xref: /linux/kernel/power/snapshot.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline int __must_check hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		return set_memory_ro((unsigned long)page_address, 1);
65 	return 0;
66 }
67 
68 static inline int hibernate_restore_unprotect_page(void *page_address)
69 {
70 	if (hibernate_restore_protection_active)
71 		return set_memory_rw((unsigned long)page_address, 1);
72 	return 0;
73 }
74 #else
75 static inline void hibernate_restore_protection_begin(void) {}
76 static inline void hibernate_restore_protection_end(void) {}
77 static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; }
78 static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; }
79 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
80 
81 
82 /*
83  * The calls to set_direct_map_*() should not fail because remapping a page
84  * here means that we only update protection bits in an existing PTE.
85  * It is still worth to have a warning here if something changes and this
86  * will no longer be the case.
87  */
88 static inline void hibernate_map_page(struct page *page)
89 {
90 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
91 		int ret = set_direct_map_default_noflush(page);
92 
93 		if (ret)
94 			pr_warn_once("Failed to remap page\n");
95 	} else {
96 		debug_pagealloc_map_pages(page, 1);
97 	}
98 }
99 
100 static inline void hibernate_unmap_page(struct page *page)
101 {
102 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
103 		unsigned long addr = (unsigned long)page_address(page);
104 		int ret  = set_direct_map_invalid_noflush(page);
105 
106 		if (ret)
107 			pr_warn_once("Failed to remap page\n");
108 
109 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
110 	} else {
111 		debug_pagealloc_unmap_pages(page, 1);
112 	}
113 }
114 
115 static int swsusp_page_is_free(struct page *);
116 static void swsusp_set_page_forbidden(struct page *);
117 static void swsusp_unset_page_forbidden(struct page *);
118 
119 /*
120  * Number of bytes to reserve for memory allocations made by device drivers
121  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
122  * cause image creation to fail (tunable via /sys/power/reserved_size).
123  */
124 unsigned long reserved_size;
125 
126 void __init hibernate_reserved_size_init(void)
127 {
128 	reserved_size = SPARE_PAGES * PAGE_SIZE;
129 }
130 
131 /*
132  * Preferred image size in bytes (tunable via /sys/power/image_size).
133  * When it is set to N, swsusp will do its best to ensure the image
134  * size will not exceed N bytes, but if that is impossible, it will
135  * try to create the smallest image possible.
136  */
137 unsigned long image_size;
138 
139 void __init hibernate_image_size_init(void)
140 {
141 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
142 }
143 
144 /*
145  * List of PBEs needed for restoring the pages that were allocated before
146  * the suspend and included in the suspend image, but have also been
147  * allocated by the "resume" kernel, so their contents cannot be written
148  * directly to their "original" page frames.
149  */
150 struct pbe *restore_pblist;
151 
152 /* struct linked_page is used to build chains of pages */
153 
154 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
155 
156 struct linked_page {
157 	struct linked_page *next;
158 	char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160 
161 /*
162  * List of "safe" pages (ie. pages that were not used by the image kernel
163  * before hibernation) that may be used as temporary storage for image kernel
164  * memory contents.
165  */
166 static struct linked_page *safe_pages_list;
167 
168 /* Pointer to an auxiliary buffer (1 page) */
169 static void *buffer;
170 
171 #define PG_ANY		0
172 #define PG_SAFE		1
173 #define PG_UNSAFE_CLEAR	1
174 #define PG_UNSAFE_KEEP	0
175 
176 static unsigned int allocated_unsafe_pages;
177 
178 /**
179  * get_image_page - Allocate a page for a hibernation image.
180  * @gfp_mask: GFP mask for the allocation.
181  * @safe_needed: Get pages that were not used before hibernation (restore only)
182  *
183  * During image restoration, for storing the PBE list and the image data, we can
184  * only use memory pages that do not conflict with the pages used before
185  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
186  * using allocated_unsafe_pages.
187  *
188  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
189  * swsusp_free() can release it.
190  */
191 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
192 {
193 	void *res;
194 
195 	res = (void *)get_zeroed_page(gfp_mask);
196 	if (safe_needed)
197 		while (res && swsusp_page_is_free(virt_to_page(res))) {
198 			/* The page is unsafe, mark it for swsusp_free() */
199 			swsusp_set_page_forbidden(virt_to_page(res));
200 			allocated_unsafe_pages++;
201 			res = (void *)get_zeroed_page(gfp_mask);
202 		}
203 	if (res) {
204 		swsusp_set_page_forbidden(virt_to_page(res));
205 		swsusp_set_page_free(virt_to_page(res));
206 	}
207 	return res;
208 }
209 
210 static void *__get_safe_page(gfp_t gfp_mask)
211 {
212 	if (safe_pages_list) {
213 		void *ret = safe_pages_list;
214 
215 		safe_pages_list = safe_pages_list->next;
216 		memset(ret, 0, PAGE_SIZE);
217 		return ret;
218 	}
219 	return get_image_page(gfp_mask, PG_SAFE);
220 }
221 
222 unsigned long get_safe_page(gfp_t gfp_mask)
223 {
224 	return (unsigned long)__get_safe_page(gfp_mask);
225 }
226 
227 static struct page *alloc_image_page(gfp_t gfp_mask)
228 {
229 	struct page *page;
230 
231 	page = alloc_page(gfp_mask);
232 	if (page) {
233 		swsusp_set_page_forbidden(page);
234 		swsusp_set_page_free(page);
235 	}
236 	return page;
237 }
238 
239 static void recycle_safe_page(void *page_address)
240 {
241 	struct linked_page *lp = page_address;
242 
243 	lp->next = safe_pages_list;
244 	safe_pages_list = lp;
245 }
246 
247 /**
248  * free_image_page - Free a page allocated for hibernation image.
249  * @addr: Address of the page to free.
250  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
251  *
252  * The page to free should have been allocated by get_image_page() (page flags
253  * set by it are affected).
254  */
255 static inline void free_image_page(void *addr, int clear_nosave_free)
256 {
257 	struct page *page;
258 
259 	BUG_ON(!virt_addr_valid(addr));
260 
261 	page = virt_to_page(addr);
262 
263 	swsusp_unset_page_forbidden(page);
264 	if (clear_nosave_free)
265 		swsusp_unset_page_free(page);
266 
267 	__free_page(page);
268 }
269 
270 static inline void free_list_of_pages(struct linked_page *list,
271 				      int clear_page_nosave)
272 {
273 	while (list) {
274 		struct linked_page *lp = list->next;
275 
276 		free_image_page(list, clear_page_nosave);
277 		list = lp;
278 	}
279 }
280 
281 /*
282  * struct chain_allocator is used for allocating small objects out of
283  * a linked list of pages called 'the chain'.
284  *
285  * The chain grows each time when there is no room for a new object in
286  * the current page.  The allocated objects cannot be freed individually.
287  * It is only possible to free them all at once, by freeing the entire
288  * chain.
289  *
290  * NOTE: The chain allocator may be inefficient if the allocated objects
291  * are not much smaller than PAGE_SIZE.
292  */
293 struct chain_allocator {
294 	struct linked_page *chain;	/* the chain */
295 	unsigned int used_space;	/* total size of objects allocated out
296 					   of the current page */
297 	gfp_t gfp_mask;		/* mask for allocating pages */
298 	int safe_needed;	/* if set, only "safe" pages are allocated */
299 };
300 
301 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
302 		       int safe_needed)
303 {
304 	ca->chain = NULL;
305 	ca->used_space = LINKED_PAGE_DATA_SIZE;
306 	ca->gfp_mask = gfp_mask;
307 	ca->safe_needed = safe_needed;
308 }
309 
310 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
311 {
312 	void *ret;
313 
314 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
315 		struct linked_page *lp;
316 
317 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
318 					get_image_page(ca->gfp_mask, PG_ANY);
319 		if (!lp)
320 			return NULL;
321 
322 		lp->next = ca->chain;
323 		ca->chain = lp;
324 		ca->used_space = 0;
325 	}
326 	ret = ca->chain->data + ca->used_space;
327 	ca->used_space += size;
328 	return ret;
329 }
330 
331 /*
332  * Data types related to memory bitmaps.
333  *
334  * Memory bitmap is a structure consisting of many linked lists of
335  * objects.  The main list's elements are of type struct zone_bitmap
336  * and each of them corresponds to one zone.  For each zone bitmap
337  * object there is a list of objects of type struct bm_block that
338  * represent each blocks of bitmap in which information is stored.
339  *
340  * struct memory_bitmap contains a pointer to the main list of zone
341  * bitmap objects, a struct bm_position used for browsing the bitmap,
342  * and a pointer to the list of pages used for allocating all of the
343  * zone bitmap objects and bitmap block objects.
344  *
345  * NOTE: It has to be possible to lay out the bitmap in memory
346  * using only allocations of order 0.  Additionally, the bitmap is
347  * designed to work with arbitrary number of zones (this is over the
348  * top for now, but let's avoid making unnecessary assumptions ;-).
349  *
350  * struct zone_bitmap contains a pointer to a list of bitmap block
351  * objects and a pointer to the bitmap block object that has been
352  * most recently used for setting bits.  Additionally, it contains the
353  * PFNs that correspond to the start and end of the represented zone.
354  *
355  * struct bm_block contains a pointer to the memory page in which
356  * information is stored (in the form of a block of bitmap)
357  * It also contains the pfns that correspond to the start and end of
358  * the represented memory area.
359  *
360  * The memory bitmap is organized as a radix tree to guarantee fast random
361  * access to the bits. There is one radix tree for each zone (as returned
362  * from create_mem_extents).
363  *
364  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
365  * two linked lists for the nodes of the tree, one for the inner nodes and
366  * one for the leaf nodes. The linked leaf nodes are used for fast linear
367  * access of the memory bitmap.
368  *
369  * The struct rtree_node represents one node of the radix tree.
370  */
371 
372 #define BM_END_OF_MAP	(~0UL)
373 
374 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
375 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
376 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
377 
378 /*
379  * struct rtree_node is a wrapper struct to link the nodes
380  * of the rtree together for easy linear iteration over
381  * bits and easy freeing
382  */
383 struct rtree_node {
384 	struct list_head list;
385 	unsigned long *data;
386 };
387 
388 /*
389  * struct mem_zone_bm_rtree represents a bitmap used for one
390  * populated memory zone.
391  */
392 struct mem_zone_bm_rtree {
393 	struct list_head list;		/* Link Zones together         */
394 	struct list_head nodes;		/* Radix Tree inner nodes      */
395 	struct list_head leaves;	/* Radix Tree leaves           */
396 	unsigned long start_pfn;	/* Zone start page frame       */
397 	unsigned long end_pfn;		/* Zone end page frame + 1     */
398 	struct rtree_node *rtree;	/* Radix Tree Root             */
399 	int levels;			/* Number of Radix Tree Levels */
400 	unsigned int blocks;		/* Number of Bitmap Blocks     */
401 };
402 
403 /* struct bm_position is used for browsing memory bitmaps */
404 
405 struct bm_position {
406 	struct mem_zone_bm_rtree *zone;
407 	struct rtree_node *node;
408 	unsigned long node_pfn;
409 	unsigned long cur_pfn;
410 	int node_bit;
411 };
412 
413 struct memory_bitmap {
414 	struct list_head zones;
415 	struct linked_page *p_list;	/* list of pages used to store zone
416 					   bitmap objects and bitmap block
417 					   objects */
418 	struct bm_position cur;	/* most recently used bit position */
419 };
420 
421 /* Functions that operate on memory bitmaps */
422 
423 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
424 #if BITS_PER_LONG == 32
425 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
426 #else
427 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
428 #endif
429 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
430 
431 /**
432  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
433  * @gfp_mask: GFP mask for the allocation.
