xref: /linux/kernel/power/snapshot.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 
30 #include <asm/uaccess.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <asm/io.h>
35 
36 #include "power.h"
37 
38 static int swsusp_page_is_free(struct page *);
39 static void swsusp_set_page_forbidden(struct page *);
40 static void swsusp_unset_page_forbidden(struct page *);
41 
42 /*
43  * Preferred image size in bytes (tunable via /sys/power/image_size).
44  * When it is set to N, swsusp will do its best to ensure the image
45  * size will not exceed N bytes, but if that is impossible, it will
46  * try to create the smallest image possible.
47  */
48 unsigned long image_size = 500 * 1024 * 1024;
49 
50 /* List of PBEs needed for restoring the pages that were allocated before
51  * the suspend and included in the suspend image, but have also been
52  * allocated by the "resume" kernel, so their contents cannot be written
53  * directly to their "original" page frames.
54  */
55 struct pbe *restore_pblist;
56 
57 /* Pointer to an auxiliary buffer (1 page) */
58 static void *buffer;
59 
60 /**
61  *	@safe_needed - on resume, for storing the PBE list and the image,
62  *	we can only use memory pages that do not conflict with the pages
63  *	used before suspend.  The unsafe pages have PageNosaveFree set
64  *	and we count them using unsafe_pages.
65  *
66  *	Each allocated image page is marked as PageNosave and PageNosaveFree
67  *	so that swsusp_free() can release it.
68  */
69 
70 #define PG_ANY		0
71 #define PG_SAFE		1
72 #define PG_UNSAFE_CLEAR	1
73 #define PG_UNSAFE_KEEP	0
74 
75 static unsigned int allocated_unsafe_pages;
76 
77 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
78 {
79 	void *res;
80 
81 	res = (void *)get_zeroed_page(gfp_mask);
82 	if (safe_needed)
83 		while (res && swsusp_page_is_free(virt_to_page(res))) {
84 			/* The page is unsafe, mark it for swsusp_free() */
85 			swsusp_set_page_forbidden(virt_to_page(res));
86 			allocated_unsafe_pages++;
87 			res = (void *)get_zeroed_page(gfp_mask);
88 		}
89 	if (res) {
90 		swsusp_set_page_forbidden(virt_to_page(res));
91 		swsusp_set_page_free(virt_to_page(res));
92 	}
93 	return res;
94 }
95 
96 unsigned long get_safe_page(gfp_t gfp_mask)
97 {
98 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
99 }
100 
101 static struct page *alloc_image_page(gfp_t gfp_mask)
102 {
103 	struct page *page;
104 
105 	page = alloc_page(gfp_mask);
106 	if (page) {
107 		swsusp_set_page_forbidden(page);
108 		swsusp_set_page_free(page);
109 	}
110 	return page;
111 }
112 
113 /**
114  *	free_image_page - free page represented by @addr, allocated with
115  *	get_image_page (page flags set by it must be cleared)
116  */
117 
118 static inline void free_image_page(void *addr, int clear_nosave_free)
119 {
120 	struct page *page;
121 
122 	BUG_ON(!virt_addr_valid(addr));
123 
124 	page = virt_to_page(addr);
125 
126 	swsusp_unset_page_forbidden(page);
127 	if (clear_nosave_free)
128 		swsusp_unset_page_free(page);
129 
130 	__free_page(page);
131 }
132 
133 /* struct linked_page is used to build chains of pages */
134 
135 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
136 
137 struct linked_page {
138 	struct linked_page *next;
139 	char data[LINKED_PAGE_DATA_SIZE];
140 } __attribute__((packed));
141 
142 static inline void
143 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
144 {
145 	while (list) {
146 		struct linked_page *lp = list->next;
147 
148 		free_image_page(list, clear_page_nosave);
149 		list = lp;
150 	}
151 }
152 
153 /**
154   *	struct chain_allocator is used for allocating small objects out of
155   *	a linked list of pages called 'the chain'.
