1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/smp_lock.h> 18 #include <linux/delay.h> 19 #include <linux/bitops.h> 20 #include <linux/spinlock.h> 21 #include <linux/kernel.h> 22 #include <linux/pm.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/bootmem.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 30 #include <asm/uaccess.h> 31 #include <asm/mmu_context.h> 32 #include <asm/pgtable.h> 33 #include <asm/tlbflush.h> 34 #include <asm/io.h> 35 36 #include "power.h" 37 38 static int swsusp_page_is_free(struct page *); 39 static void swsusp_set_page_forbidden(struct page *); 40 static void swsusp_unset_page_forbidden(struct page *); 41 42 /* List of PBEs needed for restoring the pages that were allocated before 43 * the suspend and included in the suspend image, but have also been 44 * allocated by the "resume" kernel, so their contents cannot be written 45 * directly to their "original" page frames. 46 */ 47 struct pbe *restore_pblist; 48 49 /* Pointer to an auxiliary buffer (1 page) */ 50 static void *buffer; 51 52 /** 53 * @safe_needed - on resume, for storing the PBE list and the image, 54 * we can only use memory pages that do not conflict with the pages 55 * used before suspend. The unsafe pages have PageNosaveFree set 56 * and we count them using unsafe_pages. 57 * 58 * Each allocated image page is marked as PageNosave and PageNosaveFree 59 * so that swsusp_free() can release it. 60 */ 61 62 #define PG_ANY 0 63 #define PG_SAFE 1 64 #define PG_UNSAFE_CLEAR 1 65 #define PG_UNSAFE_KEEP 0 66 67 static unsigned int allocated_unsafe_pages; 68 69 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 70 { 71 void *res; 72 73 res = (void *)get_zeroed_page(gfp_mask); 74 if (safe_needed) 75 while (res && swsusp_page_is_free(virt_to_page(res))) { 76 /* The page is unsafe, mark it for swsusp_free() */ 77 swsusp_set_page_forbidden(virt_to_page(res)); 78 allocated_unsafe_pages++; 79 res = (void *)get_zeroed_page(gfp_mask); 80 } 81 if (res) { 82 swsusp_set_page_forbidden(virt_to_page(res)); 83 swsusp_set_page_free(virt_to_page(res)); 84 } 85 return res; 86 } 87 88 unsigned long get_safe_page(gfp_t gfp_mask) 89 { 90 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 91 } 92 93 static struct page *alloc_image_page(gfp_t gfp_mask) 94 { 95 struct page *page; 96 97 page = alloc_page(gfp_mask); 98 if (page) { 99 swsusp_set_page_forbidden(page); 100 swsusp_set_page_free(page); 101 } 102 return page; 103 } 104 105 /** 106 * free_image_page - free page represented by @addr, allocated with 107 * get_image_page (page flags set by it must be cleared) 108 */ 109 110 static inline void free_image_page(void *addr, int clear_nosave_free) 111 { 112 struct page *page; 113 114 BUG_ON(!virt_addr_valid(addr)); 115 116 page = virt_to_page(addr); 117 118 swsusp_unset_page_forbidden(page); 119 if (clear_nosave_free) 120 swsusp_unset_page_free(page); 121 122 __free_page(page); 123 } 124 125 /* struct linked_page is used to build chains of pages */ 126 127 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 128 129 struct linked_page { 130 struct linked_page *next; 131 char data[LINKED_PAGE_DATA_SIZE]; 132 } __attribute__((packed)); 133 134 static inline void 135 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 136 { 137 while (list) { 138 struct linked_page *lp = list->next; 139 140 free_image_page(list, clear_page_nosave); 141 list = lp; 142 } 143 } 144 145 /** 146 * struct chain_allocator is used for allocating small objects out of 147 * a linked list of pages called 'the chain'. 148 * 149 * The chain grows each time when there is no room for a new object in 150 * the current page. The allocated objects cannot be freed individually. 151 * It is only possible to free them all at once, by freeing the entire 152 * chain. 153 * 154 * NOTE: The chain allocator may be inefficient if the allocated objects 155 * are not much smaller than PAGE_SIZE. 156 */ 157 158 struct chain_allocator { 159 struct linked_page *chain; /* the chain */ 160 unsigned int used_space; /* total size of objects allocated out 161 * of the current page 162 */ 163 gfp_t gfp_mask; /* mask for allocating pages */ 164 int safe_needed; /* if set, only "safe" pages are allocated */ 165 }; 166 167 static void 168 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 169 { 170 ca->chain = NULL; 171 ca->used_space = LINKED_PAGE_DATA_SIZE; 172 ca->gfp_mask = gfp_mask; 173 ca->safe_needed = safe_needed; 174 } 175 176 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 177 { 178 void *ret; 179 180 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 181 struct linked_page *lp; 182 183 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 184 if (!lp) 185 return NULL; 186 187 lp->next = ca->chain; 188 ca->chain = lp; 189 ca->used_space = 0; 190 } 191 ret = ca->chain->data + ca->used_space; 192 ca->used_space += size; 193 return ret; 194 } 195 196 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 197 { 198 free_list_of_pages(ca->chain, clear_page_nosave); 199 memset(ca, 0, sizeof(struct chain_allocator)); 200 } 201 202 /** 203 * Data types related to memory bitmaps. 204 * 205 * Memory bitmap is a structure consiting of many linked lists of 206 * objects. The main list's elements are of type struct zone_bitmap 207 * and each of them corresonds to one zone. For each zone bitmap 208 * object there is a list of objects of type struct bm_block that 209 * represent each blocks of bit chunks in which information is 210 * stored. 211 * 212 * struct memory_bitmap contains a pointer to the main list of zone 213 * bitmap objects, a struct bm_position used for browsing the bitmap, 214 * and a pointer to the list of pages used for allocating all of the 215 * zone bitmap objects and bitmap block objects. 216 * 217 * NOTE: It has to be possible to lay out the bitmap in memory 218 * using only allocations of order 0. Additionally, the bitmap is 219 * designed to work with arbitrary number of zones (this is over the 220 * top for now, but let's avoid making unnecessary assumptions ;-). 221 * 222 * struct zone_bitmap contains a pointer to a list of bitmap block 223 * objects and a pointer to the bitmap block object that has been 224 * most recently used for setting bits. Additionally, it contains the 225 * pfns that correspond to the start and end of the represented zone. 226 * 227 * struct bm_block contains a pointer to the memory page in which 228 * information is stored (in the form of a block of bit chunks 229 * of type unsigned long each). It also contains the pfns that 230 * correspond to the start and end of the represented memory area and 231 * the number of bit chunks in the block. 