434  * @safe_needed: Get pages not used before hibernation (restore only)
435  * @ca: Pointer to a linked list of pages ("a chain") to allocate from
436  * @list: Radix Tree node to add.
437  *
438  * This function is used to allocate inner nodes as well as the
439  * leave nodes of the radix tree. It also adds the node to the
440  * corresponding linked list passed in by the *list parameter.
441  */
442 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
443 					   struct chain_allocator *ca,
444 					   struct list_head *list)
445 {
446 	struct rtree_node *node;
447 
448 	node = chain_alloc(ca, sizeof(struct rtree_node));
449 	if (!node)
450 		return NULL;
451 
452 	node->data = get_image_page(gfp_mask, safe_needed);
453 	if (!node->data)
454 		return NULL;
455 
456 	list_add_tail(&node->list, list);
457 
458 	return node;
459 }
460 
461 /**
462  * add_rtree_block - Add a new leave node to the radix tree.
463  *
464  * The leave nodes need to be allocated in order to keep the leaves
465  * linked list in order. This is guaranteed by the zone->blocks
466  * counter.
467  */
468 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
469 			   int safe_needed, struct chain_allocator *ca)
470 {
471 	struct rtree_node *node, *block, **dst;
472 	unsigned int levels_needed, block_nr;
473 	int i;
474 
475 	block_nr = zone->blocks;
476 	levels_needed = 0;
477 
478 	/* How many levels do we need for this block nr? */
479 	while (block_nr) {
480 		levels_needed += 1;
481 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
482 	}
483 
484 	/* Make sure the rtree has enough levels */
485 	for (i = zone->levels; i < levels_needed; i++) {
486 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
487 					&zone->nodes);
488 		if (!node)
489 			return -ENOMEM;
490 
491 		node->data[0] = (unsigned long)zone->rtree;
492 		zone->rtree = node;
493 		zone->levels += 1;
494 	}
495 
496 	/* Allocate new block */
497 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
498 	if (!block)
499 		return -ENOMEM;
500 
501 	/* Now walk the rtree to insert the block */
502 	node = zone->rtree;
503 	dst = &zone->rtree;
504 	block_nr = zone->blocks;
505 	for (i = zone->levels; i > 0; i--) {
506 		int index;
507 
508 		if (!node) {
509 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
510 						&zone->nodes);
511 			if (!node)
512 				return -ENOMEM;
513 			*dst = node;
514 		}
515 
516 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
517 		index &= BM_RTREE_LEVEL_MASK;
518 		dst = (struct rtree_node **)&((*dst)->data[index]);
519 		node = *dst;
520 	}
521 
522 	zone->blocks += 1;
523 	*dst = block;
524 
525 	return 0;
526 }
527 
528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
529 			       int clear_nosave_free);
530 
531 /**
532  * create_zone_bm_rtree - Create a radix tree for one zone.
533  *
534  * Allocated the mem_zone_bm_rtree structure and initializes it.
535  * This function also allocated and builds the radix tree for the
536  * zone.
537  */
538 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
539 						      int safe_needed,
540 						      struct chain_allocator *ca,
541 						      unsigned long start,
542 						      unsigned long end)
543 {
544 	struct mem_zone_bm_rtree *zone;
545 	unsigned int i, nr_blocks;
546 	unsigned long pages;
547 
548 	pages = end - start;
549 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
550 	if (!zone)
551 		return NULL;
552 
553 	INIT_LIST_HEAD(&zone->nodes);
554 	INIT_LIST_HEAD(&zone->leaves);
555 	zone->start_pfn = start;
556 	zone->end_pfn = end;
557 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
558 
559 	for (i = 0; i < nr_blocks; i++) {
560 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
561 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
562 			return NULL;
563 		}
564 	}
565 
566 	return zone;
567 }
568 
569 /**
570  * free_zone_bm_rtree - Free the memory of the radix tree.
571  *
572  * Free all node pages of the radix tree. The mem_zone_bm_rtree
573  * structure itself is not freed here nor are the rtree_node
574  * structs.
575  */
576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
577 			       int clear_nosave_free)
578 {
579 	struct rtree_node *node;
580 
581 	list_for_each_entry(node, &zone->nodes, list)
582 		free_image_page(node->data, clear_nosave_free);
583 
584 	list_for_each_entry(node, &zone->leaves, list)
585 		free_image_page(node->data, clear_nosave_free);
586 }
587 
588 static void memory_bm_position_reset(struct memory_bitmap *bm)
589 {
590 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
591 				  list);
592 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
593 				  struct rtree_node, list);
594 	bm->cur.node_pfn = 0;
595 	bm->cur.cur_pfn = BM_END_OF_MAP;
596 	bm->cur.node_bit = 0;
597 }
598 
599 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
600 
601 struct mem_extent {
602 	struct list_head hook;
603 	unsigned long start;
604 	unsigned long end;
605 };
606 
607 /**
608  * free_mem_extents - Free a list of memory extents.
609  * @list: List of extents to free.
610  */
611 static void free_mem_extents(struct list_head *list)
612 {
613 	struct mem_extent *ext, *aux;
614 
615 	list_for_each_entry_safe(ext, aux, list, hook) {
616 		list_del(&ext->hook);
617 		kfree(ext);
618 	}
619 }
620 
621 /**
622  * create_mem_extents - Create a list of memory extents.
623  * @list: List to put the extents into.
624  * @gfp_mask: Mask to use for memory allocations.
625  *
626  * The extents represent contiguous ranges of PFNs.
627  */
628 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
629 {
630 	struct zone *zone;
631 
632 	INIT_LIST_HEAD(list);
633 
634 	for_each_populated_zone(zone) {
635 		unsigned long zone_start, zone_end;
636 		struct mem_extent *ext, *cur, *aux;
637 
638 		zone_start = zone->zone_start_pfn;
639 		zone_end = zone_end_pfn(zone);
640 
641 		list_for_each_entry(ext, list, hook)
642 			if (zone_start <= ext->end)
643 				break;
644 
645 		if (&ext->hook == list || zone_end < ext->start) {
646 			/* New extent is necessary */
647 			struct mem_extent *new_ext;
648 
649 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
650 			if (!new_ext) {
651 				free_mem_extents(list);
652 				return -ENOMEM;
653 			}
654 			new_ext->start = zone_start;
655 			new_ext->end = zone_end;
656 			list_add_tail(&new_ext->hook, &ext->hook);
657 			continue;
658 		}
659 
660 		/* Merge this zone's range of PFNs with the existing one */
661 		if (zone_start < ext->start)
662 			ext->start = zone_start;
663 		if (zone_end > ext->end)
664 			ext->end = zone_end;
665 
666 		/* More merging may be possible */
667 		cur = ext;
668 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
669 			if (zone_end < cur->start)
670 				break;
671 			if (zone_end < cur->end)
672 				ext->end = cur->end;
673 			list_del(&cur->hook);
674 			kfree(cur);
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 /**
682  * memory_bm_create - Allocate memory for a memory bitmap.
683  */
684 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
685 			    int safe_needed)
686 {
687 	struct chain_allocator ca;
688 	struct list_head mem_extents;
689 	struct mem_extent *ext;
690 	int error;
691 
692 	chain_init(&ca, gfp_mask, safe_needed);
693 	INIT_LIST_HEAD(&bm->zones);
694 
695 	error = create_mem_extents(&mem_extents, gfp_mask);
696 	if (error)
697 		return error;
698 
699 	list_for_each_entry(ext, &mem_extents, hook) {
700 		struct mem_zone_bm_rtree *zone;
701 
702 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
703 					    ext->start, ext->end);
704 		if (!zone) {
705 			error = -ENOMEM;
706 			goto Error;
707 		}
708 		list_add_tail(&zone->list, &bm->zones);
709 	}
710 
711 	bm->p_list = ca.chain;
712 	memory_bm_position_reset(bm);
713  Exit:
714 	free_mem_extents(&mem_extents);
715 	return error;
716 
717  Error:
718 	bm->p_list = ca.chain;
719 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
720 	goto Exit;
721 }
722 
723 /**
724  * memory_bm_free - Free memory occupied by the memory bitmap.
725  * @bm: Memory bitmap.
726  */
727 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
728 {
729 	struct mem_zone_bm_rtree *zone;
730 
731 	list_for_each_entry(zone, &bm->zones, list)
732 		free_zone_bm_rtree(zone, clear_nosave_free);
733 
734 	free_list_of_pages(bm->p_list, clear_nosave_free);
735 
736 	INIT_LIST_HEAD(&bm->zones);
737 }
738 
739 /**
740  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
741  *
742  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
743  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
744  *
745  * Walk the radix tree to find the page containing the bit that represents @pfn
746  * and return the position of the bit in @addr and @bit_nr.
747  */
748 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
749 			      void **addr, unsigned int *bit_nr)
750 {
751 	struct mem_zone_bm_rtree *curr, *zone;
752 	struct rtree_node *node;
753 	int i, block_nr;
754 
755 	zone = bm->cur.zone;
756 
757 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
758 		goto zone_found;
759 
760 	zone = NULL;
761 
762 	/* Find the right zone */
763 	list_for_each_entry(curr, &bm->zones, list) {
764 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
765 			zone = curr;
766 			break;
767 		}
768 	}
769 
770 	if (!zone)
771 		return -EFAULT;
772 
773 zone_found:
774 	/*
775 	 * We have found the zone. Now walk the radix tree to find the leaf node
776 	 * for our PFN.
777 	 */
778 
779 	/*
780 	 * If the zone we wish to scan is the current zone and the
781 	 * pfn falls into the current node then we do not need to walk
782 	 * the tree.