156   *
157   *	The chain grows each time when there is no room for a new object in
158   *	the current page.  The allocated objects cannot be freed individually.
159   *	It is only possible to free them all at once, by freeing the entire
160   *	chain.
161   *
162   *	NOTE: The chain allocator may be inefficient if the allocated objects
163   *	are not much smaller than PAGE_SIZE.
164   */
165 
166 struct chain_allocator {
167 	struct linked_page *chain;	/* the chain */
168 	unsigned int used_space;	/* total size of objects allocated out
169 					 * of the current page
170 					 */
171 	gfp_t gfp_mask;		/* mask for allocating pages */
172 	int safe_needed;	/* if set, only "safe" pages are allocated */
173 };
174 
175 static void
176 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
177 {
178 	ca->chain = NULL;
179 	ca->used_space = LINKED_PAGE_DATA_SIZE;
180 	ca->gfp_mask = gfp_mask;
181 	ca->safe_needed = safe_needed;
182 }
183 
184 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
185 {
186 	void *ret;
187 
188 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
189 		struct linked_page *lp;
190 
191 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
192 		if (!lp)
193 			return NULL;
194 
195 		lp->next = ca->chain;
196 		ca->chain = lp;
197 		ca->used_space = 0;
198 	}
199 	ret = ca->chain->data + ca->used_space;
200 	ca->used_space += size;
201 	return ret;
202 }
203 
204 /**
205  *	Data types related to memory bitmaps.
206  *
207  *	Memory bitmap is a structure consiting of many linked lists of
208  *	objects.  The main list's elements are of type struct zone_bitmap
209  *	and each of them corresonds to one zone.  For each zone bitmap
210  *	object there is a list of objects of type struct bm_block that
211  *	represent each blocks of bitmap in which information is stored.
212  *
213  *	struct memory_bitmap contains a pointer to the main list of zone
214  *	bitmap objects, a struct bm_position used for browsing the bitmap,
215  *	and a pointer to the list of pages used for allocating all of the
216  *	zone bitmap objects and bitmap block objects.
217  *
218  *	NOTE: It has to be possible to lay out the bitmap in memory
219  *	using only allocations of order 0.  Additionally, the bitmap is
220  *	designed to work with arbitrary number of zones (this is over the
221  *	top for now, but let's avoid making unnecessary assumptions ;-).
222  *
223  *	struct zone_bitmap contains a pointer to a list of bitmap block
224  *	objects and a pointer to the bitmap block object that has been
225  *	most recently used for setting bits.  Additionally, it contains the
226  *	pfns that correspond to the start and end of the represented zone.
227  *
228  *	struct bm_block contains a pointer to the memory page in which
229  *	information is stored (in the form of a block of bitmap)
230  *	It also contains the pfns that correspond to the start and end of
231  *	the represented memory area.
232  */
233 
234 #define BM_END_OF_MAP	(~0UL)
235 
236 #define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)
237 
238 struct bm_block {
239 	struct list_head hook;	/* hook into a list of bitmap blocks */
240 	unsigned long start_pfn;	/* pfn represented by the first bit */
241 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
242 	unsigned long *data;	/* bitmap representing pages */
243 };
244 
245 static inline unsigned long bm_block_bits(struct bm_block *bb)
246 {
247 	return bb->end_pfn - bb->start_pfn;
248 }
249 
250 /* strcut bm_position is used for browsing memory bitmaps */
251 
252 struct bm_position {
253 	struct bm_block *block;
254 	int bit;
255 };
256 
257 struct memory_bitmap {
258 	struct list_head blocks;	/* list of bitmap blocks */
259 	struct linked_page *p_list;	/* list of pages used to store zone
260 					 * bitmap objects and bitmap block
261 					 * objects
262 					 */
263 	struct bm_position cur;	/* most recently used bit position */
264 };
265 
266 /* Functions that operate on memory bitmaps */
267 
268 static void memory_bm_position_reset(struct memory_bitmap *bm)