232 */ 233 234 #define BM_END_OF_MAP (~0UL) 235 236 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long)) 237 #define BM_BITS_PER_CHUNK (sizeof(long) << 3) 238 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 239 240 struct bm_block { 241 struct bm_block *next; /* next element of the list */ 242 unsigned long start_pfn; /* pfn represented by the first bit */ 243 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 244 unsigned int size; /* number of bit chunks */ 245 unsigned long *data; /* chunks of bits representing pages */ 246 }; 247 248 struct zone_bitmap { 249 struct zone_bitmap *next; /* next element of the list */ 250 unsigned long start_pfn; /* minimal pfn in this zone */ 251 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 252 struct bm_block *bm_blocks; /* list of bitmap blocks */ 253 struct bm_block *cur_block; /* recently used bitmap block */ 254 }; 255 256 /* strcut bm_position is used for browsing memory bitmaps */ 257 258 struct bm_position { 259 struct zone_bitmap *zone_bm; 260 struct bm_block *block; 261 int chunk; 262 int bit; 263 }; 264 265 struct memory_bitmap { 266 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 267 struct linked_page *p_list; /* list of pages used to store zone 268 * bitmap objects and bitmap block 269 * objects 270 */ 271 struct bm_position cur; /* most recently used bit position */ 272 }; 273 274 /* Functions that operate on memory bitmaps */ 275 276 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm) 277 { 278 bm->cur.chunk = 0; 279 bm->cur.bit = -1; 280 } 281 282 static void memory_bm_position_reset(struct memory_bitmap *bm) 283 { 284 struct zone_bitmap *zone_bm; 285 286 zone_bm = bm->zone_bm_list; 287 bm->cur.zone_bm = zone_bm; 288 bm->cur.block = zone_bm->bm_blocks; 289 memory_bm_reset_chunk(bm); 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 */ 297 298 static inline struct bm_block * 299 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 300 { 301 struct bm_block *bblist = NULL; 302 303 while (nr_blocks-- > 0) { 304 struct bm_block *bb; 305 306 bb = chain_alloc(ca, sizeof(struct bm_block)); 307 if (!bb) 308 return NULL; 309 310 bb->next = bblist; 311 bblist = bb; 312 } 313 return bblist; 314 } 315 316 /** 317 * create_zone_bm_list - create a list of zone bitmap objects 318 */ 319 320 static inline struct zone_bitmap * 321 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 322 { 323 struct zone_bitmap *zbmlist = NULL; 324 325 while (nr_zones-- > 0) { 326 struct zone_bitmap *zbm; 327 328 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 329 if (!zbm) 330 return NULL; 331 332 zbm->next = zbmlist; 333 zbmlist = zbm; 334 } 335 return zbmlist; 336 } 337 338 /** 339 * memory_bm_create - allocate memory for a memory bitmap 340 */ 341 342 static int 343 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 344 { 345 struct chain_allocator ca; 346 struct zone *zone; 347 struct zone_bitmap *zone_bm; 348 struct bm_block *bb; 349 unsigned int nr; 350 351 chain_init(&ca, gfp_mask, safe_needed); 352 353 /* Compute the number of zones */ 354 nr = 0; 355 for_each_zone(zone) 356 if (populated_zone(zone)) 357 nr++; 358 359 /* Allocate the list of zones bitmap objects */ 360 zone_bm = create_zone_bm_list(nr, &ca); 361 bm->zone_bm_list = zone_bm; 362 if (!zone_bm) { 363 chain_free(&ca, PG_UNSAFE_CLEAR); 364 return -ENOMEM; 365 } 366 367 /* Initialize the zone bitmap objects */ 368 for_each_zone(zone) { 369 unsigned long pfn; 370 371 if (!populated_zone(zone)) 372 continue; 373 374 zone_bm->start_pfn = zone->zone_start_pfn; 375 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 376 /* Allocate the list of bitmap block objects */ 377 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 378 bb = create_bm_block_list(nr, &ca); 379 zone_bm->bm_blocks = bb; 380 zone_bm->cur_block = bb; 381 if (!bb) 382 goto Free; 383 384 nr = zone->spanned_pages; 385 pfn = zone->zone_start_pfn; 386 /* Initialize the bitmap block objects */ 387 while (bb) { 388 unsigned long *ptr; 389 390 ptr = get_image_page(gfp_mask, safe_needed); 391 bb->data = ptr; 392 if (!ptr) 393 goto Free; 394 395 bb->start_pfn = pfn; 396 if (nr >= BM_BITS_PER_BLOCK) { 397 pfn += BM_BITS_PER_BLOCK; 398 bb->size = BM_CHUNKS_PER_BLOCK; 399 nr -= BM_BITS_PER_BLOCK; 400 } else { 401 /* This is executed only once in the loop */ 402 pfn += nr; 403 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK); 404 } 405 bb->end_pfn = pfn; 406 bb = bb->next; 407 } 408 zone_bm = zone_bm->next; 409 } 410 bm->p_list = ca.chain; 411 memory_bm_position_reset(bm); 412 return 0; 413 414 Free: 415 bm->p_list = ca.chain; 416 memory_bm_free(bm, PG_UNSAFE_CLEAR); 417 return -ENOMEM; 418 } 419 420 /** 421 * memory_bm_free - free memory occupied by the memory bitmap @bm 422 */ 423 424 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 425 { 426 struct zone_bitmap *zone_bm; 427 428 /* Free the list of bit blocks for each zone_bitmap object */ 429 zone_bm = bm->zone_bm_list; 430 while (zone_bm) { 431 struct bm_block *bb; 432 433 bb = zone_bm->bm_blocks; 434 while (bb) { 435 if (bb->data) 436 free_image_page(bb->data, clear_nosave_free); 437 bb = bb->next; 438 } 439 zone_bm = zone_bm->next; 440 } 441 free_list_of_pages(bm->p_list, clear_nosave_free); 442 bm->zone_bm_list = NULL; 443 } 444 445 /** 446 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 447 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 448 * of @bm->cur_zone_bm are updated. 449 */ 450 451 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 452 void **addr, unsigned int *bit_nr) 453 { 454 struct zone_bitmap *zone_bm; 455 struct bm_block *bb; 456 457 /* Check if the pfn is from the current zone */ 458 zone_bm = bm->cur.zone_bm; 459 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 460 zone_bm = bm->zone_bm_list; 461 /* We don't assume that the zones are sorted by pfns */ 462 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 463 zone_bm = zone_bm->next; 464 465 BUG_ON(!zone_bm); 466 } 467 bm->cur.zone_bm = zone_bm; 468 } 469 /* Check if the pfn corresponds to the current bitmap block */ 470 bb = zone_bm->cur_block; 471 if (pfn < bb->start_pfn) 472 bb = zone_bm->bm_blocks; 473 474 while (pfn >= bb->end_pfn) { 475 bb = bb->next; 476 477 BUG_ON(!bb); 478 } 479 zone_bm->cur_block = bb; 480 pfn -= bb->start_pfn; 481 *bit_nr = pfn % BM_BITS_PER_CHUNK; 482 *addr = bb->data + pfn / BM_BITS_PER_CHUNK; 483 } 484 485 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 486 { 487 void *addr; 488 unsigned int bit; 489 490 memory_bm_find_bit(bm, pfn, &addr, &bit); 491 set_bit(bit, addr); 492 } 493 494 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 495 { 496 void *addr; 497 unsigned int bit; 498 499 memory_bm_find_bit(bm, pfn, &addr, &bit); 500 clear_bit(bit, addr); 501 } 502 503 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 504 { 505 void *addr; 506 unsigned int bit; 507 508 memory_bm_find_bit(bm, pfn, &addr, &bit); 509 return test_bit(bit, addr); 510 } 511 512 /* Two auxiliary functions for memory_bm_next_pfn */ 513 514 /* Find the first set bit in the given chunk, if there is one */ 515 516 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p) 517 { 518 bit++; 519 while (bit < BM_BITS_PER_CHUNK) { 520 if (test_bit(bit, chunk_p)) 521 return bit; 522 523 bit++; 524 } 525 return -1; 526 } 527 528 /* Find a chunk containing some bits set in given block of bits */ 529 530 static inline int next_chunk_in_block(int n, struct bm_block *bb) 531 { 532 n++; 533 while (n < bb->size) { 534 if (bb->data[n]) 535 return n; 536 537 n++; 538 } 539 return -1; 540 } 541 542 /** 543 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 544 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 545 * returned. 