783 	 */
784 	node = bm->cur.node;
785 	if (zone == bm->cur.zone &&
786 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
787 		goto node_found;
788 
789 	node      = zone->rtree;
790 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
791 
792 	for (i = zone->levels; i > 0; i--) {
793 		int index;
794 
795 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
796 		index &= BM_RTREE_LEVEL_MASK;
797 		BUG_ON(node->data[index] == 0);
798 		node = (struct rtree_node *)node->data[index];
799 	}
800 
801 node_found:
802 	/* Update last position */
803 	bm->cur.zone = zone;
804 	bm->cur.node = node;
805 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
806 	bm->cur.cur_pfn = pfn;
807 
808 	/* Set return values */
809 	*addr = node->data;
810 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
811 
812 	return 0;
813 }
814 
815 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
816 {
817 	void *addr;
818 	unsigned int bit;
819 	int error;
820 
821 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
822 	BUG_ON(error);
823 	set_bit(bit, addr);
824 }
825 
826 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
827 {
828 	void *addr;
829 	unsigned int bit;
830 	int error;
831 
832 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
833 	if (!error)
834 		set_bit(bit, addr);
835 
836 	return error;
837 }
838 
839 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
840 {
841 	void *addr;
842 	unsigned int bit;
843 	int error;
844 
845 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
846 	BUG_ON(error);
847 	clear_bit(bit, addr);
848 }
849 
850 static void memory_bm_clear_current(struct memory_bitmap *bm)
851 {
852 	int bit;
853 
854 	bit = max(bm->cur.node_bit - 1, 0);
855 	clear_bit(bit, bm->cur.node->data);
856 }
857 
858 static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
859 {
860 	return bm->cur.cur_pfn;
861 }
862 
863 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
864 {
865 	void *addr;
866 	unsigned int bit;
867 	int error;
868 
869 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
870 	BUG_ON(error);
871 	return test_bit(bit, addr);
872 }
873 
874 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
875 {
876 	void *addr;
877 	unsigned int bit;
878 
879 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
880 }
881 
882 /*
883  * rtree_next_node - Jump to the next leaf node.
884  *
885  * Set the position to the beginning of the next node in the
886  * memory bitmap. This is either the next node in the current
887  * zone's radix tree or the first node in the radix tree of the
888  * next zone.
889  *
890  * Return true if there is a next node, false otherwise.
891  */
892 static bool rtree_next_node(struct memory_bitmap *bm)
893 {
894 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
895 		bm->cur.node = list_entry(bm->cur.node->list.next,
896 					  struct rtree_node, list);
897 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
898 		bm->cur.node_bit  = 0;
899 		touch_softlockup_watchdog();
900 		return true;
901 	}
902 
903 	/* No more nodes, goto next zone */
904 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
905 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
906 				  struct mem_zone_bm_rtree, list);
907 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
908 					  struct rtree_node, list);
909 		bm->cur.node_pfn = 0;
910 		bm->cur.node_bit = 0;
911 		return true;
912 	}
913 
914 	/* No more zones */
915 	return false;
916 }
917 
918 /**
919  * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
920  * @bm: Memory bitmap.
921  *
922  * Starting from the last returned position this function searches for the next
923  * set bit in @bm and returns the PFN represented by it.  If no more bits are
924  * set, BM_END_OF_MAP is returned.
925  *
926  * It is required to run memory_bm_position_reset() before the first call to
927  * this function for the given memory bitmap.
928  */
929 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
930 {
931 	unsigned long bits, pfn, pages;
932 	int bit;
933 
934 	do {
935 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
936 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
937 		bit	  = find_next_bit(bm->cur.node->data, bits,
938 					  bm->cur.node_bit);
939 		if (bit < bits) {
940 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
941 			bm->cur.node_bit = bit + 1;
942 			bm->cur.cur_pfn = pfn;
943 			return pfn;
944 		}
945 	} while (rtree_next_node(bm));
946 
947 	bm->cur.cur_pfn = BM_END_OF_MAP;
948 	return BM_END_OF_MAP;
949 }
950 
951 /*
952  * This structure represents a range of page frames the contents of which
953  * should not be saved during hibernation.
954  */
955 struct nosave_region {
956 	struct list_head list;
957 	unsigned long start_pfn;
958 	unsigned long end_pfn;
959 };
960 
961 static LIST_HEAD(nosave_regions);
962 
963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
964 {
965 	struct rtree_node *node;
966 
967 	list_for_each_entry(node, &zone->nodes, list)
968 		recycle_safe_page(node->data);
969 
970 	list_for_each_entry(node, &zone->leaves, list)
971 		recycle_safe_page(node->data);
972 }
973 
974 static void memory_bm_recycle(struct memory_bitmap *bm)
975 {
976 	struct mem_zone_bm_rtree *zone;
977 	struct linked_page *p_list;
978 
979 	list_for_each_entry(zone, &bm->zones, list)
980 		recycle_zone_bm_rtree(zone);
981 
982 	p_list = bm->p_list;
983 	while (p_list) {
984 		struct linked_page *lp = p_list;
985 
986 		p_list = lp->next;
987 		recycle_safe_page(lp);
988 	}
989 }
990 
991 /**
992  * register_nosave_region - Register a region of unsaveable memory.
993  *
994  * Register a range of page frames the contents of which should not be saved
995  * during hibernation (to be used in the early initialization code).
996  */
997 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
998 {
999 	struct nosave_region *region;
1000 
1001 	if (start_pfn >= end_pfn)
1002 		return;
1003 
1004 	if (!list_empty(&nosave_regions)) {
1005 		/* Try to extend the previous region (they should be sorted) */
1006 		region = list_entry(nosave_regions.prev,
1007 					struct nosave_region, list);
1008 		if (region->end_pfn == start_pfn) {
1009 			region->end_pfn = end_pfn;
1010 			goto Report;
1011 		}
1012 	}
1013 	/* This allocation cannot fail */
1014 	region = memblock_alloc_or_panic(sizeof(struct nosave_region),
1015 				SMP_CACHE_BYTES);
1016 	region->start_pfn = start_pfn;
1017 	region->end_pfn = end_pfn;
1018 	list_add_tail(&region->list, &nosave_regions);
1019  Report:
1020 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1021 		(unsigned long long) start_pfn << PAGE_SHIFT,
1022 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1023 }
1024 
1025 /*
1026  * Set bits in this map correspond to the page frames the contents of which
1027  * should not be saved during the suspend.
1028  */
1029 static struct memory_bitmap *forbidden_pages_map;
1030 
1031 /* Set bits in this map correspond to free page frames. */
1032 static struct memory_bitmap *free_pages_map;
1033 
1034 /*
1035  * Each page frame allocated for creating the image is marked by setting the
1036  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1037  */
1038 
1039 void swsusp_set_page_free(struct page *page)
1040 {
1041 	if (free_pages_map)
1042 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1043 }
1044 
1045 static int swsusp_page_is_free(struct page *page)
1046 {
1047 	return free_pages_map ?
1048 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1049 }
1050 
1051 void swsusp_unset_page_free(struct page *page)
1052 {
1053 	if (free_pages_map)
1054 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1055 }
1056 
1057 static void swsusp_set_page_forbidden(struct page *page)
1058 {
1059 	if (forbidden_pages_map)
1060 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1061 }
1062 
1063 int swsusp_page_is_forbidden(struct page *page)
1064 {
1065 	return forbidden_pages_map ?
1066 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1067 }
1068 
1069 static void swsusp_unset_page_forbidden(struct page *page)
1070 {
1071 	if (forbidden_pages_map)
1072 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1073 }
1074 
1075 /**
1076  * mark_nosave_pages - Mark pages that should not be saved.
1077  * @bm: Memory bitmap.
1078  *
1079  * Set the bits in @bm that correspond to the page frames the contents of which
1080  * should not be saved.
1081  */
1082 static void mark_nosave_pages(struct memory_bitmap *bm)
1083 {
1084 	struct nosave_region *region;
1085 
1086 	if (list_empty(&nosave_regions))
1087 		return;
1088 
1089 	list_for_each_entry(region, &nosave_regions, list) {
1090 		unsigned long pfn;
1091 
1092 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1093 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1094 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1095 				- 1);
1096 
1097 		for_each_valid_pfn(pfn, region->start_pfn, region->end_pfn) {
1098 			/*
1099 			 * It is safe to ignore the result of
1100 			 * mem_bm_set_bit_check() here, since we won't
1101 			 * touch the PFNs for which the error is
1102 			 * returned anyway.
1103 			 */
1104 			mem_bm_set_bit_check(bm, pfn);
1105 		}
1106 	}
1107 }
1108 
1109 /**
1110  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1111  *
1112  * Create bitmaps needed for marking page frames that should not be saved and
1113  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1114  * only modified if everything goes well, because we don't want the bits to be
1115  * touched before both bitmaps are set up.
1116  */
1117 int create_basic_memory_bitmaps(void)
1118 {
1119 	struct memory_bitmap *bm1, *bm2;
1120 	int error;
1121 
1122 	if (forbidden_pages_map && free_pages_map)
1123 		return 0;
1124 	else
1125 		BUG_ON(forbidden_pages_map || free_pages_map);
1126 
1127 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1128 	if (!bm1)
1129 		return -ENOMEM;
1130 
1131 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1132 	if (error)
1133 		goto Free_first_object;
1134 
1135 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1136 	if (!bm2)
1137 		goto Free_first_bitmap;
1138 
1139 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1140 	if (error)
1141 		goto Free_second_object;
1142 
1143 	forbidden_pages_map = bm1;
1144 	free_pages_map = bm2;
1145 	mark_nosave_pages(forbidden_pages_map);
1146 
1147 	pr_debug("Basic memory bitmaps created\n");
1148 
1149 	return 0;
1150 
1151  Free_second_object:
1152 	kfree(bm2);
1153  Free_first_bitmap:
1154 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1155  Free_first_object:
1156 	kfree(bm1);
1157 	return -ENOMEM;
1158 }
1159 
1160 /**
1161  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1162  *
1163  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1164  * auxiliary pointers are necessary so that the bitmaps themselves are not
1165  * referred to while they are being freed.
1166  */
1167 void free_basic_memory_bitmaps(void)
1168 {
1169 	struct memory_bitmap *bm1, *bm2;
1170 
1171 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1172 		return;
1173 
1174 	bm1 = forbidden_pages_map;
1175 	bm2 = free_pages_map;
1176 	forbidden_pages_map = NULL;
1177 	free_pages_map = NULL;
1178 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1179 	kfree(bm1);
1180 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1181 	kfree(bm2);
1182 
1183 	pr_debug("Basic memory bitmaps freed\n");
1184 }
1185 
1186 static void clear_or_poison_free_page(struct page *page)
1187 {
1188 	if (page_poisoning_enabled_static())
1189 		__kernel_poison_pages(page, 1);
1190 	else if (want_init_on_free())
1191 		clear_highpage(page);
1192 }
1193 
1194 void clear_or_poison_free_pages(void)
1195 {
1196 	struct memory_bitmap *bm = free_pages_map;
1197 	unsigned long pfn;
1198 
1199 	if (WARN_ON(!(free_pages_map)))
1200 		return;
1201 
1202 	if (page_poisoning_enabled() || want_init_on_free()) {
1203 		memory_bm_position_reset(bm);
1204 		pfn = memory_bm_next_pfn(bm);
1205 		while (pfn != BM_END_OF_MAP) {
1206 			if (pfn_valid(pfn))
1207 				clear_or_poison_free_page(pfn_to_page(pfn));
1208 
1209 			pfn = memory_bm_next_pfn(bm);
1210 		}
1211 		memory_bm_position_reset(bm);
1212 		pr_info("free pages cleared after restore\n");
1213 	}
1214 }
1215 
1216 /**
1217  * snapshot_additional_pages - Estimate the number of extra pages needed.
1218  * @zone: Memory zone to carry out the computation for.
1219  *
1220  * Estimate the number of additional pages needed for setting up a hibernation
1221  * image data structures for @zone (usually, the returned value is greater than
1222  * the exact number).