269 {
270 	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
271 	bm->cur.bit = 0;
272 }
273 
274 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275 
276 /**
277  *	create_bm_block_list - create a list of block bitmap objects
278  *	@nr_blocks - number of blocks to allocate
279  *	@list - list to put the allocated blocks into
280  *	@ca - chain allocator to be used for allocating memory
281  */
282 static int create_bm_block_list(unsigned long pages,
283 				struct list_head *list,
284 				struct chain_allocator *ca)
285 {
286 	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
287 
288 	while (nr_blocks-- > 0) {
289 		struct bm_block *bb;
290 
291 		bb = chain_alloc(ca, sizeof(struct bm_block));
292 		if (!bb)
293 			return -ENOMEM;
294 		list_add(&bb->hook, list);
295 	}
296 
297 	return 0;
298 }
299 
300 struct mem_extent {
301 	struct list_head hook;
302 	unsigned long start;
303 	unsigned long end;
304 };
305 
306 /**
307  *	free_mem_extents - free a list of memory extents
308  *	@list - list of extents to empty
309  */
310 static void free_mem_extents(struct list_head *list)
311 {
312 	struct mem_extent *ext, *aux;
313 
314 	list_for_each_entry_safe(ext, aux, list, hook) {
315 		list_del(&ext->hook);
316 		kfree(ext);
317 	}
318 }
319 
320 /**
321  *	create_mem_extents - create a list of memory extents representing
322  *	                     contiguous ranges of PFNs
323  *	@list - list to put the extents into
324  *	@gfp_mask - mask to use for memory allocations
325  */
326 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
327 {
328 	struct zone *zone;
329 
330 	INIT_LIST_HEAD(list);
331 
332 	for_each_populated_zone(zone) {
333 		unsigned long zone_start, zone_end;
334 		struct mem_extent *ext, *cur, *aux;
335 
336 		zone_start = zone->zone_start_pfn;
337 		zone_end = zone->zone_start_pfn + zone->spanned_pages;
338 
339 		list_for_each_entry(ext, list, hook)
340 			if (zone_start <= ext->end)
341 				break;
342 
343 		if (&ext->hook == list || zone_end < ext->start) {
344 			/* New extent is necessary */
345 			struct mem_extent *new_ext;
346 
347 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
348 			if (!new_ext) {
349 				free_mem_extents(list);
350 				return -ENOMEM;
351 			}
352 			new_ext->start = zone_start;
353 			new_ext->end = zone_end;
354 			list_add_tail(&new_ext->hook, &ext->hook);
355 			continue;
356 		}
357 
358 		/* Merge this zone's range of PFNs with the existing one */
359 		if (zone_start < ext->start)
360 			ext->start = zone_start;
361 		if (zone_end > ext->end)
362 			ext->end = zone_end;
363 
364 		/* More merging may be possible */
365 		cur = ext;
366 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
367 			if (zone_end < cur->start)
368 				break;
369 			if (zone_end < cur->end)
370 				ext->end = cur->end;
371 			list_del(&cur->hook);
372 			kfree(cur);
373 		}
374 	}
375 
376 	return 0;
377 }
378 
379 /**
380   *	memory_bm_create - allocate memory for a memory bitmap
381   */
382 static int
383 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
384 {
385 	struct chain_allocator ca;
386 	struct list_head mem_extents;
387 	struct mem_extent *ext;
388 	int error;
389 
390 	chain_init(&ca, gfp_mask, safe_needed);
391 	INIT_LIST_HEAD(&bm->blocks);
392 
393 	error = create_mem_extents(&mem_extents, gfp_mask);
394 	if (error)
395 		return error;
396 
397 	list_for_each_entry(ext, &mem_extents, hook) {
398 		struct bm_block *bb;
399 		unsigned long pfn = ext->start;
400 		unsigned long pages = ext->end - ext->start;
401 
402 		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
403 
404 		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
405 		if (error)
406 			goto Error;
407 
408 		list_for_each_entry_continue(bb, &bm->blocks, hook) {
409 			bb->data = get_image_page(gfp_mask, safe_needed);
410 			if (!bb->data) {
411 				error = -ENOMEM;
412 				goto Error;
413 			}
414 
415 			bb->start_pfn = pfn;
416 			if (pages >= BM_BITS_PER_BLOCK) {
417 				pfn += BM_BITS_PER_BLOCK;
418 				pages -= BM_BITS_PER_BLOCK;