546 * 547 * It is required to run memory_bm_position_reset() before the first call to 548 * this function. 549 */ 550 551 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 552 { 553 struct zone_bitmap *zone_bm; 554 struct bm_block *bb; 555 int chunk; 556 int bit; 557 558 do { 559 bb = bm->cur.block; 560 do { 561 chunk = bm->cur.chunk; 562 bit = bm->cur.bit; 563 do { 564 bit = next_bit_in_chunk(bit, bb->data + chunk); 565 if (bit >= 0) 566 goto Return_pfn; 567 568 chunk = next_chunk_in_block(chunk, bb); 569 bit = -1; 570 } while (chunk >= 0); 571 bb = bb->next; 572 bm->cur.block = bb; 573 memory_bm_reset_chunk(bm); 574 } while (bb); 575 zone_bm = bm->cur.zone_bm->next; 576 if (zone_bm) { 577 bm->cur.zone_bm = zone_bm; 578 bm->cur.block = zone_bm->bm_blocks; 579 memory_bm_reset_chunk(bm); 580 } 581 } while (zone_bm); 582 memory_bm_position_reset(bm); 583 return BM_END_OF_MAP; 584 585 Return_pfn: 586 bm->cur.chunk = chunk; 587 bm->cur.bit = bit; 588 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 589 } 590 591 /** 592 * This structure represents a range of page frames the contents of which 593 * should not be saved during the suspend. 594 */ 595 596 struct nosave_region { 597 struct list_head list; 598 unsigned long start_pfn; 599 unsigned long end_pfn; 600 }; 601 602 static LIST_HEAD(nosave_regions); 603 604 /** 605 * register_nosave_region - register a range of page frames the contents 606 * of which should not be saved during the suspend (to be used in the early 607 * initialization code) 608 */ 609 610 void __init 611 register_nosave_region(unsigned long start_pfn, unsigned long end_pfn) 612 { 613 struct nosave_region *region; 614 615 if (start_pfn >= end_pfn) 616 return; 617 618 if (!list_empty(&nosave_regions)) { 619 /* Try to extend the previous region (they should be sorted) */ 620 region = list_entry(nosave_regions.prev, 621 struct nosave_region, list); 622 if (region->end_pfn == start_pfn) { 623 region->end_pfn = end_pfn; 624 goto Report; 625 } 626 } 627 /* This allocation cannot fail */ 628 region = alloc_bootmem_low(sizeof(struct nosave_region)); 629 region->start_pfn = start_pfn; 630 region->end_pfn = end_pfn; 631 list_add_tail(®ion->list, &nosave_regions); 632 Report: 633 printk("swsusp: Registered nosave memory region: %016lx - %016lx\n", 634 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 635 } 636 637 /* 638 * Set bits in this map correspond to the page frames the contents of which 639 * should not be saved during the suspend. 640 */ 641 static struct memory_bitmap *forbidden_pages_map; 642 643 /* Set bits in this map correspond to free page frames. */ 644 static struct memory_bitmap *free_pages_map; 645 646 /* 647 * Each page frame allocated for creating the image is marked by setting the 648 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 649 */ 650 651 void swsusp_set_page_free(struct page *page) 652 { 653 if (free_pages_map) 654 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 655 } 656 657 static int swsusp_page_is_free(struct page *page) 658 { 659 return free_pages_map ? 660 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 661 } 662 663 void swsusp_unset_page_free(struct page *page) 664 { 665 if (free_pages_map) 666 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 667 } 668 669 static void swsusp_set_page_forbidden(struct page *page) 670 { 671 if (forbidden_pages_map) 672 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 673 } 674 675 int swsusp_page_is_forbidden(struct page *page) 676 { 677 return forbidden_pages_map ? 678 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 679 } 680 681 static void swsusp_unset_page_forbidden(struct page *page) 682 { 683 if (forbidden_pages_map) 684 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 685 } 686 687 /** 688 * mark_nosave_pages - set bits corresponding to the page frames the 689 * contents of which should not be saved in a given bitmap. 690 */ 691 692 static void mark_nosave_pages(struct memory_bitmap *bm) 693 { 694 struct nosave_region *region; 695 696 if (list_empty(&nosave_regions)) 697 return; 698 699 list_for_each_entry(region, &nosave_regions, list) { 700 unsigned long pfn; 701 702 printk("swsusp: Marking nosave pages: %016lx - %016lx\n", 703 region->start_pfn << PAGE_SHIFT, 704 region->end_pfn << PAGE_SHIFT); 705 706 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 707 memory_bm_set_bit(bm, pfn); 708 } 709 } 710 711 /** 712 * create_basic_memory_bitmaps - create bitmaps needed for marking page 713 * frames that should not be saved and free page frames. The pointers 714 * forbidden_pages_map and free_pages_map are only modified if everything 715 * goes well, because we don't want the bits to be used before both bitmaps 716 * are set up. 717 */ 718 719 int create_basic_memory_bitmaps(void) 720 { 721 struct memory_bitmap *bm1, *bm2; 722 int error = 0; 723 724 BUG_ON(forbidden_pages_map || free_pages_map); 725 726 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 727 if (!bm1) 728 return -ENOMEM; 729 730 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 731 if (error) 732 goto Free_first_object; 733 734 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 735 if (!bm2) 736 goto Free_first_bitmap; 737 738 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 739 if (error) 740 goto Free_second_object; 741 742 forbidden_pages_map = bm1; 743 free_pages_map = bm2; 744 mark_nosave_pages(forbidden_pages_map); 745 746 printk("swsusp: Basic memory bitmaps created\n"); 747 748 return 0; 749 750 Free_second_object: 751 kfree(bm2); 752 Free_first_bitmap: 753 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 754 Free_first_object: 755 kfree(bm1); 756 return -ENOMEM; 757 } 758 759 /** 760 * free_basic_memory_bitmaps - free memory bitmaps allocated by 761 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 762 * so that the bitmaps themselves are not referred to while they are being 763 * freed. 764 */ 765 766 void free_basic_memory_bitmaps(void) 767 { 768 struct memory_bitmap *bm1, *bm2; 769 770 BUG_ON(!