1223  */
1224 unsigned int snapshot_additional_pages(struct zone *zone)
1225 {
1226 	unsigned int rtree, nodes;
1227 
1228 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1229 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1230 			      LINKED_PAGE_DATA_SIZE);
1231 	while (nodes > 1) {
1232 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1233 		rtree += nodes;
1234 	}
1235 
1236 	return 2 * rtree;
1237 }
1238 
1239 /*
1240  * Touch the watchdog for every WD_PAGE_COUNT pages.
1241  */
1242 #define WD_PAGE_COUNT	(128*1024)
1243 
1244 static void mark_free_pages(struct zone *zone)
1245 {
1246 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1247 	unsigned long flags;
1248 	unsigned int order, t;
1249 	struct page *page;
1250 
1251 	if (zone_is_empty(zone))
1252 		return;
1253 
1254 	spin_lock_irqsave(&zone->lock, flags);
1255 
1256 	max_zone_pfn = zone_end_pfn(zone);
1257 	for_each_valid_pfn(pfn, zone->zone_start_pfn, max_zone_pfn) {
1258 		page = pfn_to_page(pfn);
1259 
1260 		if (!--page_count) {
1261 			touch_nmi_watchdog();
1262 			page_count = WD_PAGE_COUNT;
1263 		}
1264 
1265 		if (page_zone(page) != zone)
1266 			continue;
1267 
1268 		if (!swsusp_page_is_forbidden(page))
1269 			swsusp_unset_page_free(page);
1270 	}
1271 
1272 	for_each_migratetype_order(order, t) {
1273 		list_for_each_entry(page,
1274 				&zone->free_area[order].free_list[t], buddy_list) {
1275 			unsigned long i;
1276 
1277 			pfn = page_to_pfn(page);
1278 			for (i = 0; i < (1UL << order); i++) {
1279 				if (!--page_count) {
1280 					touch_nmi_watchdog();
1281 					page_count = WD_PAGE_COUNT;
1282 				}
1283 				swsusp_set_page_free(pfn_to_page(pfn + i));
1284 			}
1285 		}
1286 	}
1287 	spin_unlock_irqrestore(&zone->lock, flags);
1288 }
1289 
1290 #ifdef CONFIG_HIGHMEM
1291 /**
1292  * count_free_highmem_pages - Compute the total number of free highmem pages.
1293  *
1294  * The returned number is system-wide.
1295  */
1296 static unsigned int count_free_highmem_pages(void)
1297 {
1298 	struct zone *zone;
1299 	unsigned int cnt = 0;
1300 
1301 	for_each_populated_zone(zone)
1302 		if (is_highmem(zone))
1303 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1304 
1305 	return cnt;
1306 }
1307 
1308 /**
1309  * saveable_highmem_page - Check if a highmem page is saveable.
1310  *
1311  * Determine whether a highmem page should be included in a hibernation image.
1312  *
1313  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1314  * and it isn't part of a free chunk of pages.
1315  */
1316 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1317 {
1318 	struct page *page;
1319 
1320 	if (!pfn_valid(pfn))
1321 		return NULL;
1322 
1323 	page = pfn_to_online_page(pfn);
1324 	if (!page || page_zone(page) != zone)
1325 		return NULL;
1326 
1327 	BUG_ON(!PageHighMem(page));
1328 
1329 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1330 		return NULL;
1331 
1332 	if (PageReserved(page) || PageOffline(page))
1333 		return NULL;
1334 
1335 	if (page_is_guard(page))
1336 		return NULL;
1337 
1338 	return page;
1339 }
1340 
1341 /**
1342  * count_highmem_pages - Compute the total number of saveable highmem pages.
1343  */
1344 static unsigned int count_highmem_pages(void)
1345 {
1346 	struct zone *zone;
1347 	unsigned int n = 0;
1348 
1349 	for_each_populated_zone(zone) {
1350 		unsigned long pfn, max_zone_pfn;
1351 
1352 		if (!is_highmem(zone))
1353 			continue;
1354 
1355 		mark_free_pages(zone);
1356 		max_zone_pfn = zone_end_pfn(zone);
1357 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1358 			if (saveable_highmem_page(zone, pfn))
1359 				n++;
1360 	}
1361 	return n;
1362 }
1363 #endif /* CONFIG_HIGHMEM */
1364 
1365 /**
1366  * saveable_page - Check if the given page is saveable.
1367  *
1368  * Determine whether a non-highmem page should be included in a hibernation
1369  * image.
1370  *
1371  * We should save the page if it isn't Nosave, and is not in the range
1372  * of pages statically defined as 'unsaveable', and it isn't part of
1373  * a free chunk of pages.
1374  */
1375 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1376 {
1377 	struct page *page;
1378 
1379 	if (!pfn_valid(pfn))
1380 		return NULL;
1381 
1382 	page = pfn_to_online_page(pfn);
1383 	if (!page || page_zone(page) != zone)
1384 		return NULL;
1385 
1386 	BUG_ON(PageHighMem(page));
1387 
1388 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1389 		return NULL;
1390 
1391 	if (PageOffline(page))
1392 		return NULL;
1393 
1394 	if (PageReserved(page)
1395 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1396 		return NULL;
1397 
1398 	if (page_is_guard(page))
1399 		return NULL;
1400 
1401 	return page;
1402 }
1403 
1404 /**
1405  * count_data_pages - Compute the total number of saveable non-highmem pages.
1406  */
1407 static unsigned int count_data_pages(void)
1408 {
1409 	struct zone *zone;
1410 	unsigned long pfn, max_zone_pfn;
1411 	unsigned int n = 0;
1412 
1413 	for_each_populated_zone(zone) {
1414 		if (is_highmem(zone))
1415 			continue;
1416 
1417 		mark_free_pages(zone);
1418 		max_zone_pfn = zone_end_pfn(zone);
1419 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1420 			if (saveable_page(zone, pfn))
1421 				n++;
1422 	}
1423 	return n;
1424 }
1425 
1426 /*
1427  * This is needed, because copy_page and memcpy are not usable for copying
1428  * task structs. Returns true if the page was filled with only zeros,
1429  * otherwise false.
1430  */
1431 static inline bool do_copy_page(long *dst, long *src)
1432 {
1433 	long z = 0;
1434 	int n;
1435 
1436 	for (n = PAGE_SIZE / sizeof(long); n; n--) {
1437 		z |= *src;
1438 		*dst++ = *src++;
1439 	}
1440 	return !z;
1441 }
1442 
1443 /**
1444  * safe_copy_page - Copy a page in a safe way.
1445  *
1446  * Check if the page we are going to copy is marked as present in the kernel
1447  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1448  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1449  * always returns 'true'. Returns true if the page was entirely composed of
1450  * zeros, otherwise it will return false.
1451  */
1452 static bool safe_copy_page(void *dst, struct page *s_page)
1453 {
1454 	bool zeros_only;
1455 
1456 	if (kernel_page_present(s_page)) {
1457 		zeros_only = do_copy_page(dst, page_address(s_page));
1458 	} else {
1459 		hibernate_map_page(s_page);
1460 		zeros_only = do_copy_page(dst, page_address(s_page));
1461 		hibernate_unmap_page(s_page);
1462 	}
1463 	return zeros_only;
1464 }
1465 
1466 #ifdef CONFIG_HIGHMEM
1467 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1468 {
1469 	return is_highmem(zone) ?
1470 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1471 }
1472 
1473 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1474 {
1475 	struct page *s_page, *d_page;
1476 	void *src, *dst;
1477 	bool zeros_only;
1478 
1479 	s_page = pfn_to_page(src_pfn);
1480 	d_page = pfn_to_page(dst_pfn);
1481 	if (PageHighMem(s_page)) {
1482 		src = kmap_local_page(s_page);
1483 		dst = kmap_local_page(d_page);
1484 		zeros_only = do_copy_page(dst, src);
1485 		kunmap_local(dst);
1486 		kunmap_local(src);
1487 	} else {
1488 		if (PageHighMem(d_page)) {
1489 			/*
1490 			 * The page pointed to by src may contain some kernel
1491 			 * data modified by kmap_atomic()
1492 			 */
1493 			zeros_only = safe_copy_page(buffer, s_page);
1494 			dst = kmap_local_page(d_page);
1495 			copy_page(dst, buffer);
1496 			kunmap_local(dst);
1497 		} else {
1498 			zeros_only = safe_copy_page(page_address(d_page), s_page);
1499 		}
1500 	}
1501 	return zeros_only;
1502 }
1503 #else
1504 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1505 
1506 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1507 {
1508 	return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1509 				pfn_to_page(src_pfn));
1510 }
1511 #endif /* CONFIG_HIGHMEM */
1512 
1513 /*
1514  * Copy data pages will copy all pages into pages pulled from the copy_bm.
1515  * If a page was entirely filled with zeros it will be marked in the zero_bm.
1516  *
1517  * Returns the number of pages copied.
1518  */
1519 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1520 			    struct memory_bitmap *orig_bm,
1521 			    struct memory_bitmap *zero_bm)
1522 {
1523 	unsigned long copied_pages = 0;
1524 	struct zone *zone;
1525 	unsigned long pfn, copy_pfn;
1526 
1527 	for_each_populated_zone(zone) {
1528 		unsigned long max_zone_pfn;
1529 
1530 		mark_free_pages(zone);
1531 		max_zone_pfn = zone_end_pfn(zone);
1532 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1533 			if (page_is_saveable(zone, pfn))
1534 				memory_bm_set_bit(orig_bm, pfn);
1535 	}
1536 	memory_bm_position_reset(orig_bm);
1537 	memory_bm_position_reset(copy_bm);
1538 	copy_pfn = memory_bm_next_pfn(copy_bm);
1539 	for (;;) {
1540 		pfn = memory_bm_next_pfn(orig_bm);
1541 		if (unlikely(pfn == BM_END_OF_MAP))
1542 			break;
1543 		if (copy_data_page(copy_pfn, pfn)) {
1544 			memory_bm_set_bit(zero_bm, pfn);
1545 			/* Use this copy_pfn for a page that is not full of zeros */
1546 			continue;
1547 		}
1548 		copied_pages++;
1549 		copy_pfn = memory_bm_next_pfn(copy_bm);
1550 	}
1551 	return copied_pages;
1552 }
1553 
1554 /* Total number of image pages */
1555 static unsigned int nr_copy_pages;
1556 /* Number of pages needed for saving the original pfns of the image pages */
1557 static unsigned int nr_meta_pages;
1558 /* Number of zero pages */
1559 static unsigned int nr_zero_pages;
1560 
1561 /*
1562  * Numbers of normal and highmem page frames allocated for hibernation image
1563  * before suspending devices.
1564  */
1565 static unsigned int alloc_normal, alloc_highmem;
1566 /*
1567  * Memory bitmap used for marking saveable pages (during hibernation) or
1568  * hibernation image pages (during restore)
1569  */
1570 static struct memory_bitmap orig_bm;
1571 /*
1572  * Memory bitmap used during hibernation for marking allocated page frames that
1573  * will contain copies of saveable pages.  During restore it is initially used
1574  * for marking hibernation image pages, but then the set bits from it are
1575  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1576  * used for marking "safe" highmem pages, but it has to be reinitialized for
1577  * this purpose.
