1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Number of bytes to reserve for memory allocations made by device drivers 45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 46 * cause image creation to fail (tunable via /sys/power/reserved_size). 47 */ 48 unsigned long reserved_size; 49 50 void __init hibernate_reserved_size_init(void) 51 { 52 reserved_size = SPARE_PAGES * PAGE_SIZE; 53 } 54 55 /* 56 * Preferred image size in bytes (tunable via /sys/power/image_size). 57 * When it is set to N, swsusp will do its best to ensure the image 58 * size will not exceed N bytes, but if that is impossible, it will 59 * try to create the smallest image possible. 60 */ 61 unsigned long image_size; 62 63 void __init hibernate_image_size_init(void) 64 { 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 66 } 67 68 /* List of PBEs needed for restoring the pages that were allocated before 69 * the suspend and included in the suspend image, but have also been 70 * allocated by the "resume" kernel, so their contents cannot be written 71 * directly to their "original" page frames. 72 */ 73 struct pbe *restore_pblist; 74 75 /* Pointer to an auxiliary buffer (1 page) */ 76 static void *buffer; 77 78 /** 79 * @safe_needed - on resume, for storing the PBE list and the image, 80 * we can only use memory pages that do not conflict with the pages 81 * used before suspend. The unsafe pages have PageNosaveFree set 82 * and we count them using unsafe_pages. 83 * 84 * Each allocated image page is marked as PageNosave and PageNosaveFree 85 * so that swsusp_free() can release it. 86 */ 87 88 #define PG_ANY 0 89 #define PG_SAFE 1 90 #define PG_UNSAFE_CLEAR 1 91 #define PG_UNSAFE_KEEP 0 92 93 static unsigned int allocated_unsafe_pages; 94 95 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 96 { 97 void *res; 98 99 res = (void *)get_zeroed_page(gfp_mask); 100 if (safe_needed) 101 while (res && swsusp_page_is_free(virt_to_page(res))) { 102 /* The page is unsafe, mark it for swsusp_free() */ 103 swsusp_set_page_forbidden(virt_to_page(res)); 104 allocated_unsafe_pages++; 105 res = (void *)get_zeroed_page(gfp_mask); 106 } 107 if (res) { 108 swsusp_set_page_forbidden(virt_to_page(res)); 109 swsusp_set_page_free(virt_to_page(res)); 110 } 111 return res; 112 } 113 114 unsigned long get_safe_page(gfp_t gfp_mask) 115 { 116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 117 } 118 119 static struct page *alloc_image_page(gfp_t gfp_mask) 120 { 121 struct page *page; 122 123 page = alloc_page(gfp_mask); 124 if (page) { 125 swsusp_set_page_forbidden(page); 126 swsusp_set_page_free(page); 127 } 128 return page; 129 } 130 131 /** 132 * free_image_page - free page represented by @addr, allocated with 133 * get_image_page (page flags set by it must be cleared) 134 */ 135 136 static inline void free_image_page(void *addr, int clear_nosave_free) 137 { 138 struct page *page; 139 140 BUG_ON(!virt_addr_valid(addr)); 141 142 page = virt_to_page(addr); 143 144 swsusp_unset_page_forbidden(page); 145 if (clear_nosave_free) 146 swsusp_unset_page_free(page); 147 148 __free_page(page); 149 } 150 151 /* struct linked_page is used to build chains of pages */ 152 153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 154 155 struct linked_page { 156 struct linked_page *next; 157 char data[LINKED_PAGE_DATA_SIZE]; 158 } __attribute__((packed)); 159 160 static inline void 161 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 162 { 163 while (list) { 164 struct linked_page *lp = list->next; 165 166 free_image_page(list, clear_page_nosave); 167 list = lp; 168 } 169 } 170 171 /** 172 * struct chain_allocator is used for allocating small objects out of 173 * a linked list of pages called 'the chain'. 174 * 175 * The chain grows each time when there is no room for a new object in 176 * the current page. The allocated objects cannot be freed individually. 177 * It is only possible to free them all at once, by freeing the entire 178 * chain. 179 * 180 * NOTE: The chain allocator may be inefficient if the allocated objects 181 * are not much smaller than PAGE_SIZE. 182 */ 183 184 struct chain_allocator { 185 struct linked_page *chain; /* the chain */ 186 unsigned int used_space; /* total size of objects allocated out 187 * of the current page 188 */ 189 gfp_t gfp_mask; /* mask for allocating pages */ 190 int safe_needed; /* if set, only "safe" pages are allocated */ 191 }; 192 193 static void 194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 195 { 196 ca->chain = NULL; 197 ca->used_space = LINKED_PAGE_DATA_SIZE; 198 ca->gfp_mask = gfp_mask; 199 ca->safe_needed = safe_needed; 200 } 201 202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 203 { 204 void *ret; 205 206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 207 struct linked_page *lp; 208 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 210 if (!lp) 211 return NULL; 212 213 lp->next = ca->chain; 214 ca->chain = lp; 215 ca->used_space = 0; 216 } 217 ret = ca->chain->data + ca->used_space; 218 ca->used_space += size; 219 return ret; 220 } 221 222 /** 223 * Data types related to memory bitmaps. 224 * 225 * Memory bitmap is a structure consiting of many linked lists of 226 * objects. The main list's elements are of type struct zone_bitmap 227 * and each of them corresonds to one zone. For each zone bitmap 228 * object there is a list of objects of type struct bm_block that 229 * represent each blocks of bitmap in which information is stored. 230 * 231 * struct memory_bitmap contains a pointer to the main list of zone 232 * bitmap objects, a struct bm_position used for browsing the bitmap, 233 * and a pointer to the list of pages used for allocating all of the 234 * zone bitmap objects and bitmap block objects. 235 * 236 * NOTE: It has to be possible to lay out the bitmap in memory 237 * using only allocations of order 0. Additionally, the bitmap is 238 * designed to work with arbitrary number of zones (this is over the 239 * top for now, but let's avoid making unnecessary assumptions ;-). 240 * 241 * struct zone_bitmap contains a pointer to a list of bitmap block 242 * objects and a pointer to the bitmap block object that has been 243 * most recently used for setting bits. Additionally, it contains the 244 * pfns that correspond to the start and end of the represented zone. 245 * 246 * struct bm_block contains a pointer to the memory page in which 247 * information is stored (in the form of a block of bitmap) 248 * It also contains the pfns that correspond to the start and end of 249 * the represented memory area. 250 */ 251 252 #define BM_END_OF_MAP (~0UL) 253 254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 255 256 struct bm_block { 257 struct list_head hook; /* hook into a list of bitmap blocks */ 258 unsigned long start_pfn; /* pfn represented by the first bit */ 259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 260 unsigned long *data; /* bitmap representing pages */ 261 }; 262 263 static inline unsigned long bm_block_bits(struct bm_block *bb) 264 { 265 return bb->end_pfn - bb->start_pfn; 266 } 267 268 /* strcut bm_position is used for browsing memory bitmaps */ 269 270 struct bm_position { 271 struct bm_block *block; 272 int bit; 273 }; 274 275 struct memory_bitmap { 276 struct list_head blocks; /* list of bitmap blocks */ 277 struct linked_page *p_list; /* list of pages used to store zone 278 * bitmap objects and bitmap block 279 * objects 280 */ 281 struct bm_position cur; /* most recently used bit position */ 282 }; 283 284 /* Functions that operate on memory bitmaps */ 285 286 static void memory_bm_position_reset(struct memory_bitmap *bm) 287 { 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 289 bm->cur.bit = 0; 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 * @pages - number of pages to track 297 * @list - list to put the allocated blocks into 298 * @ca - chain allocator to be used for allocating memory 299 */ 300 static int create_bm_block_list(unsigned long pages, 301 struct list_head *list, 302 struct chain_allocator *ca) 303 { 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 305 306 while (nr_blocks-- > 0) { 307 struct bm_block *bb; 308 309 bb = chain_alloc(ca, sizeof(struct bm_block)); 310 if (!bb) 311 return -ENOMEM; 312 list_add(&bb->hook, list); 313 } 314 315 return 0; 316 } 317 318 struct