(forbidden_pages_map && free_pages_map)); 771 772 bm1 = forbidden_pages_map; 773 bm2 = free_pages_map; 774 forbidden_pages_map = NULL; 775 free_pages_map = NULL; 776 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 777 kfree(bm1); 778 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 779 kfree(bm2); 780 781 printk("swsusp: Basic memory bitmaps freed\n"); 782 } 783 784 /** 785 * snapshot_additional_pages - estimate the number of additional pages 786 * be needed for setting up the suspend image data structures for given 787 * zone (usually the returned value is greater than the exact number) 788 */ 789 790 unsigned int snapshot_additional_pages(struct zone *zone) 791 { 792 unsigned int res; 793 794 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 795 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 796 return 2 * res; 797 } 798 799 #ifdef CONFIG_HIGHMEM 800 /** 801 * count_free_highmem_pages - compute the total number of free highmem 802 * pages, system-wide. 803 */ 804 805 static unsigned int count_free_highmem_pages(void) 806 { 807 struct zone *zone; 808 unsigned int cnt = 0; 809 810 for_each_zone(zone) 811 if (populated_zone(zone) && is_highmem(zone)) 812 cnt += zone_page_state(zone, NR_FREE_PAGES); 813 814 return cnt; 815 } 816 817 /** 818 * saveable_highmem_page - Determine whether a highmem page should be 819 * included in the suspend image. 820 * 821 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 822 * and it isn't a part of a free chunk of pages. 823 */ 824 825 static struct page *saveable_highmem_page(unsigned long pfn) 826 { 827 struct page *page; 828 829 if (!pfn_valid(pfn)) 830 return NULL; 831 832 page = pfn_to_page(pfn); 833 834 BUG_ON(!PageHighMem(page)); 835 836 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 837 PageReserved(page)) 838 return NULL; 839 840 return page; 841 } 842 843 /** 844 * count_highmem_pages - compute the total number of saveable highmem 845 * pages. 846 */ 847 848 unsigned int count_highmem_pages(void) 849 { 850 struct zone *zone; 851 unsigned int n = 0; 852 853 for_each_zone(zone) { 854 unsigned long pfn, max_zone_pfn; 855 856 if (!is_highmem(zone)) 857 continue; 858 859 mark_free_pages(zone); 860 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 861 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 862 if (saveable_highmem_page(pfn)) 863 n++; 864 } 865 return n; 866 } 867 #else 868 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 869 static inline unsigned int count_highmem_pages(void) { return 0; } 870 #endif /* CONFIG_HIGHMEM */ 871 872 /** 873 * saveable - Determine whether a non-highmem page should be included in 874 * the suspend image. 875 * 876 * We should save the page if it isn't Nosave, and is not in the range 877 * of pages statically defined as 'unsaveable', and it isn't a part of 878 * a free chunk of pages. 879 */ 880 881 static struct page *saveable_page(unsigned long pfn) 882 { 883 struct page *page; 884 885 if (!pfn_valid(pfn)) 886 return NULL; 887 888 page = pfn_to_page(pfn); 889 890 BUG_ON(PageHighMem(page)); 891 892 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 893 return NULL; 894 895 if (PageReserved(page) && pfn_is_nosave(pfn)) 896 return NULL; 897 898 return page; 899 } 900 901 /** 902 * count_data_pages - compute the total number of saveable non-highmem 903 * pages. 904 */ 905 906 unsigned int count_data_pages(void) 907 { 908 struct zone *zone; 909 unsigned long pfn, max_zone_pfn; 910 unsigned int n = 0; 911 912 for_each_zone(zone) { 913 if (is_highmem(zone)) 914 continue; 915 916 mark_free_pages(zone); 917 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 918 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 919 if(saveable_page(pfn)) 920 n++; 921 } 922 return n; 923 } 924 925 /* This is needed, because copy_page and memcpy are not usable for copying 926 * task structs. 927 */ 928 static inline void do_copy_page(long *dst, long *src) 929 { 930 int n; 931 932 for (n = PAGE_SIZE / sizeof(long); n; n--) 933 *dst++ = *src++; 934 } 935 936 #ifdef CONFIG_HIGHMEM 937 static inline struct page * 938 page_is_saveable(struct zone *zone, unsigned long pfn) 939 { 940 return is_highmem(zone) ? 941 saveable_highmem_page(pfn) : saveable_page(pfn); 942 } 943 944 static inline void 945 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 946 { 947 struct page *s_page, *d_page; 948 void *src, *dst; 949 950 s_page = pfn_to_page(src_pfn); 951 d_page = pfn_to_page(dst_pfn); 952 if (PageHighMem(s_page)) { 953 src = kmap_atomic(s_page, KM_USER0); 954 dst = kmap_atomic(d_page, KM_USER1); 955 do_copy_page(dst, src); 956 kunmap_atomic(src, KM_USER0); 957 kunmap_atomic(dst, KM_USER1); 958 } else { 959 src = page_address(s_page); 960 if (PageHighMem(d_page)) { 961 /* Page pointed to by src may contain some kernel 962 * data modified by kmap_atomic() 963 */ 964 do_copy_page(buffer, src); 965 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 966 memcpy(dst, buffer, PAGE_SIZE); 967 kunmap_atomic(dst, KM_USER0); 968 } else { 969 dst = page_address(d_page); 970 do_copy_page(dst, src); 971 } 972 } 973 } 974 #else 975 #define page_is_saveable(zone, pfn) saveable_page(pfn) 976 977 static inline void 978 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 979 { 980 do_copy_page(page_address(pfn_to_page(dst_pfn)), 981 page_address(pfn_to_page(src_pfn))); 982 } 983 #endif /* CONFIG_HIGHMEM */ 984 985 static void 986 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 987 { 988 struct zone *zone; 989 unsigned long pfn; 990 991 for_each_zone(zone) { 992 unsigned long max_zone_pfn; 993 994 mark_free_pages(zone); 995 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 996 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 997 if (page_is_saveable(zone, pfn)) 998 memory_bm_set_bit(orig_bm, pfn); 999 } 1000 memory_bm_position_reset(orig_bm); 1001 memory_bm_position_reset(copy_bm); 1002 do { 1003 pfn = memory_bm_next_pfn(orig_bm); 1004 if (likely(pfn != BM_END_OF_MAP)) 1005 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1006 } while (pfn != BM_END_OF_MAP); 1007 } 1008 1009 /* Total number of image pages */ 1010 static unsigned int nr_copy_pages; 1011 /* Number of pages needed for saving the original pfns of the image pages */ 1012 static unsigned int nr_meta_pages; 1013 1014 /** 1015 * swsusp_free - free pages allocated for the suspend. 1016 * 1017 * Suspend pages are alocated before the atomic copy is made, so we 1018 * need to release them after the resume. 1019 */ 1020 1021 void swsusp_free(void) 1022 { 1023 struct zone *zone; 1024 unsigned long pfn, max_zone_pfn; 1025 1026 for_each_zone(zone) { 1027 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1028 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1029 if (pfn_valid(pfn)) { 1030 struct page *page = pfn_to_page(pfn); 1031 1032 if (swsusp_page_is_forbidden(page) && 1033 swsusp_page_is_free(page)) { 1034 swsusp_unset_page_forbidden(page); 1035 swsusp_unset_page_free(page); 1036 __free_page(page); 1037 } 1038 } 1039 } 1040 nr_copy_pages = 0; 1041 nr_meta_pages = 0; 1042 restore_pblist = NULL; 1043 buffer = NULL; 1044 } 1045 1046 #ifdef CONFIG_HIGHMEM 1047 /** 1048 * count_pages_for_highmem - compute the number of non-highmem pages 1049 * that will be necessary for creating copies of highmem pages. 