1578  */
1579 static struct memory_bitmap copy_bm;
1580 
1581 /* Memory bitmap which tracks which saveable pages were zero filled. */
1582 static struct memory_bitmap zero_bm;
1583 
1584 /**
1585  * swsusp_free - Free pages allocated for hibernation image.
1586  *
1587  * Image pages are allocated before snapshot creation, so they need to be
1588  * released after resume.
1589  */
1590 void swsusp_free(void)
1591 {
1592 	unsigned long fb_pfn, fr_pfn;
1593 
1594 	if (!forbidden_pages_map || !free_pages_map)
1595 		goto out;
1596 
1597 	memory_bm_position_reset(forbidden_pages_map);
1598 	memory_bm_position_reset(free_pages_map);
1599 
1600 loop:
1601 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1602 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1603 
1604 	/*
1605 	 * Find the next bit set in both bitmaps. This is guaranteed to
1606 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1607 	 */
1608 	do {
1609 		if (fb_pfn < fr_pfn)
1610 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1611 		if (fr_pfn < fb_pfn)
1612 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1613 	} while (fb_pfn != fr_pfn);
1614 
1615 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1616 		struct page *page = pfn_to_page(fr_pfn);
1617 
1618 		memory_bm_clear_current(forbidden_pages_map);
1619 		memory_bm_clear_current(free_pages_map);
1620 		hibernate_restore_unprotect_page(page_address(page));
1621 		__free_page(page);
1622 		goto loop;
1623 	}
1624 
1625 out:
1626 	nr_copy_pages = 0;
1627 	nr_meta_pages = 0;
1628 	nr_zero_pages = 0;
1629 	restore_pblist = NULL;
1630 	buffer = NULL;
1631 	alloc_normal = 0;
1632 	alloc_highmem = 0;
1633 	hibernate_restore_protection_end();
1634 }
1635 
1636 /* Helper functions used for the shrinking of memory. */
1637 
1638 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1639 
1640 /**
1641  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1642  * @nr_pages: Number of page frames to allocate.
1643  * @mask: GFP flags to use for the allocation.
1644  *
1645  * Return value: Number of page frames actually allocated
1646  */
1647 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1648 {
1649 	unsigned long nr_alloc = 0;
1650 
1651 	while (nr_pages > 0) {
1652 		struct page *page;
1653 
1654 		page = alloc_image_page(mask);
1655 		if (!page)
1656 			break;
1657 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1658 		if (PageHighMem(page))
1659 			alloc_highmem++;
1660 		else
1661 			alloc_normal++;
1662 		nr_pages--;
1663 		nr_alloc++;
1664 	}
1665 
1666 	return nr_alloc;
1667 }
1668 
1669 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1670 					      unsigned long avail_normal)
1671 {
1672 	unsigned long alloc;
1673 
1674 	if (avail_normal <= alloc_normal)
1675 		return 0;
1676 
1677 	alloc = avail_normal - alloc_normal;
1678 	if (nr_pages < alloc)
1679 		alloc = nr_pages;
1680 
1681 	return preallocate_image_pages(alloc, GFP_IMAGE);
1682 }
1683 
1684 #ifdef CONFIG_HIGHMEM
1685 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1686 {
1687 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1688 }
1689 
1690 /**
1691  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1692  */
1693 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1694 {
1695 	return div64_u64(x * multiplier, base);
1696 }
1697 
1698 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1699 						  unsigned long highmem,
1700 						  unsigned long total)
1701 {
1702 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1703 
1704 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1705 }
1706 #else /* CONFIG_HIGHMEM */
1707 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1708 {
1709 	return 0;
1710 }
1711 
1712 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1713 							 unsigned long highmem,
1714 							 unsigned long total)
1715 {
1716 	return 0;
1717 }
1718 #endif /* CONFIG_HIGHMEM */
1719 
1720 /**
1721  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1722  */
1723 static unsigned long free_unnecessary_pages(void)
1724 {
1725 	unsigned long save, to_free_normal, to_free_highmem, free;
1726 
1727 	save = count_data_pages();
1728 	if (alloc_normal >= save) {
1729 		to_free_normal = alloc_normal - save;
1730 		save = 0;
1731 	} else {
1732 		to_free_normal = 0;
1733 		save -= alloc_normal;
1734 	}
1735 	save += count_highmem_pages();
1736 	if (alloc_highmem >= save) {
1737 		to_free_highmem = alloc_highmem - save;
1738 	} else {
1739 		to_free_highmem = 0;
1740 		save -= alloc_highmem;
1741 		if (to_free_normal > save)
1742 			to_free_normal -= save;
1743 		else
1744 			to_free_normal = 0;
1745 	}
1746 	free = to_free_normal + to_free_highmem;
1747 
1748 	memory_bm_position_reset(&copy_bm);
1749 
1750 	while (to_free_normal > 0 || to_free_highmem > 0) {
1751 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1752 		struct page *page = pfn_to_page(pfn);
1753 
1754 		if (PageHighMem(page)) {
1755 			if (!to_free_highmem)
1756 				continue;
1757 			to_free_highmem--;
1758 			alloc_highmem--;
1759 		} else {
1760 			if (!to_free_normal)
1761 				continue;
1762 			to_free_normal--;
1763 			alloc_normal--;
1764 		}
1765 		memory_bm_clear_bit(&copy_bm, pfn);
1766 		swsusp_unset_page_forbidden(page);
1767 		swsusp_unset_page_free(page);
1768 		__free_page(page);
1769 	}
1770 
1771 	return free;
1772 }
1773 
1774 /**
1775  * minimum_image_size - Estimate the minimum acceptable size of an image.
1776  * @saveable: Number of saveable pages in the system.
1777  *
1778  * We want to avoid attempting to free too much memory too hard, so estimate the
1779  * minimum acceptable size of a hibernation image to use as the lower limit for
1780  * preallocating memory.
1781  *
1782  * We assume that the minimum image size should be proportional to
1783  *
1784  * [number of saveable pages] - [number of pages that can be freed in theory]
1785  *
1786  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1787  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1788  */
1789 static unsigned long minimum_image_size(unsigned long saveable)
1790 {
1791 	unsigned long size;
1792 
1793 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1794 		+ global_node_page_state(NR_ACTIVE_ANON)
1795 		+ global_node_page_state(NR_INACTIVE_ANON)
1796 		+ global_node_page_state(NR_ACTIVE_FILE)
1797 		+ global_node_page_state(NR_INACTIVE_FILE);
1798 
1799 	return saveable <= size ? 0 : saveable - size;
1800 }
1801 
1802 /**
1803  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1804  *
1805  * To create a hibernation image it is necessary to make a copy of every page
1806  * frame in use.  We also need a number of page frames to be free during
1807  * hibernation for allocations made while saving the image and for device
1808  * drivers, in case they need to allocate memory from their hibernation
1809  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1810  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1811  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1812  * total number of available page frames and allocate at least
1813  *
1814  * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1815  *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1816  *
1817  * of them, which corresponds to the maximum size of a hibernation image.
1818  *
1819  * If image_size is set below the number following from the above formula,
1820  * the preallocation of memory is continued until the total number of saveable
1821  * pages in the system is below the requested image size or the minimum
1822  * acceptable image size returned by minimum_image_size(), whichever is greater.
1823  */
1824 int hibernate_preallocate_memory(void)
1825 {
1826 	struct zone *zone;
1827 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1828 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1829 	ktime_t start, stop;
1830 	int error;
1831 
1832 	pr_info("Preallocating image memory\n");
1833 	start = ktime_get();
1834 
1835 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1836 	if (error) {
1837 		pr_err("Cannot allocate original bitmap\n");
1838 		goto err_out;
1839 	}
1840 
1841 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1842 	if (error) {
1843 		pr_err("Cannot allocate copy bitmap\n");
1844 		goto err_out;
1845 	}
1846 
1847 	error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1848 	if (error) {
1849 		pr_err("Cannot allocate zero bitmap\n");
1850 		goto err_out;
1851 	}
1852 
1853 	alloc_normal = 0;
1854 	alloc_highmem = 0;
1855 	nr_zero_pages = 0;
1856 
1857 	/* Count the number of saveable data pages. */
1858 	save_highmem = count_highmem_pages();
1859 	saveable = count_data_pages();
1860 
1861 	/*
1862 	 * Compute the total number of page frames we can use (count) and the
1863 	 * number of pages needed for image metadata (size).
1864 	 */
1865 	count = saveable;
1866 	saveable += save_highmem;
1867 	highmem = save_highmem;
1868 	size = 0;
1869 	for_each_populated_zone(zone) {
1870 		size += snapshot_additional_pages(zone);
1871 		if (is_highmem(zone))
1872 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1873 		else
1874 			count += zone_page_state(zone, NR_FREE_PAGES);
1875 	}
1876 	avail_normal = count;
1877 	count += highmem;
1878 	count -= totalreserve_pages;
1879 
1880 	/* Compute the maximum number of saveable pages to leave in memory. */
1881 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1882 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1883 	/* Compute the desired number of image pages specified by image_size. */
1884 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1885 	if (size > max_size)
1886 		size = max_size;
1887 	/*
1888 	 * If the desired number of image pages is at least as large as the
1889 	 * current number of saveable pages in memory, allocate page frames for
1890 	 * the image and we're done.
1891 	 */
1892 	if (size >= saveable) {
1893 		pages = preallocate_image_highmem(save_highmem);
1894 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1895 		goto out;
1896 	}
1897 
1898 	/* Estimate the minimum size of the image. */
1899 	pages = minimum_image_size(saveable);
1900 	/*
1901 	 * To avoid excessive pressure on the normal zone, leave room in it to
1902 	 * accommodate an image of the minimum size (unless it's already too
1903 	 * small, in which case don't preallocate pages from it at all).
1904 	 */
1905 	if (avail_normal > pages)
1906 		avail_normal -= pages;
1907 	else
1908 		avail_normal = 0;
1909 	if (size < pages)
1910 		size = min_t(unsigned long, pages, max_size);
1911 
1912 	/*
1913 	 * Let the memory management subsystem know that we're going to need a
1914 	 * large number of page frames to allocate and make it free some memory.
1915 	 * NOTE: If this is not done, performance will be hurt badly in some
1916 	 * test cases.
1917 	 */
1918 	shrink_all_memory(saveable - size);
1919 
1920 	/*
1921 	 * The number of saveable pages in memory was too high, so apply some
1922 	 * pressure to decrease it.  First, make room for the largest possible
1923 	 * image and fail if that doesn't work.  Next, try to decrease the size
1924 	 * of the image as much as indicated by 'size' using allocations from
1925 	 * highmem and non-highmem zones separately.