419 			} else {
420 				/* This is executed only once in the loop */
421 				pfn += pages;
422 			}
423 			bb->end_pfn = pfn;
424 		}
425 	}
426 
427 	bm->p_list = ca.chain;
428 	memory_bm_position_reset(bm);
429  Exit:
430 	free_mem_extents(&mem_extents);
431 	return error;
432 
433  Error:
434 	bm->p_list = ca.chain;
435 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
436 	goto Exit;
437 }
438 
439 /**
440   *	memory_bm_free - free memory occupied by the memory bitmap @bm
441   */
442 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
443 {
444 	struct bm_block *bb;
445 
446 	list_for_each_entry(bb, &bm->blocks, hook)
447 		if (bb->data)
448 			free_image_page(bb->data, clear_nosave_free);
449 
450 	free_list_of_pages(bm->p_list, clear_nosave_free);
451 
452 	INIT_LIST_HEAD(&bm->blocks);
453 }
454 
455 /**
456  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
457  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
458  *	of @bm->cur_zone_bm are updated.
459  */
460 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
461 				void **addr, unsigned int *bit_nr)
462 {
463 	struct bm_block *bb;
464 
465 	/*
466 	 * Check if the pfn corresponds to the current bitmap block and find
467 	 * the block where it fits if this is not the case.
468 	 */
469 	bb = bm->cur.block;
470 	if (pfn < bb->start_pfn)
471 		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
472 			if (pfn >= bb->start_pfn)
473 				break;
474 
475 	if (pfn >= bb->end_pfn)
476 		list_for_each_entry_continue(bb, &bm->blocks, hook)
477 			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
478 				break;
479 
480 	if (&bb->hook == &bm->blocks)
481 		return -EFAULT;
482 
483 	/* The block has been found */
484 	bm->cur.block = bb;
485 	pfn -= bb->start_pfn;
486 	bm->cur.bit = pfn + 1;
487 	*bit_nr = pfn;
488 	*addr = bb->data;
489 	return 0;
490 }
491 
492 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
493 {
494 	void *addr;
495 	unsigned int bit;
496 	int error;
497 
498 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
499 	BUG_ON(error);
500 	set_bit(bit, addr);
501 }
502 
503 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
504 {
505 	void *addr;
506 	unsigned int bit;
507 	int error;
508 
509 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
510 	if (!error)
511 		set_bit(bit, addr);
512 	return error;
513 }
514 
515 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
516 {
517 	void *addr;
518 	unsigned int bit;
519 	int error;
520 
521 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
522 	BUG_ON(error);
523 	clear_bit(bit, addr);
524 }
525 
526 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
527 {
528 	void *addr;
529 	unsigned int bit;
530 	int error;
531 
532 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
533 	BUG_ON(error);
534 	return test_bit(bit, addr);
535 }
536 
537 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
538 {
539 	void *addr;
540 	unsigned int bit;
541 
542 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
543 }
544 
545 /**
546  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
547  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
548  *	returned.
549  *
550  *	It is required to run memory_bm_position_reset() before the first call to
551  *	this function.
552  */
553 
554 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
555 {
556 	struct bm_block *bb;
557 	int bit;
558 
559 	bb = bm->cur.block;
560 	do {
561 		bit = bm->cur.bit;
562 		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
563 		if (bit < bm_block_bits(bb))
564 			goto Return_pfn;
565 
566 		bb = list_entry(bb->hook.next, struct bm_block, hook);
567 		bm->cur.block = bb;
568 		bm->cur.bit = 0;
569 	} while (&bb->hook != &bm->blocks);
570 
571 	memory_bm_position_reset(bm);
572 	return BM_END_OF_MAP;
573 
574  Return_pfn:
575 	bm->cur.bit = bit + 1;
576 	return bb->start_pfn + bit;
577 }
578 
579 /**
580  *	This structure represents a range of page frames the contents of which
581  *	should not be saved during the suspend.