mem_extent { 319 struct list_head hook; 320 unsigned long start; 321 unsigned long end; 322 }; 323 324 /** 325 * free_mem_extents - free a list of memory extents 326 * @list - list of extents to empty 327 */ 328 static void free_mem_extents(struct list_head *list) 329 { 330 struct mem_extent *ext, *aux; 331 332 list_for_each_entry_safe(ext, aux, list, hook) { 333 list_del(&ext->hook); 334 kfree(ext); 335 } 336 } 337 338 /** 339 * create_mem_extents - create a list of memory extents representing 340 * contiguous ranges of PFNs 341 * @list - list to put the extents into 342 * @gfp_mask - mask to use for memory allocations 343 */ 344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 345 { 346 struct zone *zone; 347 348 INIT_LIST_HEAD(list); 349 350 for_each_populated_zone(zone) { 351 unsigned long zone_start, zone_end; 352 struct mem_extent *ext, *cur, *aux; 353 354 zone_start = zone->zone_start_pfn; 355 zone_end = zone->zone_start_pfn + zone->spanned_pages; 356 357 list_for_each_entry(ext, list, hook) 358 if (zone_start <= ext->end) 359 break; 360 361 if (&ext->hook == list || zone_end < ext->start) { 362 /* New extent is necessary */ 363 struct mem_extent *new_ext; 364 365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 366 if (!new_ext) { 367 free_mem_extents(list); 368 return -ENOMEM; 369 } 370 new_ext->start = zone_start; 371 new_ext->end = zone_end; 372 list_add_tail(&new_ext->hook, &ext->hook); 373 continue; 374 } 375 376 /* Merge this zone's range of PFNs with the existing one */ 377 if (zone_start < ext->start) 378 ext->start = zone_start; 379 if (zone_end > ext->end) 380 ext->end = zone_end; 381 382 /* More merging may be possible */ 383 cur = ext; 384 list_for_each_entry_safe_continue(cur, aux, list, hook) { 385 if (zone_end < cur->start) 386 break; 387 if (zone_end < cur->end) 388 ext->end = cur->end; 389 list_del(&cur->hook); 390 kfree(cur); 391 } 392 } 393 394 return 0; 395 } 396 397 /** 398 * memory_bm_create - allocate memory for a memory bitmap 399 */ 400 static int 401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 402 { 403 struct chain_allocator ca; 404 struct list_head mem_extents; 405 struct mem_extent *ext; 406 int error; 407 408 chain_init(&ca, gfp_mask, safe_needed); 409 INIT_LIST_HEAD(&bm->blocks); 410 411 error = create_mem_extents(&mem_extents, gfp_mask); 412 if (error) 413 return error; 414 415 list_for_each_entry(ext, &mem_extents, hook) { 416 struct bm_block *bb; 417 unsigned long pfn = ext->start; 418 unsigned long pages = ext->end - ext->start; 419 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 421 422 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 423 if (error) 424 goto Error; 425 426 list_for_each_entry_continue(bb, &bm->blocks, hook) { 427 bb->data = get_image_page(gfp_mask, safe_needed); 428 if (!bb->data) { 429 error = -ENOMEM; 430 goto Error; 431 } 432 433 bb->start_pfn = pfn; 434 if (pages >= BM_BITS_PER_BLOCK) { 435 pfn += BM_BITS_PER_BLOCK; 436 pages -= BM_BITS_PER_BLOCK; 437 } else { 438 /* This is executed only once in the loop */ 439 pfn += pages; 440 } 441 bb->end_pfn = pfn; 442 } 443 } 444 445 bm->p_list = ca.chain; 446 memory_bm_position_reset(bm); 447 Exit: 448 free_mem_extents(&mem_extents); 449 return error; 450 451 Error: 452 bm->p_list = ca.chain; 453 memory_bm_free(bm, PG_UNSAFE_CLEAR); 454 goto Exit; 455 } 456 457 /** 458 * memory_bm_free - free memory occupied by the memory bitmap @bm 459 */ 460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 461 { 462 struct bm_block *bb; 463 464 list_for_each_entry(bb, &bm->blocks, hook) 465 if (bb->data) 466 free_image_page(bb->data, clear_nosave_free); 467 468 free_list_of_pages(bm->p_list, clear_nosave_free); 469 470 INIT_LIST_HEAD(&bm->blocks); 471 } 472 473 /** 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 476 * of @bm->cur_zone_bm are updated. 477 */ 478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 479 void **addr, unsigned int *bit_nr) 480 { 481 struct bm_block *bb; 482 483 /* 484 * Check if the pfn corresponds to the current bitmap block and find 485 * the block where it fits if this is not the case. 486 */ 487 bb = bm->cur.block; 488 if (pfn < bb->start_pfn) 489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 490 if (pfn >= bb->start_pfn) 491 break; 492 493 if (pfn >= bb->end_pfn) 494 list_for_each_entry_continue(bb, &bm->blocks, hook) 495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 496 break; 497 498 if (&bb->hook == &bm->blocks) 499 return -EFAULT; 500 501 /* The block has been found */ 502 bm->cur.block = bb; 503 pfn -= bb->start_pfn; 504 bm->cur.bit = pfn + 1; 505 *bit_nr = pfn; 506 *addr = bb->data; 507 return 0; 508 } 509 510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 511 { 512 void *addr; 513 unsigned int bit; 514 int error; 515 516 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 517 BUG_ON(error); 518 set_bit(bit, addr); 519 } 520 521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 if (!error) 529 set_bit(bit, addr); 530 return error; 531 } 532 533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 534 { 535 void *addr; 536 unsigned int bit; 537 int error; 538 539 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 540 BUG_ON(error); 541 clear_bit(bit, addr); 542 } 543 544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 545 { 546 void *addr; 547 unsigned int bit; 548 int error; 549 550 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 551 BUG_ON(error); 552 return test_bit(bit, addr); 553 } 554 555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 556 { 557 void *addr; 558 unsigned int bit; 559 560 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 561 } 562 563 /** 564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 566 * returned. 567 * 568 * It is required to run memory_bm_position_reset() before the first call to 569 * this function. 570 */ 571 572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 573 { 574 struct bm_block *bb; 575 int bit; 576 577 bb = bm->cur.block; 578 do { 579 bit = bm->cur.bit; 580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 581 if (bit < bm_block_bits(bb)) 582 goto Return_pfn; 583 584 bb = list_entry(bb->hook.next, struct bm_block, hook); 585 bm->cur.block = bb; 586 bm->cur.bit = 0; 587 } while (&bb->hook != &bm->blocks); 588 589 memory_bm_position_reset(bm); 590 return BM_END_OF_MAP; 591 592 Return_pfn: 593 bm->cur.bit = bit + 1; 594 return bb->start_pfn + bit; 595 } 596 597 /** 598 * This structure represents a range of page frames the contents of which 599 * should not be saved during the suspend. 600 */ 601 602 struct nosave_region { 603 struct list_head list; 604 unsigned long start_pfn; 605 unsigned long end_pfn; 606 }; 607 608 static LIST_HEAD(nosave_regions); 609 610 /** 611 * register_nosave_region - register a range of page frames the contents 612 * of which should not be saved during the suspend (to be used in the early 613 * initialization code) 614 */ 615 616 void __init 617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 618 int use_kmalloc) 619 { 620 struct nosave_region *region; 621 622 if (start_pfn >= end_pfn) 623 return; 624 625 if (!list_empty(&nosave_regions)) { 626 /* Try to extend the previous region (they should be sorted) */ 627 region = list_entry(nosave_regions.prev, 628 struct nosave_region, list); 629 if (region->end_pfn == start_pfn) { 630 region->end_pfn = end_pfn; 631 goto Report; 632 } 633 } 634 if (use_kmalloc) { 635 /* during init, this shouldn't fail */ 636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 637 BUG_ON(!region); 638 } else 639 /* This allocation cannot fail */ 640 region = alloc_bootmem(sizeof(struct nosave_region)); 641 region->start_pfn = start_pfn; 642 region->end_pfn = end_pfn; 643 list_add_tail(®ion->list, &nosave_regions); 644 Report: 645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 647 } 648 649 /* 650 * Set bits in this map correspond to the page frames the contents of which 651 * should not be saved during the suspend. 652 */ 653 static struct memory_bitmap *forbidden_pages_map; 654 655 /* Set bits in this map correspond to free page frames. */ 656 static struct memory_bitmap *free_pages_map; 657 658 /* 659 * Each page frame allocated for creating the image is marked by setting the 660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 661 */ 662 663 void swsusp_set_page_free(struct page *page) 664 { 665 if (free_pages_map) 666 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 667 } 668 669 static int swsusp_page_is_free(struct page *page) 670 { 671 return free_pages_map ? 