1926 	 */
1927 	pages_highmem = preallocate_image_highmem(highmem / 2);
1928 	alloc = count - max_size;
1929 	if (alloc > pages_highmem)
1930 		alloc -= pages_highmem;
1931 	else
1932 		alloc = 0;
1933 	pages = preallocate_image_memory(alloc, avail_normal);
1934 	if (pages < alloc) {
1935 		/* We have exhausted non-highmem pages, try highmem. */
1936 		alloc -= pages;
1937 		pages += pages_highmem;
1938 		pages_highmem = preallocate_image_highmem(alloc);
1939 		if (pages_highmem < alloc) {
1940 			pr_err("Image allocation is %lu pages short\n",
1941 				alloc - pages_highmem);
1942 			goto err_out;
1943 		}
1944 		pages += pages_highmem;
1945 		/*
1946 		 * size is the desired number of saveable pages to leave in
1947 		 * memory, so try to preallocate (all memory - size) pages.
1948 		 */
1949 		alloc = (count - pages) - size;
1950 		pages += preallocate_image_highmem(alloc);
1951 	} else {
1952 		/*
1953 		 * There are approximately max_size saveable pages at this point
1954 		 * and we want to reduce this number down to size.
1955 		 */
1956 		alloc = max_size - size;
1957 		size = preallocate_highmem_fraction(alloc, highmem, count);
1958 		pages_highmem += size;
1959 		alloc -= size;
1960 		size = preallocate_image_memory(alloc, avail_normal);
1961 		pages_highmem += preallocate_image_highmem(alloc - size);
1962 		pages += pages_highmem + size;
1963 	}
1964 
1965 	/*
1966 	 * We only need as many page frames for the image as there are saveable
1967 	 * pages in memory, but we have allocated more.  Release the excessive
1968 	 * ones now.
1969 	 */
1970 	pages -= free_unnecessary_pages();
1971 
1972  out:
1973 	stop = ktime_get();
1974 	pr_info("Allocated %lu pages for snapshot\n", pages);
1975 	swsusp_show_speed(start, stop, pages, "Allocated");
1976 
1977 	return 0;
1978 
1979  err_out:
1980 	swsusp_free();
1981 	return -ENOMEM;
1982 }
1983 
1984 #ifdef CONFIG_HIGHMEM
1985 /**
1986  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1987  *
1988  * Compute the number of non-highmem pages that will be necessary for creating
1989  * copies of highmem pages.
1990  */
1991 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1992 {
1993 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1994 
1995 	if (free_highmem >= nr_highmem)
1996 		nr_highmem = 0;
1997 	else
1998 		nr_highmem -= free_highmem;
1999 
2000 	return nr_highmem;
2001 }
2002 #else
2003 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
2004 #endif /* CONFIG_HIGHMEM */
2005 
2006 /**
2007  * enough_free_mem - Check if there is enough free memory for the image.
2008  */
2009 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
2010 {
2011 	struct zone *zone;
2012 	unsigned int free = alloc_normal;
2013 
2014 	for_each_populated_zone(zone)
2015 		if (!is_highmem(zone))
2016 			free += zone_page_state(zone, NR_FREE_PAGES);
2017 
2018 	nr_pages += count_pages_for_highmem(nr_highmem);
2019 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2020 		 nr_pages, PAGES_FOR_IO, free);
2021 
2022 	return free > nr_pages + PAGES_FOR_IO;
2023 }
2024 
2025 #ifdef CONFIG_HIGHMEM
2026 /**
2027  * get_highmem_buffer - Allocate a buffer for highmem pages.
2028  *
2029  * If there are some highmem pages in the hibernation image, we may need a
2030  * buffer to copy them and/or load their data.
2031  */
2032 static inline int get_highmem_buffer(int safe_needed)
2033 {
2034 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
2035 	return buffer ? 0 : -ENOMEM;
2036 }
2037 
2038 /**
2039  * alloc_highmem_pages - Allocate some highmem pages for the image.
2040  *
2041  * Try to allocate as many pages as needed, but if the number of free highmem
2042  * pages is less than that, allocate them all.
2043  */
2044 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2045 					       unsigned int nr_highmem)
2046 {
2047 	unsigned int to_alloc = count_free_highmem_pages();
2048 
2049 	if (to_alloc > nr_highmem)
2050 		to_alloc = nr_highmem;
2051 
2052 	nr_highmem -= to_alloc;
2053 	while (to_alloc-- > 0) {
2054 		struct page *page;
2055 
2056 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2057 		memory_bm_set_bit(bm, page_to_pfn(page));
2058 	}
2059 	return nr_highmem;
2060 }
2061 #else
2062 static inline int get_highmem_buffer(int safe_needed) { return 0; }
2063 
2064 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2065 					       unsigned int n) { return 0; }
2066 #endif /* CONFIG_HIGHMEM */
2067 
2068 /**
2069  * swsusp_alloc - Allocate memory for hibernation image.
2070  *
2071  * We first try to allocate as many highmem pages as there are
2072  * saveable highmem pages in the system.  If that fails, we allocate
2073  * non-highmem pages for the copies of the remaining highmem ones.
2074  *
2075  * In this approach it is likely that the copies of highmem pages will
2076  * also be located in the high memory, because of the way in which
2077  * copy_data_pages() works.
2078  */
2079 static int swsusp_alloc(struct memory_bitmap *copy_bm,
2080 			unsigned int nr_pages, unsigned int nr_highmem)
2081 {
2082 	if (nr_highmem > 0) {
2083 		if (get_highmem_buffer(PG_ANY))
2084 			goto err_out;
2085 		if (nr_highmem > alloc_highmem) {
2086 			nr_highmem -= alloc_highmem;
2087 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2088 		}
2089 	}
2090 	if (nr_pages > alloc_normal) {
2091 		nr_pages -= alloc_normal;
2092 		while (nr_pages-- > 0) {
2093 			struct page *page;
2094 
2095 			page = alloc_image_page(GFP_ATOMIC);
2096 			if (!page)
2097 				goto err_out;
2098 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2099 		}
2100 	}
2101 
2102 	return 0;
2103 
2104  err_out:
2105 	swsusp_free();
2106 	return -ENOMEM;
2107 }
2108 
2109 asmlinkage __visible int swsusp_save(void)
2110 {
2111 	unsigned int nr_pages, nr_highmem;
2112 
2113 	pm_deferred_pr_dbg("Creating image\n");
2114 
2115 	drain_local_pages(NULL);
2116 	nr_pages = count_data_pages();
2117 	nr_highmem = count_highmem_pages();
2118 	pm_deferred_pr_dbg("Need to copy %u pages\n", nr_pages + nr_highmem);
2119 
2120 	if (!enough_free_mem(nr_pages, nr_highmem)) {
2121 		pm_deferred_pr_dbg("Not enough free memory for image creation\n");
2122 		return -ENOMEM;
2123 	}
2124 
2125 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem))
2126 		return -ENOMEM;
2127 
2128 	/*
2129 	 * During allocating of suspend pagedir, new cold pages may appear.
2130 	 * Kill them.
2131 	 */
2132 	drain_local_pages(NULL);
2133 	nr_copy_pages = copy_data_pages(&copy_bm, &orig_bm, &zero_bm);
2134 
2135 	/*
2136 	 * End of critical section. From now on, we can write to memory,
2137 	 * but we should not touch disk. This specially means we must _not_
2138 	 * touch swap space! Except we must write out our image of course.
2139 	 */
2140 	nr_pages += nr_highmem;
2141 	/* We don't actually copy the zero pages */
2142 	nr_zero_pages = nr_pages - nr_copy_pages;
2143 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2144 
2145 	pm_deferred_pr_dbg("Image created (%d pages copied, %d zero pages)\n",
2146 			   nr_copy_pages, nr_zero_pages);
2147 
2148 	return 0;
2149 }
2150 
2151 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2152 static int init_header_complete(struct swsusp_info *info)
2153 {
2154 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2155 	info->version_code = LINUX_VERSION_CODE;
2156 	return 0;
2157 }
2158 
2159 static const char *check_image_kernel(struct swsusp_info *info)
2160 {
2161 	if (info->version_code != LINUX_VERSION_CODE)
2162 		return "kernel version";
2163 	if (strcmp(info->uts.sysname, init_utsname()->sysname))
2164 		return "system type";
2165 	if (strcmp(info->uts.release, init_utsname()->release))
2166 		return "kernel release";
2167 	if (strcmp(info->uts.version, init_utsname()->version))
2168 		return "version";
2169 	if (strcmp(info->uts.machine, init_utsname()->machine))
2170 		return "machine";
2171 	return NULL;
2172 }
2173 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2174 
2175 unsigned long snapshot_get_image_size(void)
2176 {
2177 	return nr_copy_pages + nr_meta_pages + 1;
2178 }
2179 
2180 static int init_header(struct swsusp_info *info)
2181 {
2182 	memset(info, 0, sizeof(struct swsusp_info));
2183 	info->num_physpages = get_num_physpages();
2184 	info->image_pages = nr_copy_pages;
2185 	info->pages = snapshot_get_image_size();
2186 	info->size = info->pages;
2187 	info->size <<= PAGE_SHIFT;
2188 	return init_header_complete(info);
2189 }
2190 
2191 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2192 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2193 
2194 /**
2195  * pack_pfns - Prepare PFNs for saving.
2196  * @bm: Memory bitmap.
2197  * @buf: Memory buffer to store the PFNs in.
2198  * @zero_bm: Memory bitmap containing PFNs of zero pages.
2199  *
2200  * PFNs corresponding to set bits in @bm are stored in the area of memory
2201  * pointed to by @buf (1 page at a time). Pages which were filled with only
2202  * zeros will have the highest bit set in the packed format to distinguish
2203  * them from PFNs which will be contained in the image file.
2204  */
2205 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2206 		struct memory_bitmap *zero_bm)
2207 {
2208 	int j;
2209 
2210 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2211 		buf[j] = memory_bm_next_pfn(bm);
2212 		if (unlikely(buf[j] == BM_END_OF_MAP))
2213 			break;
2214 		if (memory_bm_test_bit(zero_bm, buf[j]))
2215 			buf[j] |= ENCODED_PFN_ZERO_FLAG;
2216 	}
2217 }
2218 
2219 /**
2220  * snapshot_read_next - Get the address to read the next image page from.
2221  * @handle: Snapshot handle to be used for the reading.
2222  *
2223  * On the first call, @handle should point to a zeroed snapshot_handle
2224  * structure.  The structure gets populated then and a pointer to it should be
2225  * passed to this function every next time.
2226  *
2227  * On success, the function returns a positive number.  Then, the caller
2228  * is allowed to read up to the returned number of bytes from the memory
2229  * location computed by the data_of() macro.
2230  *
2231  * The function returns 0 to indicate the end of the data stream condition,
2232  * and negative numbers are returned on errors.  If that happens, the structure
2233  * pointed to by @handle is not updated and should not be used any more.
2234  */
2235 int snapshot_read_next(struct snapshot_handle *handle)
2236 {
2237 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2238 		return 0;
2239 
2240 	if (!buffer) {
2241 		/* This makes the buffer be freed by swsusp_free() */
2242 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2243 		if (!buffer)
2244 			return -ENOMEM;
2245 	}
2246 	if (!handle->cur) {
2247 		int error;
2248 
2249 		error = init_header((struct swsusp_info *)buffer);
2250 		if (error)
2251 			return error;
2252 		handle->buffer = buffer;
2253 		memory_bm_position_reset(&orig_bm);
2254 		memory_bm_position_reset(&copy_bm);
2255 	} else if (handle->cur <= nr_meta_pages) {
2256 		clear_page(buffer);
2257 		pack_pfns(buffer, &orig_bm, &zero_bm);
2258 	} else {
2259 		struct page *page;
2260 
2261 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2262 		if (PageHighMem(page)) {
2263 			/*
2264 			 * Highmem pages are copied to the buffer,
2265 			 * because we can't return with a kmapped
2266 			 * highmem page (we may not be called again).