1050 */ 1051 1052 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1053 { 1054 unsigned int free_highmem = count_free_highmem_pages(); 1055 1056 if (free_highmem >= nr_highmem) 1057 nr_highmem = 0; 1058 else 1059 nr_highmem -= free_highmem; 1060 1061 return nr_highmem; 1062 } 1063 #else 1064 static unsigned int 1065 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1066 #endif /* CONFIG_HIGHMEM */ 1067 1068 /** 1069 * enough_free_mem - Make sure we have enough free memory for the 1070 * snapshot image. 1071 */ 1072 1073 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1074 { 1075 struct zone *zone; 1076 unsigned int free = 0, meta = 0; 1077 1078 for_each_zone(zone) { 1079 meta += snapshot_additional_pages(zone); 1080 if (!is_highmem(zone)) 1081 free += zone_page_state(zone, NR_FREE_PAGES); 1082 } 1083 1084 nr_pages += count_pages_for_highmem(nr_highmem); 1085 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n", 1086 nr_pages, PAGES_FOR_IO, meta, free); 1087 1088 return free > nr_pages + PAGES_FOR_IO + meta; 1089 } 1090 1091 #ifdef CONFIG_HIGHMEM 1092 /** 1093 * get_highmem_buffer - if there are some highmem pages in the suspend 1094 * image, we may need the buffer to copy them and/or load their data. 1095 */ 1096 1097 static inline int get_highmem_buffer(int safe_needed) 1098 { 1099 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1100 return buffer ? 0 : -ENOMEM; 1101 } 1102 1103 /** 1104 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1105 * Try to allocate as many pages as needed, but if the number of free 1106 * highmem pages is lesser than that, allocate them all. 1107 */ 1108 1109 static inline unsigned int 1110 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1111 { 1112 unsigned int to_alloc = count_free_highmem_pages(); 1113 1114 if (to_alloc > nr_highmem) 1115 to_alloc = nr_highmem; 1116 1117 nr_highmem -= to_alloc; 1118 while (to_alloc-- > 0) { 1119 struct page *page; 1120 1121 page = alloc_image_page(__GFP_HIGHMEM); 1122 memory_bm_set_bit(bm, page_to_pfn(page)); 1123 } 1124 return nr_highmem; 1125 } 1126 #else 1127 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1128 1129 static inline unsigned int 1130 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1131 #endif /* CONFIG_HIGHMEM */ 1132 1133 /** 1134 * swsusp_alloc - allocate memory for the suspend image 1135 * 1136 * We first try to allocate as many highmem pages as there are 1137 * saveable highmem pages in the system. If that fails, we allocate 1138 * non-highmem pages for the copies of the remaining highmem ones. 1139 * 1140 * In this approach it is likely that the copies of highmem pages will 1141 * also be located in the high memory, because of the way in which 1142 * copy_data_pages() works. 1143 */ 1144 1145 static int 1146 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1147 unsigned int nr_pages, unsigned int nr_highmem) 1148 { 1149 int error; 1150 1151 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1152 if (error) 1153 goto Free; 1154 1155 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1156 if (error) 1157 goto Free; 1158 1159 if (nr_highmem > 0) { 1160 error = get_highmem_buffer(PG_ANY); 1161 if (error) 1162 goto Free; 1163 1164 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1165 } 1166 while (nr_pages-- > 0) { 1167 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1168 1169 if (!page) 1170 goto Free; 1171 1172 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1173 } 1174 return 0; 1175 1176 Free: 1177 swsusp_free(); 1178 return -ENOMEM; 1179 } 1180 1181 /* Memory bitmap used for marking saveable pages (during suspend) or the 1182 * suspend image pages (during resume) 1183 */ 1184 static struct memory_bitmap orig_bm; 1185 /* Memory bitmap used on suspend for marking allocated pages that will contain 1186 * the copies of saveable pages. During resume it is initially used for 1187 * marking the suspend image pages, but then its set bits are duplicated in 1188 * @orig_bm and it is released. Next, on systems with high memory, it may be 1189 * used for marking "safe" highmem pages, but it has to be reinitialized for 1190 * this purpose. 1191 */ 1192 static struct memory_bitmap copy_bm; 1193 1194 asmlinkage int swsusp_save(void) 1195 { 1196 unsigned int nr_pages, nr_highmem; 1197 1198 printk("swsusp: critical section: \n"); 1199 1200 drain_local_pages(); 1201 nr_pages = count_data_pages(); 1202 nr_highmem = count_highmem_pages(); 1203 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem); 1204 1205 if (!enough_free_mem(nr_pages, nr_highmem)) { 1206 printk(KERN_ERR "swsusp: Not enough free memory\n"); 1207 return -ENOMEM; 1208 } 1209 1210 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1211 printk(KERN_ERR "swsusp: Memory allocation failed\n"); 1212 return -ENOMEM; 1213 } 1214 1215 /* During allocating of suspend pagedir, new cold pages may appear. 1216 * Kill them. 1217 */ 1218 drain_local_pages(); 1219 copy_data_pages(©_bm, &orig_bm); 1220 1221 /* 1222 * End of critical section. From now on, we can write to memory, 1223 * but we should not touch disk. This specially means we must _not_ 1224 * touch swap space! Except we must write out our image of course. 1225 */ 1226 1227 nr_pages += nr_highmem; 1228 nr_copy_pages = nr_pages; 1229 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1230 1231 printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages); 1232 1233 return 0; 1234 } 1235 1236 static void init_header(struct swsusp_info *info) 1237 { 1238 memset(info, 0, sizeof(struct swsusp_info)); 1239 info->version_code = LINUX_VERSION_CODE; 1240 info->num_physpages = num_physpages; 1241 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1242 info->cpus = num_online_cpus(); 1243 info->image_pages = nr_copy_pages; 1244 info->pages = nr_copy_pages + nr_meta_pages + 1; 1245 info->size = info->pages; 1246 info->size <<= PAGE_SHIFT; 1247 } 1248 1249 /** 1250 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1251 * are stored in the array @buf[] (1 page at a time) 1252 */ 1253 1254 static inline void 1255 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1256 { 1257 int j; 1258 1259 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1260 buf[j] = memory_bm_next_pfn(bm); 1261 if (unlikely(buf[j] == BM_END_OF_MAP)) 1262 break; 1263 } 1264 } 1265 1266 /** 1267 * snapshot_read_next - used for reading the system memory snapshot. 1268 * 1269 * On the first call to it @handle should point to a zeroed 1270 * snapshot_handle structure. The structure gets updated and a pointer 1271 * to it should be passed to this function every next time. 1272 * 1273 * The @count parameter should contain the number of bytes the caller 1274 * wants to read from the snapshot. It must not be zero. 1275 * 1276 * On success the function returns a positive number. Then, the caller 1277 * is allowed to read up to the returned number of bytes from the memory 1278 * location computed by the data_of() macro. The number returned 1279 * may be smaller than @count, but this only happens if the read would 1280 * cross a page boundary otherwise. 