672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 673 } 674 675 void swsusp_unset_page_free(struct page *page) 676 { 677 if (free_pages_map) 678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 679 } 680 681 static void swsusp_set_page_forbidden(struct page *page) 682 { 683 if (forbidden_pages_map) 684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 685 } 686 687 int swsusp_page_is_forbidden(struct page *page) 688 { 689 return forbidden_pages_map ? 690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 691 } 692 693 static void swsusp_unset_page_forbidden(struct page *page) 694 { 695 if (forbidden_pages_map) 696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 697 } 698 699 /** 700 * mark_nosave_pages - set bits corresponding to the page frames the 701 * contents of which should not be saved in a given bitmap. 702 */ 703 704 static void mark_nosave_pages(struct memory_bitmap *bm) 705 { 706 struct nosave_region *region; 707 708 if (list_empty(&nosave_regions)) 709 return; 710 711 list_for_each_entry(region, &nosave_regions, list) { 712 unsigned long pfn; 713 714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 715 region->start_pfn << PAGE_SHIFT, 716 region->end_pfn << PAGE_SHIFT); 717 718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 719 if (pfn_valid(pfn)) { 720 /* 721 * It is safe to ignore the result of 722 * mem_bm_set_bit_check() here, since we won't 723 * touch the PFNs for which the error is 724 * returned anyway. 725 */ 726 mem_bm_set_bit_check(bm, pfn); 727 } 728 } 729 } 730 731 /** 732 * create_basic_memory_bitmaps - create bitmaps needed for marking page 733 * frames that should not be saved and free page frames. The pointers 734 * forbidden_pages_map and free_pages_map are only modified if everything 735 * goes well, because we don't want the bits to be used before both bitmaps 736 * are set up. 737 */ 738 739 int create_basic_memory_bitmaps(void) 740 { 741 struct memory_bitmap *bm1, *bm2; 742 int error = 0; 743 744 BUG_ON(forbidden_pages_map || free_pages_map); 745 746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 747 if (!bm1) 748 return -ENOMEM; 749 750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 751 if (error) 752 goto Free_first_object; 753 754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 755 if (!bm2) 756 goto Free_first_bitmap; 757 758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 759 if (error) 760 goto Free_second_object; 761 762 forbidden_pages_map = bm1; 763 free_pages_map = bm2; 764 mark_nosave_pages(forbidden_pages_map); 765 766 pr_debug("PM: Basic memory bitmaps created\n"); 767 768 return 0; 769 770 Free_second_object: 771 kfree(bm2); 772 Free_first_bitmap: 773 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 774 Free_first_object: 775 kfree(bm1); 776 return -ENOMEM; 777 } 778 779 /** 780 * free_basic_memory_bitmaps - free memory bitmaps allocated by 781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 782 * so that the bitmaps themselves are not referred to while they are being 783 * freed. 784 */ 785 786 void free_basic_memory_bitmaps(void) 787 { 788 struct memory_bitmap *bm1, *bm2; 789 790 BUG_ON(!(forbidden_pages_map && free_pages_map)); 791 792 bm1 = forbidden_pages_map; 793 bm2 = free_pages_map; 794 forbidden_pages_map = NULL; 795 free_pages_map = NULL; 796 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 797 kfree(bm1); 798 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 799 kfree(bm2); 800 801 pr_debug("PM: Basic memory bitmaps freed\n"); 802 } 803 804 /** 805 * snapshot_additional_pages - estimate the number of additional pages 806 * be needed for setting up the suspend image data structures for given 807 * zone (usually the returned value is greater than the exact number) 808 */ 809 810 unsigned int snapshot_additional_pages(struct zone *zone) 811 { 812 unsigned int res; 813 814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 815 res += DIV_ROUND_UP(res * sizeof(struct bm_block), 816 LINKED_PAGE_DATA_SIZE); 817 return 2 * res; 818 } 819 820 #ifdef CONFIG_HIGHMEM 821 /** 822 * count_free_highmem_pages - compute the total number of free highmem 823 * pages, system-wide. 824 */ 825 826 static unsigned int count_free_highmem_pages(void) 827 { 828 struct zone *zone; 829 unsigned int cnt = 0; 830 831 for_each_populated_zone(zone) 832 if (is_highmem(zone)) 833 cnt += zone_page_state(zone, NR_FREE_PAGES); 834 835 return cnt; 836 } 837 838 /** 839 * saveable_highmem_page - Determine whether a highmem page should be 840 * included in the suspend image. 841 * 842 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 843 * and it isn't a part of a free chunk of pages. 844 */ 845 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 846 { 847 struct page *page; 848 849 if (!pfn_valid(pfn)) 850 return NULL; 851 852 page = pfn_to_page(pfn); 853 if (page_zone(page) != zone) 854 return NULL; 855 856 BUG_ON(!PageHighMem(page)); 857 858 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 859 PageReserved(page)) 860 return NULL; 861 862 if (page_is_guard(page)) 863 return NULL; 864 865 return page; 866 } 867 868 /** 869 * count_highmem_pages - compute the total number of saveable highmem 870 * pages. 871 */ 872 873 static unsigned int count_highmem_pages(void) 874 { 875 struct zone *zone; 876 unsigned int n = 0; 877 878 for_each_populated_zone(zone) { 879 unsigned long pfn, max_zone_pfn; 880 881 if (!is_highmem(zone)) 882 continue; 883 884 mark_free_pages(zone); 885 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 886 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 887 if (saveable_highmem_page(zone, pfn)) 888 n++; 889 } 890 return n; 891 } 892 #else 893 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 894 { 895 return NULL; 896 } 897 #endif /* CONFIG_HIGHMEM */ 898 899 /** 900 * saveable_page - Determine whether a non-highmem page should be included 901 * in the suspend image. 902 * 903 * We should save the page if it isn't Nosave, and is not in the range 904 * of pages statically defined as 'unsaveable', and it isn't a part of 905 * a free chunk of pages. 906 */ 907 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 908 { 909 struct page *page; 910 911 if (!pfn_valid(pfn)) 912 return NULL; 913 914 page = pfn_to_page(pfn); 915 if (page_zone(page) != zone) 916 return NULL; 917 918 BUG_ON(PageHighMem(page)); 919 920 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 921 return NULL; 922 923 if (PageReserved(page) 924 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 925 return NULL; 926 927 if (page_is_guard(page)) 928 return NULL; 929 930 return page; 931 } 932 933 /** 934 * count_data_pages - compute the total number of saveable non-highmem 935 * pages. 936 */ 937 938 static unsigned int count_data_pages(void) 939 { 940 struct zone *zone; 941 unsigned long pfn, max_zone_pfn; 942 unsigned int n = 0; 943 944 for_each_populated_zone(zone) { 945 if (is_highmem(zone)) 946 continue; 947 948 mark_free_pages(zone); 949 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 950 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 951 if (saveable_page(zone, pfn)) 952 n++; 953 } 954 return n; 955 } 956 957 /* This is needed, because copy_page and memcpy are not usable for copying 958 * task structs. 959 */ 960 static inline void do_copy_page(long *dst, long *src) 961 { 962 int n; 963 964 for (n = PAGE_SIZE / sizeof(long); n; n--) 965 *dst++ = *src++; 966 } 967 968 969 /** 970 * safe_copy_page - check if the page we are going to copy is marked as 971 * present in the kernel page tables (this always is the case if 972 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 973 * kernel_page_present() always returns 'true'). 974 */ 975 static void safe_copy_page(void *dst, struct page *s_page) 976 { 977 if (kernel_page_present(s_page)) { 978 do_copy_page(dst, page_address(s_page)); 979 } else { 980 kernel_map_pages(s_page, 1, 1); 981 do_copy_page(dst, page_address(s_page)); 982 kernel_map_pages(s_page, 1, 0); 983 } 984 } 985 986 987 #ifdef CONFIG_HIGHMEM 988 static inline struct page * 989 page_is_saveable(struct zone *zone, unsigned long pfn) 990 { 991 return is_highmem(zone) ? 