2267 			 */
2268 			void *kaddr;
2269 
2270 			kaddr = kmap_local_page(page);
2271 			copy_page(buffer, kaddr);
2272 			kunmap_local(kaddr);
2273 			handle->buffer = buffer;
2274 		} else {
2275 			handle->buffer = page_address(page);
2276 		}
2277 	}
2278 	handle->cur++;
2279 	return PAGE_SIZE;
2280 }
2281 
2282 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2283 				    struct memory_bitmap *src)
2284 {
2285 	unsigned long pfn;
2286 
2287 	memory_bm_position_reset(src);
2288 	pfn = memory_bm_next_pfn(src);
2289 	while (pfn != BM_END_OF_MAP) {
2290 		memory_bm_set_bit(dst, pfn);
2291 		pfn = memory_bm_next_pfn(src);
2292 	}
2293 }
2294 
2295 /**
2296  * mark_unsafe_pages - Mark pages that were used before hibernation.
2297  *
2298  * Mark the pages that cannot be used for storing the image during restoration,
2299  * because they conflict with the pages that had been used before hibernation.
2300  */
2301 static void mark_unsafe_pages(struct memory_bitmap *bm)
2302 {
2303 	unsigned long pfn;
2304 
2305 	/* Clear the "free"/"unsafe" bit for all PFNs */
2306 	memory_bm_position_reset(free_pages_map);
2307 	pfn = memory_bm_next_pfn(free_pages_map);
2308 	while (pfn != BM_END_OF_MAP) {
2309 		memory_bm_clear_current(free_pages_map);
2310 		pfn = memory_bm_next_pfn(free_pages_map);
2311 	}
2312 
2313 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2314 	duplicate_memory_bitmap(free_pages_map, bm);
2315 
2316 	allocated_unsafe_pages = 0;
2317 }
2318 
2319 static int check_header(struct swsusp_info *info)
2320 {
2321 	const char *reason;
2322 
2323 	reason = check_image_kernel(info);
2324 	if (!reason && info->num_physpages != get_num_physpages())
2325 		reason = "memory size";
2326 	if (reason) {
2327 		pr_err("Image mismatch: %s\n", reason);
2328 		return -EPERM;
2329 	}
2330 	return 0;
2331 }
2332 
2333 /**
2334  * load_header - Check the image header and copy the data from it.
2335  */
2336 static int load_header(struct swsusp_info *info)
2337 {
2338 	int error;
2339 
2340 	restore_pblist = NULL;
2341 	error = check_header(info);
2342 	if (!error) {
2343 		nr_copy_pages = info->image_pages;
2344 		nr_meta_pages = info->pages - info->image_pages - 1;
2345 	}
2346 	return error;
2347 }
2348 
2349 /**
2350  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2351  * @bm: Memory bitmap.
2352  * @buf: Area of memory containing the PFNs.
2353  * @zero_bm: Memory bitmap with the zero PFNs marked.
2354  *
2355  * For each element of the array pointed to by @buf (1 page at a time), set the
2356  * corresponding bit in @bm. If the page was originally populated with only
2357  * zeros then a corresponding bit will also be set in @zero_bm.
2358  */
2359 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2360 		struct memory_bitmap *zero_bm)
2361 {
2362 	unsigned long decoded_pfn;
2363 	bool zero;
2364 	int j;
2365 
2366 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2367 		if (unlikely(buf[j] == BM_END_OF_MAP))
2368 			break;
2369 
2370 		zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2371 		decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2372 		if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2373 			memory_bm_set_bit(bm, decoded_pfn);
2374 			if (zero) {
2375 				memory_bm_set_bit(zero_bm, decoded_pfn);
2376 				nr_zero_pages++;
2377 			}
2378 		} else {
2379 			if (!pfn_valid(decoded_pfn))
2380 				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2381 				       (unsigned long long)PFN_PHYS(decoded_pfn));
2382 			return -EFAULT;
2383 		}
2384 	}
2385 
2386 	return 0;
2387 }
2388 
2389 #ifdef CONFIG_HIGHMEM
2390 /*
2391  * struct highmem_pbe is used for creating the list of highmem pages that
2392  * should be restored atomically during the resume from disk, because the page
2393  * frames they have occupied before the suspend are in use.
2394  */
2395 struct highmem_pbe {
2396 	struct page *copy_page;	/* data is here now */
2397 	struct page *orig_page;	/* data was here before the suspend */
2398 	struct highmem_pbe *next;
2399 };
2400 
2401 /*
2402  * List of highmem PBEs needed for restoring the highmem pages that were
2403  * allocated before the suspend and included in the suspend image, but have
2404  * also been allocated by the "resume" kernel, so their contents cannot be
2405  * written directly to their "original" page frames.
2406  */
2407 static struct highmem_pbe *highmem_pblist;
2408 
2409 /**
2410  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2411  * @bm: Memory bitmap.
2412  *
2413  * The bits in @bm that correspond to image pages are assumed to be set.
2414  */
2415 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2416 {
2417 	unsigned long pfn;
2418 	unsigned int cnt = 0;
2419 
2420 	memory_bm_position_reset(bm);
2421 	pfn = memory_bm_next_pfn(bm);
2422 	while (pfn != BM_END_OF_MAP) {
2423 		if (PageHighMem(pfn_to_page(pfn)))
2424 			cnt++;
2425 
2426 		pfn = memory_bm_next_pfn(bm);
2427 	}
2428 	return cnt;
2429 }
2430 
2431 static unsigned int safe_highmem_pages;
2432 
2433 static struct memory_bitmap *safe_highmem_bm;
2434 
2435 /**
2436  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2437  * @bm: Pointer to an uninitialized memory bitmap structure.
2438  * @nr_highmem_p: Pointer to the number of highmem image pages.
2439  *
2440  * Try to allocate as many highmem pages as there are highmem image pages
2441  * (@nr_highmem_p points to the variable containing the number of highmem image
2442  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2443  * hibernation image is restored entirely) have the corresponding bits set in
2444  * @bm (it must be uninitialized).
2445  *
2446  * NOTE: This function should not be called if there are no highmem image pages.
2447  */
2448 static int prepare_highmem_image(struct memory_bitmap *bm,
2449 				 unsigned int *nr_highmem_p)
2450 {
2451 	unsigned int to_alloc;
2452 
2453 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2454 		return -ENOMEM;
2455 
2456 	if (get_highmem_buffer(PG_SAFE))
2457 		return -ENOMEM;
2458 
2459 	to_alloc = count_free_highmem_pages();
2460 	if (to_alloc > *nr_highmem_p)
2461 		to_alloc = *nr_highmem_p;
2462 	else
2463 		*nr_highmem_p = to_alloc;
2464 
2465 	safe_highmem_pages = 0;
2466 	while (to_alloc-- > 0) {
2467 		struct page *page;
2468 
2469 		page = alloc_page(__GFP_HIGHMEM);
2470 		if (!swsusp_page_is_free(page)) {
2471 			/* The page is "safe", set its bit the bitmap */
2472 			memory_bm_set_bit(bm, page_to_pfn(page));
2473 			safe_highmem_pages++;
2474 		}
2475 		/* Mark the page as allocated */
2476 		swsusp_set_page_forbidden(page);
2477 		swsusp_set_page_free(page);
2478 	}
2479 	memory_bm_position_reset(bm);
2480 	safe_highmem_bm = bm;
2481 	return 0;
2482 }
2483 
2484 static struct page *last_highmem_page;
2485 
2486 /**
2487  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2488  *
2489  * For a given highmem image page get a buffer that suspend_write_next() should
2490  * return to its caller to write to.
2491  *
2492  * If the page is to be saved to its "original" page frame or a copy of
2493  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2494  * the copy of the page is to be made in normal memory, so the address of
2495  * the copy is returned.
2496  *
2497  * If @buffer is returned, the caller of suspend_write_next() will write
2498  * the page's contents to @buffer, so they will have to be copied to the
2499  * right location on the next call to suspend_write_next() and it is done
2500  * with the help of copy_last_highmem_page().  For this purpose, if
2501  * @buffer is returned, @last_highmem_page is set to the page to which
2502  * the data will have to be copied from @buffer.
2503  */
2504 static void *get_highmem_page_buffer(struct page *page,
2505 				     struct chain_allocator *ca)
2506 {
2507 	struct highmem_pbe *pbe;
2508 	void *kaddr;
2509 
2510 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2511 		/*
2512 		 * We have allocated the "original" page frame and we can
2513 		 * use it directly to store the loaded page.
2514 		 */
2515 		last_highmem_page = page;
2516 		return buffer;
2517 	}
2518 	/*
2519 	 * The "original" page frame has not been allocated and we have to
2520 	 * use a "safe" page frame to store the loaded page.
2521 	 */
2522 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2523 	if (!pbe) {
2524 		swsusp_free();
2525 		return ERR_PTR(-ENOMEM);
2526 	}
2527 	pbe->orig_page = page;
2528 	if (safe_highmem_pages > 0) {
2529 		struct page *tmp;
2530 
2531 		/* Copy of the page will be stored in high memory */
2532 		kaddr = buffer;
2533 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2534 		safe_highmem_pages--;
2535 		last_highmem_page = tmp;
2536 		pbe->copy_page = tmp;
2537 	} else {
2538 		/* Copy of the page will be stored in normal memory */
2539 		kaddr = __get_safe_page(ca->gfp_mask);
2540 		if (!kaddr)
2541 			return ERR_PTR(-ENOMEM);
2542 		pbe->copy_page = virt_to_page(kaddr);
2543 	}
2544 	pbe->next = highmem_pblist;
2545 	highmem_pblist = pbe;
2546 	return kaddr;
2547 }
2548 
2549 /**
2550  * copy_last_highmem_page - Copy most the most recent highmem image page.
2551  *
2552  * Copy the contents of a highmem image from @buffer, where the caller of
2553  * snapshot_write_next() has stored them, to the right location represented by
2554  * @last_highmem_page .
2555  */
2556 static void copy_last_highmem_page(void)
2557 {
2558 	if (last_highmem_page) {
2559 		void *dst;
2560 
2561 		dst = kmap_local_page(last_highmem_page);
2562 		copy_page(dst, buffer);
2563 		kunmap_local(dst);
2564 		last_highmem_page = NULL;
2565 	}
2566 }
2567 
2568 static inline int last_highmem_page_copied(void)
2569 {
2570 	return !last_highmem_page;
2571 }
2572 
2573 static inline void free_highmem_data(void)
2574 {
2575 	if (safe_highmem_bm)
2576 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2577 
2578 	if (buffer)
2579 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2580 }
2581 #else
2582 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2583 
2584 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2585 					unsigned int *nr_highmem_p) { return 0; }
2586 
2587 static inline void *get_highmem_page_buffer(struct page *page,
2588 					    struct chain_allocator *ca)
2589 {
2590 	return ERR_PTR(-EINVAL);
2591 }
2592 
2593 static inline void copy_last_highmem_page(void) {}
2594 static inline int last_highmem_page_copied(void) { return 1; }
2595 static inline void free_highmem_data(void) {}
2596 #endif /* CONFIG_HIGHMEM */
2597 
2598 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2599 
2600 /**
2601  * prepare_image - Make room for loading hibernation image.