1281 * 1282 * The function returns 0 to indicate the end of data stream condition, 1283 * and a negative number is returned on error. In such cases the 1284 * structure pointed to by @handle is not updated and should not be used 1285 * any more. 1286 */ 1287 1288 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1289 { 1290 if (handle->cur > nr_meta_pages + nr_copy_pages) 1291 return 0; 1292 1293 if (!buffer) { 1294 /* This makes the buffer be freed by swsusp_free() */ 1295 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1296 if (!buffer) 1297 return -ENOMEM; 1298 } 1299 if (!handle->offset) { 1300 init_header((struct swsusp_info *)buffer); 1301 handle->buffer = buffer; 1302 memory_bm_position_reset(&orig_bm); 1303 memory_bm_position_reset(©_bm); 1304 } 1305 if (handle->prev < handle->cur) { 1306 if (handle->cur <= nr_meta_pages) { 1307 memset(buffer, 0, PAGE_SIZE); 1308 pack_pfns(buffer, &orig_bm); 1309 } else { 1310 struct page *page; 1311 1312 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1313 if (PageHighMem(page)) { 1314 /* Highmem pages are copied to the buffer, 1315 * because we can't return with a kmapped 1316 * highmem page (we may not be called again). 1317 */ 1318 void *kaddr; 1319 1320 kaddr = kmap_atomic(page, KM_USER0); 1321 memcpy(buffer, kaddr, PAGE_SIZE); 1322 kunmap_atomic(kaddr, KM_USER0); 1323 handle->buffer = buffer; 1324 } else { 1325 handle->buffer = page_address(page); 1326 } 1327 } 1328 handle->prev = handle->cur; 1329 } 1330 handle->buf_offset = handle->cur_offset; 1331 if (handle->cur_offset + count >= PAGE_SIZE) { 1332 count = PAGE_SIZE - handle->cur_offset; 1333 handle->cur_offset = 0; 1334 handle->cur++; 1335 } else { 1336 handle->cur_offset += count; 1337 } 1338 handle->offset += count; 1339 return count; 1340 } 1341 1342 /** 1343 * mark_unsafe_pages - mark the pages that cannot be used for storing 1344 * the image during resume, because they conflict with the pages that 1345 * had been used before suspend 1346 */ 1347 1348 static int mark_unsafe_pages(struct memory_bitmap *bm) 1349 { 1350 struct zone *zone; 1351 unsigned long pfn, max_zone_pfn; 1352 1353 /* Clear page flags */ 1354 for_each_zone(zone) { 1355 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1356 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1357 if (pfn_valid(pfn)) 1358 swsusp_unset_page_free(pfn_to_page(pfn)); 1359 } 1360 1361 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1362 memory_bm_position_reset(bm); 1363 do { 1364 pfn = memory_bm_next_pfn(bm); 1365 if (likely(pfn != BM_END_OF_MAP)) { 1366 if (likely(pfn_valid(pfn))) 1367 swsusp_set_page_free(pfn_to_page(pfn)); 1368 else 1369 return -EFAULT; 1370 } 1371 } while (pfn != BM_END_OF_MAP); 1372 1373 allocated_unsafe_pages = 0; 1374 1375 return 0; 1376 } 1377 1378 static void 1379 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1380 { 1381 unsigned long pfn; 1382 1383 memory_bm_position_reset(src); 1384 pfn = memory_bm_next_pfn(src); 1385 while (pfn != BM_END_OF_MAP) { 1386 memory_bm_set_bit(dst, pfn); 1387 pfn = memory_bm_next_pfn(src); 1388 } 1389 } 1390 1391 static inline int check_header(struct swsusp_info *info) 1392 { 1393 char *reason = NULL; 1394 1395 if (info->version_code != LINUX_VERSION_CODE) 1396 reason = "kernel version"; 1397 if (info->num_physpages != num_physpages) 1398 reason = "memory size"; 1399 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1400 reason = "system type"; 1401 if (strcmp(info->uts.release,init_utsname()->release)) 1402 reason = "kernel release"; 1403 if (strcmp(info->uts.version,init_utsname()->version)) 1404 reason = "version"; 1405 if (strcmp(info->uts.machine,init_utsname()->machine)) 1406 reason = "machine"; 1407 if (reason) { 1408 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); 1409 return -EPERM; 1410 } 1411 return 0; 1412 } 1413 1414 /** 1415 * load header - check the image header and copy data from it 1416 */ 1417 1418 static int 1419 load_header(struct swsusp_info *info) 1420 { 1421 int error; 1422 1423 restore_pblist = NULL; 1424 error = check_header(info); 1425 if (!error) { 1426 nr_copy_pages = info->image_pages; 1427 nr_meta_pages = info->pages - info->image_pages - 1; 1428 } 1429 return error; 1430 } 1431 1432 /** 1433 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1434 * the corresponding bit in the memory bitmap @bm 1435 */ 1436 1437 static inline void 1438 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1439 { 1440 int j; 1441 1442 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1443 if (unlikely(buf[j] == BM_END_OF_MAP)) 1444 break; 1445 1446 memory_bm_set_bit(bm, buf[j]); 1447 } 1448 } 1449 1450 /* List of "safe" pages that may be used to store data loaded from the suspend 1451 * image 1452 */ 1453 static struct linked_page *safe_pages_list; 1454 1455 #ifdef CONFIG_HIGHMEM 1456 /* struct highmem_pbe is used for creating the list of highmem pages that 1457 * should be restored atomically during the resume from disk, because the page 1458 * frames they have occupied before the suspend are in use. 1459 */ 1460 struct highmem_pbe { 1461 struct page *copy_page; /* data is here now */ 1462 struct page *orig_page; /* data was here before the suspend */ 1463 struct highmem_pbe *next; 1464 }; 1465 1466 /* List of highmem PBEs needed for restoring the highmem pages that were 1467 * allocated before the suspend and included in the suspend image, but have 1468 * also been allocated by the "resume" kernel, so their contents cannot be 1469 * written directly to their "original" page frames. 1470 */ 1471 static struct highmem_pbe *highmem_pblist; 1472 1473 /** 1474 * count_highmem_image_pages - compute the number of highmem pages in the 1475 * suspend image. The bits in the memory bitmap @bm that correspond to the 1476 * image pages are assumed to be set. 1477 */ 1478 1479 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1480 { 1481 unsigned long pfn; 1482 unsigned int cnt = 0; 1483 1484 memory_bm_position_reset(bm); 1485 pfn = memory_bm_next_pfn(bm); 1486 while (pfn != BM_END_OF_MAP) { 1487 if (PageHighMem(pfn_to_page(pfn))) 1488 cnt++; 1489 1490 pfn = memory_bm_next_pfn(bm); 1491 } 1492 return cnt; 1493 } 1494 1495 /** 1496 * prepare_highmem_image - try to allocate as many highmem pages as 1497 * there are highmem image pages (@nr_highmem_p points to the variable 1498 * containing the number of highmem image pages). The pages that are 1499 * "safe" (ie. will not be overwritten when the suspend image is 1500 * restored) have the corresponding bits set in @bm (it must be 1501 * unitialized). 1502 * 1503 * NOTE: This function should not be called if there are no highmem 1504 * image pages. 