992 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 993 } 994 995 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 996 { 997 struct page *s_page, *d_page; 998 void *src, *dst; 999 1000 s_page = pfn_to_page(src_pfn); 1001 d_page = pfn_to_page(dst_pfn); 1002 if (PageHighMem(s_page)) { 1003 src = kmap_atomic(s_page, KM_USER0); 1004 dst = kmap_atomic(d_page, KM_USER1); 1005 do_copy_page(dst, src); 1006 kunmap_atomic(dst, KM_USER1); 1007 kunmap_atomic(src, KM_USER0); 1008 } else { 1009 if (PageHighMem(d_page)) { 1010 /* Page pointed to by src may contain some kernel 1011 * data modified by kmap_atomic() 1012 */ 1013 safe_copy_page(buffer, s_page); 1014 dst = kmap_atomic(d_page, KM_USER0); 1015 copy_page(dst, buffer); 1016 kunmap_atomic(dst, KM_USER0); 1017 } else { 1018 safe_copy_page(page_address(d_page), s_page); 1019 } 1020 } 1021 } 1022 #else 1023 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1024 1025 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1026 { 1027 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1028 pfn_to_page(src_pfn)); 1029 } 1030 #endif /* CONFIG_HIGHMEM */ 1031 1032 static void 1033 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1034 { 1035 struct zone *zone; 1036 unsigned long pfn; 1037 1038 for_each_populated_zone(zone) { 1039 unsigned long max_zone_pfn; 1040 1041 mark_free_pages(zone); 1042 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1043 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1044 if (page_is_saveable(zone, pfn)) 1045 memory_bm_set_bit(orig_bm, pfn); 1046 } 1047 memory_bm_position_reset(orig_bm); 1048 memory_bm_position_reset(copy_bm); 1049 for(;;) { 1050 pfn = memory_bm_next_pfn(orig_bm); 1051 if (unlikely(pfn == BM_END_OF_MAP)) 1052 break; 1053 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1054 } 1055 } 1056 1057 /* Total number of image pages */ 1058 static unsigned int nr_copy_pages; 1059 /* Number of pages needed for saving the original pfns of the image pages */ 1060 static unsigned int nr_meta_pages; 1061 /* 1062 * Numbers of normal and highmem page frames allocated for hibernation image 1063 * before suspending devices. 1064 */ 1065 unsigned int alloc_normal, alloc_highmem; 1066 /* 1067 * Memory bitmap used for marking saveable pages (during hibernation) or 1068 * hibernation image pages (during restore) 1069 */ 1070 static struct memory_bitmap orig_bm; 1071 /* 1072 * Memory bitmap used during hibernation for marking allocated page frames that 1073 * will contain copies of saveable pages. During restore it is initially used 1074 * for marking hibernation image pages, but then the set bits from it are 1075 * duplicated in @orig_bm and it is released. On highmem systems it is next 1076 * used for marking "safe" highmem pages, but it has to be reinitialized for 1077 * this purpose. 1078 */ 1079 static struct memory_bitmap copy_bm; 1080 1081 /** 1082 * swsusp_free - free pages allocated for the suspend. 1083 * 1084 * Suspend pages are alocated before the atomic copy is made, so we 1085 * need to release them after the resume. 1086 */ 1087 1088 void swsusp_free(void) 1089 { 1090 struct zone *zone; 1091 unsigned long pfn, max_zone_pfn; 1092 1093 for_each_populated_zone(zone) { 1094 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1095 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1096 if (pfn_valid(pfn)) { 1097 struct page *page = pfn_to_page(pfn); 1098 1099 if (swsusp_page_is_forbidden(page) && 1100 swsusp_page_is_free(page)) { 1101 swsusp_unset_page_forbidden(page); 1102 swsusp_unset_page_free(page); 1103 __free_page(page); 1104 } 1105 } 1106 } 1107 nr_copy_pages = 0; 1108 nr_meta_pages = 0; 1109 restore_pblist = NULL; 1110 buffer = NULL; 1111 alloc_normal = 0; 1112 alloc_highmem = 0; 1113 } 1114 1115 /* Helper functions used for the shrinking of memory. */ 1116 1117 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1118 1119 /** 1120 * preallocate_image_pages - Allocate a number of pages for hibernation image 1121 * @nr_pages: Number of page frames to allocate. 1122 * @mask: GFP flags to use for the allocation. 1123 * 1124 * Return value: Number of page frames actually allocated 1125 */ 1126 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1127 { 1128 unsigned long nr_alloc = 0; 1129 1130 while (nr_pages > 0) { 1131 struct page *page; 1132 1133 page = alloc_image_page(mask); 1134 if (!page) 1135 break; 1136 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1137 if (PageHighMem(page)) 1138 alloc_highmem++; 1139 else 1140 alloc_normal++; 1141 nr_pages--; 1142 nr_alloc++; 1143 } 1144 1145 return nr_alloc; 1146 } 1147 1148 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1149 unsigned long avail_normal) 1150 { 1151 unsigned long alloc; 1152 1153 if (avail_normal <= alloc_normal) 1154 return 0; 1155 1156 alloc = avail_normal - alloc_normal; 1157 if (nr_pages < alloc) 1158 alloc = nr_pages; 1159 1160 return preallocate_image_pages(alloc, GFP_IMAGE); 1161 } 1162 1163 #ifdef CONFIG_HIGHMEM 1164 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1165 { 1166 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1167 } 1168 1169 /** 1170 * __fraction - Compute (an approximation of) x * (multiplier / base) 1171 */ 1172 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1173 { 1174 x *= multiplier; 1175 do_div(x, base); 1176 return (unsigned long)x; 1177 } 1178 1179 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1180 unsigned long highmem, 1181 unsigned long total) 1182 { 1183 unsigned long alloc = __fraction(nr_pages, highmem, total); 1184 1185 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1186 } 1187 #else /* CONFIG_HIGHMEM */ 1188 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1189 { 1190 return 0; 1191 } 1192 1193 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1194 unsigned long highmem, 1195 unsigned long total) 1196 { 1197 return 0; 1198 } 1199 #endif /* CONFIG_HIGHMEM */ 1200 1201 /** 1202 * free_unnecessary_pages - Release preallocated pages not needed for the image 1203 */ 1204 static void free_unnecessary_pages(void) 1205 { 1206 unsigned long save, to_free_normal, to_free_highmem; 1207 1208 save = count_data_pages(); 1209 if (alloc_normal >= save) { 1210 to_free_normal = alloc_normal - save; 1211 save = 0; 1212 } else { 1213 to_free_normal = 0; 1214 save -= alloc_normal; 1215 } 1216 save += count_highmem_pages(); 1217 if (alloc_highmem >= save) { 1218 to_free_highmem = alloc_highmem - save; 1219 } else { 1220 to_free_highmem = 0; 1221 save -= alloc_highmem; 1222 if (to_free_normal > save) 1223 to_free_normal -= save; 1224 else 1225 to_free_normal = 0; 1226 } 1227 1228 memory_bm_position_reset(©_bm); 1229 1230 while (to_free_normal > 0 || to_free_highmem > 0) { 1231 unsigned long pfn = memory_bm_next_pfn(©_bm); 1232 struct page *page = pfn_to_page(pfn); 1233 1234 if (PageHighMem(page)) { 1235 if (!to_free_highmem) 1236 continue; 1237 to_free_highmem--; 1238 alloc_highmem--; 1239 } else { 1240 if (!to_free_normal) 1241 continue; 1242 to_free_normal--; 1243 alloc_normal--; 1244 } 1245 memory_bm_clear_bit(©_bm, pfn); 1246 swsusp_unset_page_forbidden(page); 1247 swsusp_unset_page_free(page); 1248 __free_page(page); 1249 } 1250 } 1251 1252 /** 1253 * minimum_image_size - Estimate the minimum acceptable size of an image 1254 * @saveable: Number of saveable pages in the system. 1255 * 1256 * We want to avoid attempting to free too much memory too hard, so estimate the 1257 * minimum acceptable size of a hibernation image to use as the lower limit for 1258 * preallocating memory. 1259 * 1260 * We assume that the minimum image size should be proportional to 1261 * 1262 * [number of saveable pages] - [number of pages that can be freed in theory] 1263 * 1264 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1265 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1266 * minus mapped file pages. 1267 */ 1268 static unsigned long minimum_image_size(unsigned long saveable) 1269 { 1270 unsigned long size; 1271 1272 size = global_page_state(NR_SLAB_RECLAIMABLE) 1273 + global_page_state(NR_ACTIVE_ANON) 1274 + global_page_state(NR_INACTIVE_ANON) 1275 + global_page_state(NR_ACTIVE_FILE) 1276 + global_page_state(NR_INACTIVE_FILE) 1277 - global_page_state(NR_FILE_MAPPED); 1278 1279 return saveable <= size ? 