582  */
583 
584 struct nosave_region {
585 	struct list_head list;
586 	unsigned long start_pfn;
587 	unsigned long end_pfn;
588 };
589 
590 static LIST_HEAD(nosave_regions);
591 
592 /**
593  *	register_nosave_region - register a range of page frames the contents
594  *	of which should not be saved during the suspend (to be used in the early
595  *	initialization code)
596  */
597 
598 void __init
599 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
600 			 int use_kmalloc)
601 {
602 	struct nosave_region *region;
603 
604 	if (start_pfn >= end_pfn)
605 		return;
606 
607 	if (!list_empty(&nosave_regions)) {
608 		/* Try to extend the previous region (they should be sorted) */
609 		region = list_entry(nosave_regions.prev,
610 					struct nosave_region, list);
611 		if (region->end_pfn == start_pfn) {
612 			region->end_pfn = end_pfn;
613 			goto Report;
614 		}
615 	}
616 	if (use_kmalloc) {
617 		/* during init, this shouldn't fail */
618 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
619 		BUG_ON(!region);
620 	} else
621 		/* This allocation cannot fail */
622 		region = alloc_bootmem_low(sizeof(struct nosave_region));
623 	region->start_pfn = start_pfn;
624 	region->end_pfn = end_pfn;
625 	list_add_tail(&region->list, &nosave_regions);
626  Report:
627 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
628 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
629 }
630 
631 /*
632  * Set bits in this map correspond to the page frames the contents of which
633  * should not be saved during the suspend.
634  */
635 static struct memory_bitmap *forbidden_pages_map;
636 
637 /* Set bits in this map correspond to free page frames. */
638 static struct memory_bitmap *free_pages_map;
639 
640 /*
641  * Each page frame allocated for creating the image is marked by setting the
642  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
643  */
644 
645 void swsusp_set_page_free(struct page *page)
646 {
647 	if (free_pages_map)
648 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
649 }
650 
651 static int swsusp_page_is_free(struct page *page)
652 {
653 	return free_pages_map ?
654 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
655 }
656 
657 void swsusp_unset_page_free(struct page *page)
658 {
659 	if (free_pages_map)
660 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
661 }
662 
663 static void swsusp_set_page_forbidden(struct page *page)
664 {
665 	if (forbidden_pages_map)
666 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
667 }
668 
669 int swsusp_page_is_forbidden(struct page *page)
670 {
671 	return forbidden_pages_map ?
672 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
673 }
674 
675 static void swsusp_unset_page_forbidden(struct page *page)
676 {
677 	if (forbidden_pages_map)
678 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
679 }
680 
681 /**
682  *	mark_nosave_pages - set bits corresponding to the page frames the
683  *	contents of which should not be saved in a given bitmap.
684  */
685 
686 static void mark_nosave_pages(struct memory_bitmap *bm)
687 {
688 	struct nosave_region *region;
689 
690 	if (list_empty(&nosave_regions))
691 		return;
692 
693 	list_for_each_entry(region, &nosave_regions, list) {
694 		unsigned long pfn;
695 
696 		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
697 				region->start_pfn << PAGE_SHIFT,
698 				region->end_pfn << PAGE_SHIFT);
699 
700 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
701 			if (pfn_valid(pfn)) {
702 				/*
703 				 * It is safe to ignore the result of
704 				 * mem_bm_set_bit_check() here, since we won't
705 				 * touch the PFNs for which the error is
706 				 * returned anyway.
707 				 */
708 				mem_bm_set_bit_check(bm, pfn);
709 			}
710 	}
711 }
712 
713 /**
714  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
715  *	frames that should not be saved and free page frames.  The pointers
716  *	forbidden_pages_map and free_pages_map are only modified if everything
717  *	goes well, because we don't want the bits to be used before both bitmaps
718  *	are set up.