1505 */ 1506 1507 static unsigned int safe_highmem_pages; 1508 1509 static struct memory_bitmap *safe_highmem_bm; 1510 1511 static int 1512 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1513 { 1514 unsigned int to_alloc; 1515 1516 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1517 return -ENOMEM; 1518 1519 if (get_highmem_buffer(PG_SAFE)) 1520 return -ENOMEM; 1521 1522 to_alloc = count_free_highmem_pages(); 1523 if (to_alloc > *nr_highmem_p) 1524 to_alloc = *nr_highmem_p; 1525 else 1526 *nr_highmem_p = to_alloc; 1527 1528 safe_highmem_pages = 0; 1529 while (to_alloc-- > 0) { 1530 struct page *page; 1531 1532 page = alloc_page(__GFP_HIGHMEM); 1533 if (!swsusp_page_is_free(page)) { 1534 /* The page is "safe", set its bit the bitmap */ 1535 memory_bm_set_bit(bm, page_to_pfn(page)); 1536 safe_highmem_pages++; 1537 } 1538 /* Mark the page as allocated */ 1539 swsusp_set_page_forbidden(page); 1540 swsusp_set_page_free(page); 1541 } 1542 memory_bm_position_reset(bm); 1543 safe_highmem_bm = bm; 1544 return 0; 1545 } 1546 1547 /** 1548 * get_highmem_page_buffer - for given highmem image page find the buffer 1549 * that suspend_write_next() should set for its caller to write to. 1550 * 1551 * If the page is to be saved to its "original" page frame or a copy of 1552 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1553 * the copy of the page is to be made in normal memory, so the address of 1554 * the copy is returned. 1555 * 1556 * If @buffer is returned, the caller of suspend_write_next() will write 1557 * the page's contents to @buffer, so they will have to be copied to the 1558 * right location on the next call to suspend_write_next() and it is done 1559 * with the help of copy_last_highmem_page(). For this purpose, if 1560 * @buffer is returned, @last_highmem page is set to the page to which 1561 * the data will have to be copied from @buffer. 1562 */ 1563 1564 static struct page *last_highmem_page; 1565 1566 static void * 1567 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1568 { 1569 struct highmem_pbe *pbe; 1570 void *kaddr; 1571 1572 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1573 /* We have allocated the "original" page frame and we can 1574 * use it directly to store the loaded page. 1575 */ 1576 last_highmem_page = page; 1577 return buffer; 1578 } 1579 /* The "original" page frame has not been allocated and we have to 1580 * use a "safe" page frame to store the loaded page. 1581 */ 1582 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1583 if (!pbe) { 1584 swsusp_free(); 1585 return NULL; 1586 } 1587 pbe->orig_page = page; 1588 if (safe_highmem_pages > 0) { 1589 struct page *tmp; 1590 1591 /* Copy of the page will be stored in high memory */ 1592 kaddr = buffer; 1593 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1594 safe_highmem_pages--; 1595 last_highmem_page = tmp; 1596 pbe->copy_page = tmp; 1597 } else { 1598 /* Copy of the page will be stored in normal memory */ 1599 kaddr = safe_pages_list; 1600 safe_pages_list = safe_pages_list->next; 1601 pbe->copy_page = virt_to_page(kaddr); 1602 } 1603 pbe->next = highmem_pblist; 1604 highmem_pblist = pbe; 1605 return kaddr; 1606 } 1607 1608 /** 1609 * copy_last_highmem_page - copy the contents of a highmem image from 1610 * @buffer, where the caller of snapshot_write_next() has place them, 1611 * to the right location represented by @last_highmem_page . 1612 */ 1613 1614 static void copy_last_highmem_page(void) 1615 { 1616 if (last_highmem_page) { 1617 void *dst; 1618 1619 dst = kmap_atomic(last_highmem_page, KM_USER0); 1620 memcpy(dst, buffer, PAGE_SIZE); 1621 kunmap_atomic(dst, KM_USER0); 1622 last_highmem_page = NULL; 1623 } 1624 } 1625 1626 static inline int last_highmem_page_copied(void) 1627 { 1628 return !last_highmem_page; 1629 } 1630 1631 static inline void free_highmem_data(void) 1632 { 1633 if (safe_highmem_bm) 1634 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1635 1636 if (buffer) 1637 free_image_page(buffer, PG_UNSAFE_CLEAR); 1638 } 1639 #else 1640 static inline int get_safe_write_buffer(void) { return 0; } 1641 1642 static unsigned int 1643 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1644 1645 static inline int 1646 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1647 { 1648 return 0; 1649 } 1650 1651 static inline void * 1652 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1653 { 1654 return NULL; 1655 } 1656 1657 static inline void copy_last_highmem_page(void) {} 1658 static inline int last_highmem_page_copied(void) { return 1; } 1659 static inline void free_highmem_data(void) {} 1660 #endif /* CONFIG_HIGHMEM */ 1661 1662 /** 1663 * prepare_image - use the memory bitmap @bm to mark the pages that will 1664 * be overwritten in the process of restoring the system memory state 1665 * from the suspend image ("unsafe" pages) and allocate memory for the 1666 * image. 1667 * 1668 * The idea is to allocate a new memory bitmap first and then allocate 1669 * as many pages as needed for the image data, but not to assign these 1670 * pages to specific tasks initially. Instead, we just mark them as 1671 * allocated and create a lists of "safe" pages that will be used 1672 * later. On systems with high memory a list of "safe" highmem pages is 1673 * also created. 1674 */ 1675 1676 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1677 1678 static int 1679 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1680 { 1681 unsigned int nr_pages, nr_highmem; 1682 struct linked_page *sp_list, *lp; 1683 int error; 1684 1685 /* If there is no highmem, the buffer will not be necessary */ 1686 free_image_page(buffer, PG_UNSAFE_CLEAR); 1687 buffer = NULL; 1688 1689 nr_highmem = count_highmem_image_pages(bm); 1690 error = mark_unsafe_pages(bm); 1691 if (error) 1692 goto Free; 1693 1694 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1695 if (error) 1696 goto Free; 1697 1698 duplicate_memory_bitmap(new_bm, bm); 1699 memory_bm_free(bm, PG_UNSAFE_KEEP); 1700 if (nr_highmem > 0) { 1701 error = prepare_highmem_image(bm, &nr_highmem); 1702 if (error) 1703 goto Free; 1704 } 1705 /* Reserve some safe pages for potential later use. 1706 * 1707 * NOTE: This way we make sure there will be enough safe pages for the 1708 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1709 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1710 */ 1711 sp_list = NULL; 1712 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1713 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1714 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1715 while (nr_pages > 0) { 1716 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1717 if (!lp) { 1718 error = -ENOMEM; 1719 goto Free; 1720 } 1721 lp->next = sp_list; 1722 sp_list = lp; 1723 nr_pages--; 1724 } 1725 /* Preallocate memory for the image */ 1726 safe_pages_list = NULL; 1727 