0 : saveable - size; 1280 } 1281 1282 /** 1283 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1284 * 1285 * To create a hibernation image it is necessary to make a copy of every page 1286 * frame in use. We also need a number of page frames to be free during 1287 * hibernation for allocations made while saving the image and for device 1288 * drivers, in case they need to allocate memory from their hibernation 1289 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1290 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1291 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1292 * total number of available page frames and allocate at least 1293 * 1294 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1295 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1296 * 1297 * of them, which corresponds to the maximum size of a hibernation image. 1298 * 1299 * If image_size is set below the number following from the above formula, 1300 * the preallocation of memory is continued until the total number of saveable 1301 * pages in the system is below the requested image size or the minimum 1302 * acceptable image size returned by minimum_image_size(), whichever is greater. 1303 */ 1304 int hibernate_preallocate_memory(void) 1305 { 1306 struct zone *zone; 1307 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1308 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1309 struct timeval start, stop; 1310 int error; 1311 1312 printk(KERN_INFO "PM: Preallocating image memory... "); 1313 do_gettimeofday(&start); 1314 1315 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1316 if (error) 1317 goto err_out; 1318 1319 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1320 if (error) 1321 goto err_out; 1322 1323 alloc_normal = 0; 1324 alloc_highmem = 0; 1325 1326 /* Count the number of saveable data pages. */ 1327 save_highmem = count_highmem_pages(); 1328 saveable = count_data_pages(); 1329 1330 /* 1331 * Compute the total number of page frames we can use (count) and the 1332 * number of pages needed for image metadata (size). 1333 */ 1334 count = saveable; 1335 saveable += save_highmem; 1336 highmem = save_highmem; 1337 size = 0; 1338 for_each_populated_zone(zone) { 1339 size += snapshot_additional_pages(zone); 1340 if (is_highmem(zone)) 1341 highmem += zone_page_state(zone, NR_FREE_PAGES); 1342 else 1343 count += zone_page_state(zone, NR_FREE_PAGES); 1344 } 1345 avail_normal = count; 1346 count += highmem; 1347 count -= totalreserve_pages; 1348 1349 /* Add number of pages required for page keys (s390 only). */ 1350 size += page_key_additional_pages(saveable); 1351 1352 /* Compute the maximum number of saveable pages to leave in memory. */ 1353 max_size = (count - (size + PAGES_FOR_IO)) / 2 1354 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1355 /* Compute the desired number of image pages specified by image_size. */ 1356 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1357 if (size > max_size) 1358 size = max_size; 1359 /* 1360 * If the desired number of image pages is at least as large as the 1361 * current number of saveable pages in memory, allocate page frames for 1362 * the image and we're done. 1363 */ 1364 if (size >= saveable) { 1365 pages = preallocate_image_highmem(save_highmem); 1366 pages += preallocate_image_memory(saveable - pages, avail_normal); 1367 goto out; 1368 } 1369 1370 /* Estimate the minimum size of the image. */ 1371 pages = minimum_image_size(saveable); 1372 /* 1373 * To avoid excessive pressure on the normal zone, leave room in it to 1374 * accommodate an image of the minimum size (unless it's already too 1375 * small, in which case don't preallocate pages from it at all). 1376 */ 1377 if (avail_normal > pages) 1378 avail_normal -= pages; 1379 else 1380 avail_normal = 0; 1381 if (size < pages) 1382 size = min_t(unsigned long, pages, max_size); 1383 1384 /* 1385 * Let the memory management subsystem know that we're going to need a 1386 * large number of page frames to allocate and make it free some memory. 1387 * NOTE: If this is not done, performance will be hurt badly in some 1388 * test cases. 1389 */ 1390 shrink_all_memory(saveable - size); 1391 1392 /* 1393 * The number of saveable pages in memory was too high, so apply some 1394 * pressure to decrease it. First, make room for the largest possible 1395 * image and fail if that doesn't work. Next, try to decrease the size 1396 * of the image as much as indicated by 'size' using allocations from 1397 * highmem and non-highmem zones separately. 1398 */ 1399 pages_highmem = preallocate_image_highmem(highmem / 2); 1400 alloc = (count - max_size) - pages_highmem; 1401 pages = preallocate_image_memory(alloc, avail_normal); 1402 if (pages < alloc) { 1403 /* We have exhausted non-highmem pages, try highmem. */ 1404 alloc -= pages; 1405 pages += pages_highmem; 1406 pages_highmem = preallocate_image_highmem(alloc); 1407 if (pages_highmem < alloc) 1408 goto err_out; 1409 pages += pages_highmem; 1410 /* 1411 * size is the desired number of saveable pages to leave in 1412 * memory, so try to preallocate (all memory - size) pages. 1413 */ 1414 alloc = (count - pages) - size; 1415 pages += preallocate_image_highmem(alloc); 1416 } else { 1417 /* 1418 * There are approximately max_size saveable pages at this point 1419 * and we want to reduce this number down to size. 1420 */ 1421 alloc = max_size - size; 1422 size = preallocate_highmem_fraction(alloc, highmem, count); 1423 pages_highmem += size; 1424 alloc -= size; 1425 size = preallocate_image_memory(alloc, avail_normal); 1426 pages_highmem += preallocate_image_highmem(alloc - size); 1427 pages += pages_highmem + size; 1428 } 1429 1430 /* 1431 * We only need as many page frames for the image as there are saveable 1432 * pages in memory, but we have allocated more. Release the excessive 1433 * ones now. 1434 */ 1435 free_unnecessary_pages(); 1436 1437 out: 1438 do_gettimeofday(&stop); 1439 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1440 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1441 1442 return 0; 1443 1444 err_out: 1445 printk(KERN_CONT "\n"); 1446 swsusp_free(); 1447 return -ENOMEM; 1448 } 1449 1450 #ifdef CONFIG_HIGHMEM 1451 /** 1452 * count_pages_for_highmem - compute the number of non-highmem pages 1453 * that will be necessary for creating copies of highmem pages. 1454 */ 1455 1456 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1457 { 1458 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1459 1460 if (free_highmem >= nr_highmem) 1461 nr_highmem = 0; 1462 else 1463 nr_highmem -= free_highmem; 1464 1465 return nr_highmem; 1466 } 1467 #else 1468 static unsigned int 1469 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1470 #endif /* CONFIG_HIGHMEM */ 1471 1472 /** 1473 * enough_free_mem - Make sure we have enough free memory for the 1474 * snapshot image. 1475 */ 1476 1477 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1478 { 1479 struct zone *zone; 1480 unsigned int free = alloc_normal; 1481 1482 for_each_populated_zone(zone) 1483 if (!is_highmem(zone)) 1484 free += zone_page_state(zone, NR_FREE_PAGES); 1485 1486 nr_pages += count_pages_for_highmem(nr_highmem); 1487 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1488 nr_pages, PAGES_FOR_IO, free); 1489 1490 return free > nr_pages + PAGES_FOR_IO; 1491 } 1492 1493 #ifdef CONFIG_HIGHMEM 1494 /** 1495 * get_highmem_buffer - if there are some highmem pages in the suspend 1496 * image, we may need the buffer to copy them and/or load their data. 1497 */ 1498 1499 static inline int get_highmem_buffer(int safe_needed) 1500 { 1501 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1502 return buffer ? 