719  */
720 
721 int create_basic_memory_bitmaps(void)
722 {
723 	struct memory_bitmap *bm1, *bm2;
724 	int error = 0;
725 
726 	BUG_ON(forbidden_pages_map || free_pages_map);
727 
728 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
729 	if (!bm1)
730 		return -ENOMEM;
731 
732 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
733 	if (error)
734 		goto Free_first_object;
735 
736 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
737 	if (!bm2)
738 		goto Free_first_bitmap;
739 
740 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
741 	if (error)
742 		goto Free_second_object;
743 
744 	forbidden_pages_map = bm1;
745 	free_pages_map = bm2;
746 	mark_nosave_pages(forbidden_pages_map);
747 
748 	pr_debug("PM: Basic memory bitmaps created\n");
749 
750 	return 0;
751 
752  Free_second_object:
753 	kfree(bm2);
754  Free_first_bitmap:
755  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
756  Free_first_object:
757 	kfree(bm1);
758 	return -ENOMEM;
759 }
760 
761 /**
762  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
763  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
764  *	so that the bitmaps themselves are not referred to while they are being
765  *	freed.
766  */
767 
768 void free_basic_memory_bitmaps(void)
769 {
770 	struct memory_bitmap *bm1, *bm2;
771 
772 	BUG_ON(!(forbidden_pages_map && free_pages_map));
773 
774 	bm1 = forbidden_pages_map;
775 	bm2 = free_pages_map;
776 	forbidden_pages_map = NULL;
777 	free_pages_map = NULL;
778 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 	kfree(bm1);
780 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
781 	kfree(bm2);
782 
783 	pr_debug("PM: Basic memory bitmaps freed\n");
784 }
785 
786 /**
787  *	snapshot_additional_pages - estimate the number of additional pages
788  *	be needed for setting up the suspend image data structures for given
789  *	zone (usually the returned value is greater than the exact number)
790  */
791 
792 unsigned int snapshot_additional_pages(struct zone *zone)
793 {
794 	unsigned int res;
795 
796 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
797 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
798 	return 2 * res;
799 }
800 
801 #ifdef CONFIG_HIGHMEM
802 /**
803  *	count_free_highmem_pages - compute the total number of free highmem
804  *	pages, system-wide.
805  */
806 
807 static unsigned int count_free_highmem_pages(void)
808 {
809 	struct zone *zone;
810 	unsigned int cnt = 0;
811 
812 	for_each_populated_zone(zone)
813 		if (is_highmem(zone))
814 			cnt += zone_page_state(zone, NR_FREE_PAGES);
815 
816 	return cnt;
817 }
818 
819 /**
820  *	saveable_highmem_page - Determine whether a highmem page should be
821  *	included in the suspend image.
822  *
823  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
824  *	and it isn't a part of a free chunk of pages.
825  */
826 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
827 {
828 	struct page *page;
829 
830 	if (!pfn_valid(pfn))
831 		return NULL;
832 
833 	page = pfn_to_page(pfn);
834 	if (page_zone(page) != zone)
835 		return NULL;
836 
837 	BUG_ON(!PageHighMem(page));
838 
839 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
840 	    PageReserved(page))
841 		return NULL;
842 
843 	return page;
844 }
845 
846 /**
847  *	count_highmem_pages - compute the total number of saveable highmem
848  *	pages.
849  */
850 
851 static unsigned int count_highmem_pages(void)
852 {
853 	struct zone *zone;
854 	unsigned int n = 0;
855 
856 	for_each_zone(zone) {
857 		unsigned long pfn, max_zone_pfn;
858 
859 		if (!is_highmem(zone))
860 			continue;
861 
862 		mark_free_pages(zone);
863 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
864 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
865 			if (saveable_highmem_page(zone, pfn))
866 				n++;
867 	}
868 	return n;
869 }
870 #else
871 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
872 {
873 	return NULL;
874 }
875 #endif /* CONFIG_HIGHMEM */
876 
877 /**
878  *	saveable_page - Determine whether a non-highmem page should be included
879  *	in the suspend image.