2602  * @new_bm: Uninitialized memory bitmap structure.
2603  * @bm: Memory bitmap with unsafe pages marked.
2604  * @zero_bm: Memory bitmap containing the zero pages.
2605  *
2606  * Use @bm to mark the pages that will be overwritten in the process of
2607  * restoring the system memory state from the suspend image ("unsafe" pages)
2608  * and allocate memory for the image.
2609  *
2610  * The idea is to allocate a new memory bitmap first and then allocate
2611  * as many pages as needed for image data, but without specifying what those
2612  * pages will be used for just yet.  Instead, we mark them all as allocated and
2613  * create a lists of "safe" pages to be used later.  On systems with high
2614  * memory a list of "safe" highmem pages is created too.
2615  *
2616  * Because it was not known which pages were unsafe when @zero_bm was created,
2617  * make a copy of it and recreate it within safe pages.
2618  */
2619 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2620 		struct memory_bitmap *zero_bm)
2621 {
2622 	unsigned int nr_pages, nr_highmem;
2623 	struct memory_bitmap tmp;
2624 	struct linked_page *lp;
2625 	int error;
2626 
2627 	/* If there is no highmem, the buffer will not be necessary */
2628 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2629 	buffer = NULL;
2630 
2631 	nr_highmem = count_highmem_image_pages(bm);
2632 	mark_unsafe_pages(bm);
2633 
2634 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2635 	if (error)
2636 		goto Free;
2637 
2638 	duplicate_memory_bitmap(new_bm, bm);
2639 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2640 
2641 	/* Make a copy of zero_bm so it can be created in safe pages */
2642 	error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2643 	if (error)
2644 		goto Free;
2645 
2646 	duplicate_memory_bitmap(&tmp, zero_bm);
2647 	memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2648 
2649 	/* Recreate zero_bm in safe pages */
2650 	error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2651 	if (error)
2652 		goto Free;
2653 
2654 	duplicate_memory_bitmap(zero_bm, &tmp);
2655 	memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2656 	/* At this point zero_bm is in safe pages and it can be used for restoring. */
2657 
2658 	if (nr_highmem > 0) {
2659 		error = prepare_highmem_image(bm, &nr_highmem);
2660 		if (error)
2661 			goto Free;
2662 	}
2663 	/*
2664 	 * Reserve some safe pages for potential later use.
2665 	 *
2666 	 * NOTE: This way we make sure there will be enough safe pages for the
2667 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2668 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2669 	 *
2670 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2671 	 */
2672 	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2673 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2674 	while (nr_pages > 0) {
2675 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2676 		if (!lp) {
2677 			error = -ENOMEM;
2678 			goto Free;
2679 		}
2680 		lp->next = safe_pages_list;
2681 		safe_pages_list = lp;
2682 		nr_pages--;
2683 	}
2684 	/* Preallocate memory for the image */
2685 	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2686 	while (nr_pages > 0) {
2687 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2688 		if (!lp) {
2689 			error = -ENOMEM;
2690 			goto Free;
2691 		}
2692 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2693 			/* The page is "safe", add it to the list */
2694 			lp->next = safe_pages_list;
2695 			safe_pages_list = lp;
2696 		}
2697 		/* Mark the page as allocated */
2698 		swsusp_set_page_forbidden(virt_to_page(lp));
2699 		swsusp_set_page_free(virt_to_page(lp));
2700 		nr_pages--;
2701 	}
2702 	return 0;
2703 
2704  Free:
2705 	swsusp_free();
2706 	return error;
2707 }
2708 
2709 /**
2710  * get_buffer - Get the address to store the next image data page.
2711  *
2712  * Get the address that snapshot_write_next() should return to its caller to
2713  * write to.
2714  */
2715 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2716 {
2717 	struct pbe *pbe;
2718 	struct page *page;
2719 	unsigned long pfn = memory_bm_next_pfn(bm);
2720 
2721 	if (pfn == BM_END_OF_MAP)
2722 		return ERR_PTR(-EFAULT);
2723 
2724 	page = pfn_to_page(pfn);
2725 	if (PageHighMem(page))
2726 		return get_highmem_page_buffer(page, ca);
2727 
2728 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2729 		/*
2730 		 * We have allocated the "original" page frame and we can
2731 		 * use it directly to store the loaded page.
2732 		 */
2733 		return page_address(page);
2734 
2735 	/*
2736 	 * The "original" page frame has not been allocated and we have to
2737 	 * use a "safe" page frame to store the loaded page.
2738 	 */
2739 	pbe = chain_alloc(ca, sizeof(struct pbe));
2740 	if (!pbe) {
2741 		swsusp_free();
2742 		return ERR_PTR(-ENOMEM);
2743 	}
2744 	pbe->orig_address = page_address(page);
2745 	pbe->address = __get_safe_page(ca->gfp_mask);
2746 	if (!pbe->address)
2747 		return ERR_PTR(-ENOMEM);
2748 	pbe->next = restore_pblist;
2749 	restore_pblist = pbe;
2750 	return pbe->address;
2751 }
2752 
2753 /**
2754  * snapshot_write_next - Get the address to store the next image page.
2755  * @handle: Snapshot handle structure to guide the writing.
2756  *
2757  * On the first call, @handle should point to a zeroed snapshot_handle
2758  * structure.  The structure gets populated then and a pointer to it should be
2759  * passed to this function every next time.
2760  *
2761  * On success, the function returns a positive number.  Then, the caller
2762  * is allowed to write up to the returned number of bytes to the memory
2763  * location computed by the data_of() macro.
2764  *
2765  * The function returns 0 to indicate the "end of file" condition.  Negative
2766  * numbers are returned on errors, in which cases the structure pointed to by
2767  * @handle is not updated and should not be used any more.
2768  */
2769 int snapshot_write_next(struct snapshot_handle *handle)
2770 {
2771 	static struct chain_allocator ca;
2772 	int error;
2773 
2774 next:
2775 	/* Check if we have already loaded the entire image */
2776 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2777 		return 0;
2778 
2779 	if (!handle->cur) {
2780 		if (!buffer)
2781 			/* This makes the buffer be freed by swsusp_free() */
2782 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2783 
2784 		if (!buffer)
2785 			return -ENOMEM;
2786 
2787 		handle->buffer = buffer;
2788 	} else if (handle->cur == 1) {
2789 		error = load_header(buffer);
2790 		if (error)
2791 			return error;
2792 
2793 		safe_pages_list = NULL;
2794 
2795 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2796 		if (error)
2797 			return error;
2798 
2799 		error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
2800 		if (error)
2801 			return error;
2802 
2803 		nr_zero_pages = 0;
2804 
2805 		hibernate_restore_protection_begin();
2806 	} else if (handle->cur <= nr_meta_pages + 1) {
2807 		error = unpack_orig_pfns(buffer, &copy_bm, &zero_bm);
2808 		if (error)
2809 			return error;
2810 
2811 		if (handle->cur == nr_meta_pages + 1) {
2812 			error = prepare_image(&orig_bm, &copy_bm, &zero_bm);
2813 			if (error)
2814 				return error;
2815 
2816 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2817 			memory_bm_position_reset(&orig_bm);
2818 			memory_bm_position_reset(&zero_bm);
2819 			restore_pblist = NULL;
2820 			handle->buffer = get_buffer(&orig_bm, &ca);
2821 			if (IS_ERR(handle->buffer))
2822 				return PTR_ERR(handle->buffer);
2823 		}
2824 	} else {
2825 		copy_last_highmem_page();
2826 		error = hibernate_restore_protect_page(handle->buffer);
2827 		if (error)
2828 			return error;
2829 		handle->buffer = get_buffer(&orig_bm, &ca);
2830 		if (IS_ERR(handle->buffer))
2831 			return PTR_ERR(handle->buffer);
2832 	}
2833 	handle->sync_read = (handle->buffer == buffer);
2834 	handle->cur++;
2835 
2836 	/* Zero pages were not included in the image, memset it and move on. */
2837 	if (handle->cur > nr_meta_pages + 1 &&
2838 	    memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2839 		memset(handle->buffer, 0, PAGE_SIZE);
2840 		goto next;
2841 	}
2842 
2843 	return PAGE_SIZE;
2844 }
2845 
2846 /**
2847  * snapshot_write_finalize - Complete the loading of a hibernation image.
2848  *
2849  * Must be called after the last call to snapshot_write_next() in case the last
2850  * page in the image happens to be a highmem page and its contents should be
2851  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2852  * necessary any more.
2853  */
2854 int snapshot_write_finalize(struct snapshot_handle *handle)
2855 {
2856 	int error;
2857 
2858 	copy_last_highmem_page();
2859 	error = hibernate_restore_protect_page(handle->buffer);
2860 	/* Do that only if we have loaded the image entirely */
2861 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2862 		memory_bm_recycle(&orig_bm);
2863 		free_highmem_data();
2864 	}
2865 	return error;
2866 }
2867 
2868 int snapshot_image_loaded(struct snapshot_handle *handle)
2869 {
2870 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2871 			handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2872 }
2873 
2874 #ifdef CONFIG_HIGHMEM
2875 /* Assumes that @buf is ready and points to a "safe" page */
2876 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2877 				       void *buf)
2878 {
2879 	void *kaddr1, *kaddr2;
2880 
2881 	kaddr1 = kmap_local_page(p1);
2882 	kaddr2 = kmap_local_page(p2);
2883 	copy_page(buf, kaddr1);
2884 	copy_page(kaddr1, kaddr2);
2885 	copy_page(kaddr2, buf);
2886 	kunmap_local(kaddr2);
2887 	kunmap_local(kaddr1);
2888 }
2889 
2890 /**
2891  * restore_highmem - Put highmem image pages into their original locations.
2892  *
2893  * For each highmem page that was in use before hibernation and is included in
2894  * the image, and also has been allocated by the "restore" kernel, swap its
2895  * current contents with the previous (ie. "before hibernation") ones.
2896  *
2897  * If the restore eventually fails, we can call this function once again and
2898  * restore the highmem state as seen by the restore kernel.
2899  */
2900 int restore_highmem(void)
2901 {
2902 	struct highmem_pbe *pbe = highmem_pblist;
2903 	void *buf;
2904 
2905 	if (!pbe)
2906 		return 0;
2907 
2908 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2909 	if (!buf)
2910 		return -ENOMEM;
2911 
2912 	while (pbe) {
2913 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2914 		pbe = pbe->next;
2915 	}
2916 	free_image_page(buf, PG_UNSAFE_CLEAR);
2917 	return 0;
2918 }
2919 #endif /* CONFIG_HIGHMEM */
2920