0 : -ENOMEM; 1503 } 1504 1505 /** 1506 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1507 * Try to allocate as many pages as needed, but if the number of free 1508 * highmem pages is lesser than that, allocate them all. 1509 */ 1510 1511 static inline unsigned int 1512 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1513 { 1514 unsigned int to_alloc = count_free_highmem_pages(); 1515 1516 if (to_alloc > nr_highmem) 1517 to_alloc = nr_highmem; 1518 1519 nr_highmem -= to_alloc; 1520 while (to_alloc-- > 0) { 1521 struct page *page; 1522 1523 page = alloc_image_page(__GFP_HIGHMEM); 1524 memory_bm_set_bit(bm, page_to_pfn(page)); 1525 } 1526 return nr_highmem; 1527 } 1528 #else 1529 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1530 1531 static inline unsigned int 1532 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1533 #endif /* CONFIG_HIGHMEM */ 1534 1535 /** 1536 * swsusp_alloc - allocate memory for the suspend image 1537 * 1538 * We first try to allocate as many highmem pages as there are 1539 * saveable highmem pages in the system. If that fails, we allocate 1540 * non-highmem pages for the copies of the remaining highmem ones. 1541 * 1542 * In this approach it is likely that the copies of highmem pages will 1543 * also be located in the high memory, because of the way in which 1544 * copy_data_pages() works. 1545 */ 1546 1547 static int 1548 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1549 unsigned int nr_pages, unsigned int nr_highmem) 1550 { 1551 if (nr_highmem > 0) { 1552 if (get_highmem_buffer(PG_ANY)) 1553 goto err_out; 1554 if (nr_highmem > alloc_highmem) { 1555 nr_highmem -= alloc_highmem; 1556 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1557 } 1558 } 1559 if (nr_pages > alloc_normal) { 1560 nr_pages -= alloc_normal; 1561 while (nr_pages-- > 0) { 1562 struct page *page; 1563 1564 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1565 if (!page) 1566 goto err_out; 1567 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1568 } 1569 } 1570 1571 return 0; 1572 1573 err_out: 1574 swsusp_free(); 1575 return -ENOMEM; 1576 } 1577 1578 asmlinkage int swsusp_save(void) 1579 { 1580 unsigned int nr_pages, nr_highmem; 1581 1582 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1583 1584 drain_local_pages(NULL); 1585 nr_pages = count_data_pages(); 1586 nr_highmem = count_highmem_pages(); 1587 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1588 1589 if (!enough_free_mem(nr_pages, nr_highmem)) { 1590 printk(KERN_ERR "PM: Not enough free memory\n"); 1591 return -ENOMEM; 1592 } 1593 1594 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1595 printk(KERN_ERR "PM: Memory allocation failed\n"); 1596 return -ENOMEM; 1597 } 1598 1599 /* During allocating of suspend pagedir, new cold pages may appear. 1600 * Kill them. 1601 */ 1602 drain_local_pages(NULL); 1603 copy_data_pages(©_bm, &orig_bm); 1604 1605 /* 1606 * End of critical section. From now on, we can write to memory, 1607 * but we should not touch disk. This specially means we must _not_ 1608 * touch swap space! Except we must write out our image of course. 1609 */ 1610 1611 nr_pages += nr_highmem; 1612 nr_copy_pages = nr_pages; 1613 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1614 1615 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1616 nr_pages); 1617 1618 return 0; 1619 } 1620 1621 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1622 static int init_header_complete(struct swsusp_info *info) 1623 { 1624 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1625 info->version_code = LINUX_VERSION_CODE; 1626 return 0; 1627 } 1628 1629 static char *check_image_kernel(struct swsusp_info *info) 1630 { 1631 if (info->version_code != LINUX_VERSION_CODE) 1632 return "kernel version"; 1633 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1634 return "system type"; 1635 if (strcmp(info->uts.release,init_utsname()->release)) 1636 return "kernel release"; 1637 if (strcmp(info->uts.version,init_utsname()->version)) 1638 return "version"; 1639 if (strcmp(info->uts.machine,init_utsname()->machine)) 1640 return "machine"; 1641 return NULL; 1642 } 1643 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1644 1645 unsigned long snapshot_get_image_size(void) 1646 { 1647 return nr_copy_pages + nr_meta_pages + 1; 1648 } 1649 1650 static int init_header(struct swsusp_info *info) 1651 { 1652 memset(info, 0, sizeof(struct swsusp_info)); 1653 info->num_physpages = num_physpages; 1654 info->image_pages = nr_copy_pages; 1655 info->pages = snapshot_get_image_size(); 1656 info->size = info->pages; 1657 info->size <<= PAGE_SHIFT; 1658 return init_header_complete(info); 1659 } 1660 1661 /** 1662 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1663 * are stored in the array @buf[] (1 page at a time) 1664 */ 1665 1666 static inline void 1667 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1668 { 1669 int j; 1670 1671 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1672 buf[j] = memory_bm_next_pfn(bm); 1673 if (unlikely(buf[j] == BM_END_OF_MAP)) 1674 break; 1675 /* Save page key for data page (s390 only). */ 1676 page_key_read(buf + j); 1677 } 1678 } 1679 1680 /** 1681 * snapshot_read_next - used for reading the system memory snapshot. 1682 * 1683 * On the first call to it @handle should point to a zeroed 1684 * snapshot_handle structure. The structure gets updated and a pointer 1685 * to it should be passed to this function every next time. 1686 * 1687 * On success the function returns a positive number. Then, the caller 1688 * is allowed to read up to the returned number of bytes from the memory 1689 * location computed by the data_of() macro. 1690 * 1691 * The function returns 0 to indicate the end of data stream condition, 1692 * and a negative number is returned on error. In such cases the 1693 * structure pointed to by @handle is not updated and should not be used 1694 * any more. 1695 */ 1696 1697 int snapshot_read_next(struct snapshot_handle *handle) 1698 { 1699 if (handle->cur > nr_meta_pages + nr_copy_pages) 1700 return 0; 1701 1702 if (!buffer) { 1703 /* This makes the buffer be freed by swsusp_free() */ 1704 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1705 if (!buffer) 1706 return -ENOMEM; 1707 } 1708 if (!handle->cur) { 1709 int error; 1710 1711 error = init_header((struct swsusp_info *)buffer); 1712 if (error) 1713 return error; 1714 handle->buffer = buffer; 1715 memory_bm_position_reset(&orig_bm); 1716 memory_bm_position_reset(©_bm); 1717 } else if (handle->cur <= nr_meta_pages) { 1718 clear_page(buffer); 1719 pack_pfns(buffer, &orig_bm); 1720 } else { 1721 struct page *page; 1722 1723 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1724 if (PageHighMem(page)) { 1725 /* Highmem pages are copied to the buffer, 1726 * because we can't return with a kmapped 1727 * highmem page (we may not be called again). 1728 */ 1729 void *kaddr; 1730 1731 kaddr = kmap_atomic(page, KM_USER0); 1732 copy_page(buffer, kaddr); 1733 kunmap_atomic(kaddr, KM_USER0); 1734 handle->buffer = buffer; 1735 } else { 1736 handle->buffer = page_address(page); 1737 } 1738 } 1739 handle->cur++; 1740 return PAGE_SIZE; 1741 } 1742 1743 /** 1744 * mark_unsafe_pages - mark the pages that cannot be used for storing 1745 * the image during resume, because they conflict with the pages that 1746 * had been used before suspend 1747 */ 1748 1749 static int mark_unsafe_pages(struct memory_bitmap *bm) 1750 { 1751 struct zone *zone; 1752 unsigned long pfn, max_zone_pfn; 1753 1754 /* Clear page flags */ 1755 for_each_populated_zone(zone) { 1756 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1757 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1758 if (pfn_valid(pfn)) 1759 swsusp_unset_page_free(pfn_to_page(pfn)); 1760 } 1761 1762 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1763 memory_bm_position_reset(bm); 1764 do { 1765 pfn = memory_bm_next_pfn(bm); 1766 if (likely(pfn != BM_END_OF_MAP)) { 1767 if (likely(pfn_valid(pfn))) 1768 swsusp_set_page_free(pfn_to_page(pfn)); 1769 else 1770 return -EFAULT; 1771 } 1772 } while (pfn != BM_END_OF_MAP); 1773 1774 allocated_unsafe_pages = 0; 1775 1776 return 0; 1777 } 1778 1779 static void 1780 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1781 { 1782 unsigned long pfn; 1783 1784 memory_bm_position_reset(src); 1785 pfn = memory_bm_next_pfn(src); 1786 while (pfn != BM_END_OF_MAP) { 1787 memory_bm_set_bit(dst, pfn); 1788 pfn = memory_bm_next_pfn(src); 1789 } 1790 } 1791 1792 static int check_header(struct swsusp_info *info) 1793 { 1794 char *reason; 1795 1796 reason = check_image_kernel(info); 1797 if (!reason && info->num_physpages != num_physpages) 1798 reason = "memory size"; 1799 if (reason) { 1800 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1801 return -EPERM; 1802 } 1803 return 0; 1804 } 1805 1806 /** 1807 * load header - check the image header and copy data from it 1808 */ 1809 1810 static