880  *
881  *	We should save the page if it isn't Nosave, and is not in the range
882  *	of pages statically defined as 'unsaveable', and it isn't a part of
883  *	a free chunk of pages.
884  */
885 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
886 {
887 	struct page *page;
888 
889 	if (!pfn_valid(pfn))
890 		return NULL;
891 
892 	page = pfn_to_page(pfn);
893 	if (page_zone(page) != zone)
894 		return NULL;
895 
896 	BUG_ON(PageHighMem(page));
897 
898 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
899 		return NULL;
900 
901 	if (PageReserved(page)
902 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
903 		return NULL;
904 
905 	return page;
906 }
907 
908 /**
909  *	count_data_pages - compute the total number of saveable non-highmem
910  *	pages.
911  */
912 
913 static unsigned int count_data_pages(void)
914 {
915 	struct zone *zone;
916 	unsigned long pfn, max_zone_pfn;
917 	unsigned int n = 0;
918 
919 	for_each_zone(zone) {
920 		if (is_highmem(zone))
921 			continue;
922 
923 		mark_free_pages(zone);
924 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
925 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
926 			if (saveable_page(zone, pfn))
927 				n++;
928 	}
929 	return n;
930 }
931 
932 /* This is needed, because copy_page and memcpy are not usable for copying
933  * task structs.
934  */
935 static inline void do_copy_page(long *dst, long *src)
936 {
937 	int n;
938 
939 	for (n = PAGE_SIZE / sizeof(long); n; n--)
940 		*dst++ = *src++;
941 }
942 
943 
944 /**
945  *	safe_copy_page - check if the page we are going to copy is marked as
946  *		present in the kernel page tables (this always is the case if
947  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
948  *		kernel_page_present() always returns 'true').
949  */
950 static void safe_copy_page(void *dst, struct page *s_page)
951 {
952 	if (kernel_page_present(s_page)) {
953 		do_copy_page(dst, page_address(s_page));
954 	} else {
955 		kernel_map_pages(s_page, 1, 1);
956 		do_copy_page(dst, page_address(s_page));
957 		kernel_map_pages(s_page, 1, 0);
958 	}
959 }
960 
961 
962 #ifdef CONFIG_HIGHMEM
963 static inline struct page *
964 page_is_saveable(struct zone *zone, unsigned long pfn)
965 {
966 	return is_highmem(zone) ?
967 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
968 }
969 
970 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
971 {
972 	struct page *s_page, *d_page;
973 	void *src, *dst;
974 
975 	s_page = pfn_to_page(src_pfn);
976 	d_page = pfn_to_page(dst_pfn);
977 	if (PageHighMem(s_page)) {
978 		src = kmap_atomic(s_page, KM_USER0);
979 		dst = kmap_atomic(d_page, KM_USER1);
980 		do_copy_page(dst, src);
981 		kunmap_atomic(src, KM_USER0);
982 		kunmap_atomic(dst, KM_USER1);
983 	} else {
984 		if (PageHighMem(d_page)) {
985 			/* Page pointed to by src may contain some kernel
986 			 * data modified by kmap_atomic()
987 			 */
988 			safe_copy_page(buffer, s_page);
989 			dst = kmap_atomic(d_page, KM_USER0);
990 			memcpy(dst, buffer, PAGE_SIZE);
991 			kunmap_atomic(dst, KM_USER0);
992 		} else {
993 			safe_copy_page(page_address(d_page), s_page);
994 		}
995 	}
996 }
997 #else
998 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
999 
1000 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1001 {
1002 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1003 				pfn_to_page(src_pfn));
1004 }
1005 #endif /* CONFIG_HIGHMEM */
1006 
1007 static void
1008 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1009 {
1010 	struct zone *zone;
1011 	unsigned long pfn;
1012 
1013 	for_each_zone(zone) {
1014 		unsigned long max_zone_pfn;
1015 
1016 		mark_free_pages(zone);
1017 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1018 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1019 			if (page_is_saveable(zone, pfn))
1020 				memory_bm_set_bit(orig_bm, pfn);
1021 	}
1022 	memory_bm_position_reset(orig_bm);
1023 	memory_bm_position_reset(copy_bm);
1024 	for(;;) {
1025 		pfn = memory_bm_next_pfn(orig_bm);
1026 		if (unlikely(pfn == BM_END_OF_MAP))
1027 			break;
1028 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1029 	}
1030 }
1031 
1032 /* Total number of image pages */
1033 static unsigned int nr_copy_pages;
1034 /* Number of pages needed for saving the original pfns of the image pages */
1035 static unsigned int nr_meta_pages;
1036 
1037 /**
1038  *	swsusp_free - free pages allocated for the suspend.
