;
365 	}
366 	create_pbe_list(pblist, nr_pages);
367 
368 	for_each_pbe (p, pblist) {
369 		p->address = (unsigned long)alloc_image_page();
370 		if (!p->address) {
371 			printk(KERN_ERR "suspend: Allocating image pages failed.\n");
372 			swsusp_free();
373 			return NULL;
374 		}
375 	}
376 
377 	return pblist;
378 }
379 
380 asmlinkage int swsusp_save(void)
381 {
382 	unsigned int nr_pages;
383 
384 	pr_debug("swsusp: critical section: \n");
385 	if (save_highmem()) {
386 		printk(KERN_CRIT "swsusp: Not enough free pages for highmem\n");
387 		restore_highmem();
388 		return -ENOMEM;
389 	}
390 
391 	drain_local_pages();
392 	nr_pages = count_data_pages();
393 	printk("swsusp: Need to copy %u pages\n", nr_pages);
394 
395 	pr_debug("swsusp: pages needed: %u + %lu + %u, free: %u\n",
396 		 nr_pages,
397 		 (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE,
398 		 PAGES_FOR_IO, nr_free_pages());
399 
400 	/* This is needed because of the fixed size of swsusp_info */
401 	if (MAX_PBES < (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE)
402 		return -ENOSPC;
403 
404 	if (!enough_free_mem(nr_pages)) {
405 		printk(KERN_ERR "swsusp: Not enough free memory\n");
406 		return -ENOMEM;
407 	}
408 
409 	if (!enough_swap(nr_pages)) {
410 		printk(KERN_ERR "swsusp: Not enough free swap\n");
411 		return -ENOSPC;
412 	}
413 
414 	pagedir_nosave = swsusp_alloc(nr_pages);
415 	if (!pagedir_nosave)
416 		return -ENOMEM;
417 
418 	/* During allocating of suspend pagedir, new cold pages may appear.
419 	 * Kill them.
420 	 */
421 	drain_local_pages();
422 	copy_data_pages(pagedir_nosave);
423 
424 	/*
425 	 * End of critical section. From now on, we can write to memory,
426 	 * but we should not touch disk. This specially means we must _not_
427 	 * touch swap space! Except we must write out our image of course.
428 	 */
429 
430 	nr_copy_pages = nr_pages;
431 
432 	printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
433 	return 0;
434 }
435