int 1811 load_header(struct swsusp_info *info) 1812 { 1813 int error; 1814 1815 restore_pblist = NULL; 1816 error = check_header(info); 1817 if (!error) { 1818 nr_copy_pages = info->image_pages; 1819 nr_meta_pages = info->pages - info->image_pages - 1; 1820 } 1821 return error; 1822 } 1823 1824 /** 1825 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1826 * the corresponding bit in the memory bitmap @bm 1827 */ 1828 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1829 { 1830 int j; 1831 1832 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1833 if (unlikely(buf[j] == BM_END_OF_MAP)) 1834 break; 1835 1836 /* Extract and buffer page key for data page (s390 only). */ 1837 page_key_memorize(buf + j); 1838 1839 if (memory_bm_pfn_present(bm, buf[j])) 1840 memory_bm_set_bit(bm, buf[j]); 1841 else 1842 return -EFAULT; 1843 } 1844 1845 return 0; 1846 } 1847 1848 /* List of "safe" pages that may be used to store data loaded from the suspend 1849 * image 1850 */ 1851 static struct linked_page *safe_pages_list; 1852 1853 #ifdef CONFIG_HIGHMEM 1854 /* struct highmem_pbe is used for creating the list of highmem pages that 1855 * should be restored atomically during the resume from disk, because the page 1856 * frames they have occupied before the suspend are in use. 1857 */ 1858 struct highmem_pbe { 1859 struct page *copy_page; /* data is here now */ 1860 struct page *orig_page; /* data was here before the suspend */ 1861 struct highmem_pbe *next; 1862 }; 1863 1864 /* List of highmem PBEs needed for restoring the highmem pages that were 1865 * allocated before the suspend and included in the suspend image, but have 1866 * also been allocated by the "resume" kernel, so their contents cannot be 1867 * written directly to their "original" page frames. 1868 */ 1869 static struct highmem_pbe *highmem_pblist; 1870 1871 /** 1872 * count_highmem_image_pages - compute the number of highmem pages in the 1873 * suspend image. The bits in the memory bitmap @bm that correspond to the 1874 * image pages are assumed to be set. 1875 */ 1876 1877 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1878 { 1879 unsigned long pfn; 1880 unsigned int cnt = 0; 1881 1882 memory_bm_position_reset(bm); 1883 pfn = memory_bm_next_pfn(bm); 1884 while (pfn != BM_END_OF_MAP) { 1885 if (PageHighMem(pfn_to_page(pfn))) 1886 cnt++; 1887 1888 pfn = memory_bm_next_pfn(bm); 1889 } 1890 return cnt; 1891 } 1892 1893 /** 1894 * prepare_highmem_image - try to allocate as many highmem pages as 1895 * there are highmem image pages (@nr_highmem_p points to the variable 1896 * containing the number of highmem image pages). The pages that are 1897 * "safe" (ie. will not be overwritten when the suspend image is 1898 * restored) have the corresponding bits set in @bm (it must be 1899 * unitialized). 1900 * 1901 * NOTE: This function should not be called if there are no highmem 1902 * image pages. 1903 */ 1904 1905 static unsigned int safe_highmem_pages; 1906 1907 static struct memory_bitmap *safe_highmem_bm; 1908 1909 static int 1910 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1911 { 1912 unsigned int to_alloc; 1913 1914 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1915 return -ENOMEM; 1916 1917 if (get_highmem_buffer(PG_SAFE)) 1918 return -ENOMEM; 1919 1920 to_alloc = count_free_highmem_pages(); 1921 if (to_alloc > *nr_highmem_p) 1922 to_alloc = *nr_highmem_p; 1923 else 1924 *nr_highmem_p = to_alloc; 1925 1926 safe_highmem_pages = 0; 1927 while (to_alloc-- > 0) { 1928 struct page *page; 1929 1930 page = alloc_page(__GFP_HIGHMEM); 1931 if (!swsusp_page_is_free(page)) { 1932 /* The page is "safe", set its bit the bitmap */ 1933 memory_bm_set_bit(bm, page_to_pfn(page)); 1934 safe_highmem_pages++; 1935 } 1936 /* Mark the page as allocated */ 1937 swsusp_set_page_forbidden(page); 1938 swsusp_set_page_free(page); 1939 } 1940 memory_bm_position_reset(bm); 1941 safe_highmem_bm = bm; 1942 return 0; 1943 } 1944 1945 /** 1946 * get_highmem_page_buffer - for given highmem image page find the buffer 1947 * that suspend_write_next() should set for its caller to write to. 1948 * 1949 * If the page is to be saved to its "original" page frame or a copy of 1950 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1951 * the copy of the page is to be made in normal memory, so the address of 1952 * the copy is returned. 1953 * 1954 * If @buffer is returned, the caller of suspend_write_next() will write 1955 * the page's contents to @buffer, so they will have to be copied to the 1956 * right location on the next call to suspend_write_next() and it is done 1957 * with the help of copy_last_highmem_page(). For this purpose, if 1958 * @buffer is returned, @last_highmem page is set to the page to which 1959 * the data will have to be copied from @buffer. 1960 */ 1961 1962 static struct page *last_highmem_page; 1963 1964 static void * 1965 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1966 { 1967 struct highmem_pbe *pbe; 1968 void *kaddr; 1969 1970 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1971 /* We have allocated the "original" page frame and we can 1972 * use it directly to store the loaded page. 1973 */ 1974 last_highmem_page = page; 1975 return buffer; 1976 } 1977 /* The "original" page frame has not been allocated and we have to 1978 * use a "safe" page frame to store the loaded page. 1979 */ 1980 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1981 if (!pbe) { 1982 swsusp_free(); 1983 return ERR_PTR(-ENOMEM); 1984 } 1985 pbe->orig_page = page; 1986 if (safe_highmem_pages > 0) { 1987 struct page *tmp; 1988 1989 /* Copy of the page will be stored in high memory */ 1990 kaddr = buffer; 1991 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1992 safe_highmem_pages--; 1993 last_highmem_page = tmp; 1994 pbe->copy_page = tmp; 1995 } else { 1996 /* Copy of the page will be stored in normal memory */ 1997 kaddr = safe_pages_list; 1998 safe_pages_list = safe_pages_list->next; 1999 pbe->copy_page = virt_to_page(kaddr); 2000 } 2001 pbe->next = highmem_pblist; 2002 highmem_pblist = pbe; 2003 return kaddr; 2004 } 2005 2006 /** 2007 * copy_last_highmem_page - copy the contents of a highmem image from 2008 * @buffer, where the caller of snapshot_write_next() has place them, 2009 * to the right location represented by @last_highmem_page . 2010 */ 2011 2012 static void copy_last_highmem_page(void) 2013 { 2014 if (last_highmem_page) { 2015 void *dst; 2016 2017 dst = kmap_atomic(last_highmem_page, KM_USER0); 2018 copy_page(dst, buffer); 2019 kunmap_atomic(dst, KM_USER0); 2020 last_highmem_page = NULL; 2021 } 2022 } 2023 2024 static inline int last_highmem_page_copied(void) 2025 { 2026 return !last_highmem_page; 2027 } 2028 2029 static inline void free_highmem_data(void) 2030 { 2031 if (safe_highmem_bm) 2032 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2033 2034 if (buffer) 2035 free_image_page(buffer, PG_UNSAFE_CLEAR); 2036 } 2037 #else 2038 static inline int get_safe_write_buffer(void) { return 0; } 2039 2040 static unsigned int 2041 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2042 2043 static inline int 2044 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2045 { 2046 return 0; 2047 } 2048 2049 static inline void * 2050 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2051 { 2052 return ERR_PTR(-EINVAL); 2053 } 2054 2055 static inline void copy_last_highmem_page(void) {} 2056 static inline int last_highmem_page_copied(void) { return 1; } 2057 static inline void free_highmem_data(void) {} 2058 #endif /* CONFIG_HIGHMEM */ 2059 2060 /** 2061 * prepare_image - use the memory bitmap @bm to mark the pages that will 2062 * be overwritten in the process of restoring the system memory state 2063 * from the suspend image ("unsafe" pages) and allocate memory for the 2064 * image. 2065 * 2066 * The idea is to allocate a new memory bitmap first and then allocate 2067 * as many pages as needed for the image data, but not to assign these 2068 * pages to specific tasks initially. Instead, we just mark them as 2069 * allocated and create a lists of "safe" pages that will be used 2070 * later. On systems with high memory a list of "safe" highmem pages is 2071 * also created. 