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1728 while (nr_pages > 0) { 1729 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1730 if (!lp) { 1731 error = -ENOMEM; 1732 goto Free; 1733 } 1734 if (!swsusp_page_is_free(virt_to_page(lp))) { 1735 /* The page is "safe", add it to the list */ 1736 lp->next = safe_pages_list; 1737 safe_pages_list = lp; 1738 } 1739 /* Mark the page as allocated */ 1740 swsusp_set_page_forbidden(virt_to_page(lp)); 1741 swsusp_set_page_free(virt_to_page(lp)); 1742 nr_pages--; 1743 } 1744 /* Free the reserved safe pages so that chain_alloc() can use them */ 1745 while (sp_list) { 1746 lp = sp_list->next; 1747 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1748 sp_list = lp; 1749 } 1750 return 0; 1751 1752 Free: 1753 swsusp_free(); 1754 return error; 1755 } 1756 1757 /** 1758 * get_buffer - compute the address that snapshot_write_next() should 1759 * set for its caller to write to. 1760 */ 1761 1762 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1763 { 1764 struct pbe *pbe; 1765 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1766 1767 if (PageHighMem(page)) 1768 return get_highmem_page_buffer(page, ca); 1769 1770 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1771 /* We have allocated the "original" page frame and we can 1772 * use it directly to store the loaded page. 1773 */ 1774 return page_address(page); 1775 1776 /* The "original" page frame has not been allocated and we have to 1777 * use a "safe" page frame to store the loaded page. 1778 */ 1779 pbe = chain_alloc(ca, sizeof(struct pbe)); 1780 if (!pbe) { 1781 swsusp_free(); 1782 return NULL; 1783 } 1784 pbe->orig_address = page_address(page); 1785 pbe->address = safe_pages_list; 1786 safe_pages_list = safe_pages_list->next; 1787 pbe->next = restore_pblist; 1788 restore_pblist = pbe; 1789 return pbe->address; 1790 } 1791 1792 /** 1793 * snapshot_write_next - used for writing the system memory snapshot. 1794 * 1795 * On the first call to it @handle should point to a zeroed 1796 * snapshot_handle structure. The structure gets updated and a pointer 1797 * to it should be passed to this function every next time. 1798 * 1799 * The @count parameter should contain the number of bytes the caller 1800 * wants to write to the image. It must not be zero. 1801 * 1802 * On success the function returns a positive number. Then, the caller 1803 * is allowed to write up to the returned number of bytes to the memory 1804 * location computed by the data_of() macro. The number returned 1805 * may be smaller than @count, but this only happens if the write would 1806 * cross a page boundary otherwise. 1807 * 1808 * The function returns 0 to indicate the "end of file" condition, 1809 * and a negative number is returned on error. In such cases the 1810 * structure pointed to by @handle is not updated and should not be used 1811 * any more. 1812 */ 1813 1814 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1815 { 1816 static struct chain_allocator ca; 1817 int error = 0; 1818 1819 /* Check if we have already loaded the entire image */ 1820 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1821 return 0; 1822 1823 if (handle->offset == 0) { 1824 if (!buffer) 1825 /* This makes the buffer be freed by swsusp_free() */ 1826 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1827 1828 if (!buffer) 1829 return -ENOMEM; 1830 1831 handle->buffer = buffer; 1832 } 1833 handle->sync_read = 1; 1834 if (handle->prev < handle->cur) { 1835 if (handle->prev == 0) { 1836 error = load_header(buffer); 1837 if (error) 1838 return error; 1839 1840 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1841 if (error) 1842 return error; 1843 1844 } else if (handle->prev <= nr_meta_pages) { 1845 unpack_orig_pfns(buffer, ©_bm); 1846 if (handle->prev == nr_meta_pages) { 1847 error = prepare_image(&orig_bm, ©_bm); 1848 if (error) 1849 return error; 1850 1851 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1852 memory_bm_position_reset(&orig_bm); 1853 restore_pblist = NULL; 1854 handle->buffer = get_buffer(&orig_bm, &ca); 1855 handle->sync_read = 0; 1856 if (!handle->buffer) 1857 return -ENOMEM; 1858 } 1859 } else { 1860 copy_last_highmem_page(); 1861 handle->buffer = get_buffer(&orig_bm, &ca); 1862 if (handle->buffer != buffer) 1863 handle->sync_read = 0; 1864 } 1865 handle->prev = handle->cur; 1866 } 1867 handle->buf_offset = handle->cur_offset; 1868 if (handle->cur_offset + count >= PAGE_SIZE) { 1869 count = PAGE_SIZE - handle->cur_offset; 1870 handle->cur_offset = 0; 1871 handle->cur++; 1872 } else { 1873 handle->cur_offset += count; 1874 } 1875 handle->offset += count; 1876 return count; 1877 } 1878 1879 /** 1880 * snapshot_write_finalize - must be called after the last call to 1881 * snapshot_write_next() in case the last page in the image happens 1882 * to be a highmem page and its contents should be stored in the 1883 * highmem. Additionally, it releases the memory that will not be 1884 * used any more. 1885 */ 1886 1887 void snapshot_write_finalize(struct snapshot_handle *handle) 1888 { 1889 copy_last_highmem_page(); 1890 /* Free only if we have loaded the image entirely */ 1891 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1892 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1893 free_highmem_data(); 1894 } 1895 } 1896 1897 int snapshot_image_loaded(struct snapshot_handle *handle) 1898 { 1899 return !(!nr_copy_pages || !last_highmem_page_copied() || 1900 handle->cur <= nr_meta_pages + nr_copy_pages); 1901 } 1902 1903 #ifdef CONFIG_HIGHMEM 1904 /* Assumes that @buf is ready and points to a "safe" page */ 1905 static inline void 1906 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1907 { 1908 void *kaddr1, *kaddr2; 1909 1910 kaddr1 = kmap_atomic(p1, KM_USER0); 1911 kaddr2 = kmap_atomic(p2, KM_USER1); 1912 memcpy(buf, kaddr1, PAGE_SIZE); 1913 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1914 memcpy(kaddr2, buf, PAGE_SIZE); 1915 kunmap_atomic(kaddr1, KM_USER0); 1916 kunmap_atomic(kaddr2, KM_USER1); 1917 } 1918 1919 /** 1920 * restore_highmem - for each highmem page that was allocated before 1921 * the suspend and included in the suspend image, and also has been 1922 * allocated by the "resume" kernel swap its current (ie. "before 1923 * resume") contents with the previous (ie. "before suspend") one. 1924 * 1925 * If the resume eventually fails, we can call this function once 1926 * again and restore the "before resume" highmem state. 1927 */ 1928 1929 int restore_highmem(void) 1930 { 1931 struct highmem_pbe *pbe = highmem_pblist; 1932 void *buf; 1933 1934 if (!pbe) 1935 return 0; 1936 1937 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1938 if (!buf) 1939 return -ENOMEM; 1940 1941 while (pbe) { 1942 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1943 pbe = pbe->next; 1944 } 1945 free_image_page(buf, PG_UNSAFE_CLEAR); 1946 return 0; 1947 } 1948 #endif /* CONFIG_HIGHMEM */ 1949