2072 */ 2073 2074 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2075 2076 static int 2077 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2078 { 2079 unsigned int nr_pages, nr_highmem; 2080 struct linked_page *sp_list, *lp; 2081 int error; 2082 2083 /* If there is no highmem, the buffer will not be necessary */ 2084 free_image_page(buffer, PG_UNSAFE_CLEAR); 2085 buffer = NULL; 2086 2087 nr_highmem = count_highmem_image_pages(bm); 2088 error = mark_unsafe_pages(bm); 2089 if (error) 2090 goto Free; 2091 2092 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2093 if (error) 2094 goto Free; 2095 2096 duplicate_memory_bitmap(new_bm, bm); 2097 memory_bm_free(bm, PG_UNSAFE_KEEP); 2098 if (nr_highmem > 0) { 2099 error = prepare_highmem_image(bm, &nr_highmem); 2100 if (error) 2101 goto Free; 2102 } 2103 /* Reserve some safe pages for potential later use. 2104 * 2105 * NOTE: This way we make sure there will be enough safe pages for the 2106 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2107 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2108 */ 2109 sp_list = NULL; 2110 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2111 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2112 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2113 while (nr_pages > 0) { 2114 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2115 if (!lp) { 2116 error = -ENOMEM; 2117 goto Free; 2118 } 2119 lp->next = sp_list; 2120 sp_list = lp; 2121 nr_pages--; 2122 } 2123 /* Preallocate memory for the image */ 2124 safe_pages_list = NULL; 2125 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2126 while (nr_pages > 0) { 2127 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2128 if (!lp) { 2129 error = -ENOMEM; 2130 goto Free; 2131 } 2132 if (!swsusp_page_is_free(virt_to_page(lp))) { 2133 /* The page is "safe", add it to the list */ 2134 lp->next = safe_pages_list; 2135 safe_pages_list = lp; 2136 } 2137 /* Mark the page as allocated */ 2138 swsusp_set_page_forbidden(virt_to_page(lp)); 2139 swsusp_set_page_free(virt_to_page(lp)); 2140 nr_pages--; 2141 } 2142 /* Free the reserved safe pages so that chain_alloc() can use them */ 2143 while (sp_list) { 2144 lp = sp_list->next; 2145 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2146 sp_list = lp; 2147 } 2148 return 0; 2149 2150 Free: 2151 swsusp_free(); 2152 return error; 2153 } 2154 2155 /** 2156 * get_buffer - compute the address that snapshot_write_next() should 2157 * set for its caller to write to. 2158 */ 2159 2160 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2161 { 2162 struct pbe *pbe; 2163 struct page *page; 2164 unsigned long pfn = memory_bm_next_pfn(bm); 2165 2166 if (pfn == BM_END_OF_MAP) 2167 return ERR_PTR(-EFAULT); 2168 2169 page = pfn_to_page(pfn); 2170 if (PageHighMem(page)) 2171 return get_highmem_page_buffer(page, ca); 2172 2173 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2174 /* We have allocated the "original" page frame and we can 2175 * use it directly to store the loaded page. 2176 */ 2177 return page_address(page); 2178 2179 /* The "original" page frame has not been allocated and we have to 2180 * use a "safe" page frame to store the loaded page. 2181 */ 2182 pbe = chain_alloc(ca, sizeof(struct pbe)); 2183 if (!pbe) { 2184 swsusp_free(); 2185 return ERR_PTR(-ENOMEM); 2186 } 2187 pbe->orig_address = page_address(page); 2188 pbe->address = safe_pages_list; 2189 safe_pages_list = safe_pages_list->next; 2190 pbe->next = restore_pblist; 2191 restore_pblist = pbe; 2192 return pbe->address; 2193 } 2194 2195 /** 2196 * snapshot_write_next - used for writing the system memory snapshot. 2197 * 2198 * On the first call to it @handle should point to a zeroed 2199 * snapshot_handle structure. The structure gets updated and a pointer 2200 * to it should be passed to this function every next time. 2201 * 2202 * On success the function returns a positive number. Then, the caller 2203 * is allowed to write up to the returned number of bytes to the memory 2204 * location computed by the data_of() macro. 2205 * 2206 * The function returns 0 to indicate the "end of file" condition, 2207 * and a negative number is returned on error. In such cases the 2208 * structure pointed to by @handle is not updated and should not be used 2209 * any more. 2210 */ 2211 2212 int snapshot_write_next(struct snapshot_handle *handle) 2213 { 2214 static struct chain_allocator ca; 2215 int error = 0; 2216 2217 /* Check if we have already loaded the entire image */ 2218 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2219 return 0; 2220 2221 handle->sync_read = 1; 2222 2223 if (!handle->cur) { 2224 if (!buffer) 2225 /* This makes the buffer be freed by swsusp_free() */ 2226 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2227 2228 if (!buffer) 2229 return -ENOMEM; 2230 2231 handle->buffer = buffer; 2232 } else if (handle->cur == 1) { 2233 error = load_header(buffer); 2234 if (error) 2235 return error; 2236 2237 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2238 if (error) 2239 return error; 2240 2241 /* Allocate buffer for page keys. */ 2242 error = page_key_alloc(nr_copy_pages); 2243 if (error) 2244 return error; 2245 2246 } else if (handle->cur <= nr_meta_pages + 1) { 2247 error = unpack_orig_pfns(buffer, ©_bm); 2248 if (error) 2249 return error; 2250 2251 if (handle->cur == nr_meta_pages + 1) { 2252 error = prepare_image(&orig_bm, ©_bm); 2253 if (error) 2254 return error; 2255 2256 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2257 memory_bm_position_reset(&orig_bm); 2258 restore_pblist = NULL; 2259 handle->buffer = get_buffer(&orig_bm, &ca); 2260 handle->sync_read = 0; 2261 if (IS_ERR(handle->buffer)) 2262 return PTR_ERR(handle->buffer); 2263 } 2264 } else { 2265 copy_last_highmem_page(); 2266 /* Restore page key for data page (s390 only). */ 2267 page_key_write(handle->buffer); 2268 handle->buffer = get_buffer(&orig_bm, &ca); 2269 if (IS_ERR(handle->buffer)) 2270 return PTR_ERR(handle->buffer); 2271 if (handle->buffer != buffer) 2272 handle->sync_read = 0; 2273 } 2274 handle->cur++; 2275 return PAGE_SIZE; 2276 } 2277 2278 /** 2279 * snapshot_write_finalize - must be called after the last call to 2280 * snapshot_write_next() in case the last page in the image happens 2281 * to be a highmem page and its contents should be stored in the 2282 * highmem. Additionally, it releases the memory that will not be 2283 * used any more. 2284 */ 2285 2286 void snapshot_write_finalize(struct snapshot_handle *handle) 2287 { 2288 copy_last_highmem_page(); 2289 /* Restore page key for data page (s390 only). */ 2290 page_key_write(handle->buffer); 2291 page_key_free(); 2292 /* Free only if we have loaded the image entirely */ 2293 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2294 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2295 free_highmem_data(); 2296 } 2297 } 2298 2299 int snapshot_image_loaded(struct snapshot_handle *handle) 2300 { 2301 return !(!nr_copy_pages || !last_highmem_page_copied() || 2302 handle->cur <= nr_meta_pages + nr_copy_pages); 2303 } 2304 2305 #ifdef CONFIG_HIGHMEM 2306 /* Assumes that @buf is ready and points to a "safe" page */ 2307 static inline void 2308 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2309 { 2310 void *kaddr1, *kaddr2; 2311 2312 kaddr1 = kmap_atomic(p1, KM_USER0); 2313 kaddr2 = kmap_atomic(p2, KM_USER1); 2314 copy_page(buf, kaddr1); 2315 copy_page(kaddr1, kaddr2); 2316 copy_page(kaddr2, buf); 2317 kunmap_atomic(kaddr2, KM_USER1); 2318 kunmap_atomic(kaddr1, KM_USER0); 2319 } 2320 2321 /** 2322 * restore_highmem - for each highmem page that was allocated before 2323 * the suspend and included in the suspend image, and also has been 2324 * allocated by the "resume" kernel swap its current (ie. "before 2325 * resume") contents with the previous (ie. "before suspend") one. 2326 * 2327 * If the resume eventually fails, we can call this function once 2328 * again and restore the "before resume" highmem state. 2329 */ 2330 2331 int restore_highmem(void) 2332 { 2333 struct highmem_pbe *pbe = highmem_pblist; 2334 void *buf; 2335 2336 if (!pbe) 2337 return 0; 2338 2339 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2340 if (!buf) 2341 return -ENOMEM; 2342 2343 while (pbe) { 2344 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2345 pbe = pbe->next; 2346 } 2347 free_image_page(buf, PG_UNSAFE_CLEAR); 2348 return 0; 2349 } 2350 #endif /* CONFIG_HIGHMEM */ 2351