1039  *
1040  *	Suspend pages are alocated before the atomic copy is made, so we
1041  *	need to release them after the resume.
1042  */
1043 
1044 void swsusp_free(void)
1045 {
1046 	struct zone *zone;
1047 	unsigned long pfn, max_zone_pfn;
1048 
1049 	for_each_zone(zone) {
1050 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1051 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1052 			if (pfn_valid(pfn)) {
1053 				struct page *page = pfn_to_page(pfn);
1054 
1055 				if (swsusp_page_is_forbidden(page) &&
1056 				    swsusp_page_is_free(page)) {
1057 					swsusp_unset_page_forbidden(page);
1058 					swsusp_unset_page_free(page);
1059 					__free_page(page);
1060 				}
1061 			}
1062 	}
1063 	nr_copy_pages = 0;
1064 	nr_meta_pages = 0;
1065 	restore_pblist = NULL;
1066 	buffer = NULL;
1067 }
1068 
1069 /**
1070  *	swsusp_shrink_memory -  Try to free as much memory as needed
1071  *
1072  *	... but do not OOM-kill anyone
1073  *
1074  *	Notice: all userland should be stopped before it is called, or
1075  *	livelock is possible.
1076  */
1077 
1078 #define SHRINK_BITE	10000
1079 static inline unsigned long __shrink_memory(long tmp)
1080 {
1081 	if (tmp > SHRINK_BITE)
1082 		tmp = SHRINK_BITE;
1083 	return shrink_all_memory(tmp);
1084 }
1085 
1086 int swsusp_shrink_memory(void)
1087 {
1088 	long tmp;
1089 	struct zone *zone;
1090 	unsigned long pages = 0;
1091 	unsigned int i = 0;
1092 	char *p = "-\\|/";
1093 	struct timeval start, stop;
1094 
1095 	printk(KERN_INFO "PM: Shrinking memory...  ");
1096 	do_gettimeofday(&start);
1097 	do {
1098 		long size, highmem_size;
1099 
1100 		highmem_size = count_highmem_pages();
1101 		size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES;
1102 		tmp = size;
1103 		size += highmem_size;
1104 		for_each_populated_zone(zone) {
1105 			tmp += snapshot_additional_pages(zone);
1106 			if (is_highmem(zone)) {
1107 				highmem_size -=
1108 					zone_page_state(zone, NR_FREE_PAGES);
1109 			} else {
1110 				tmp -= zone_page_state(zone, NR_FREE_PAGES);
1111 				tmp += zone->lowmem_reserve[ZONE_NORMAL];
1112 			}
1113 		}
1114 
1115 		if (highmem_size < 0)
1116 			highmem_size = 0;
1117 
1118 		tmp += highmem_size;
1119 		if (tmp > 0) {
1120 			tmp = __shrink_memory(tmp);
1121 			if (!tmp)
1122 				return -ENOMEM;
1123 			pages += tmp;
1124 		} else if (size > image_size / PAGE_SIZE) {
1125 			tmp = __shrink_memory(size - (image_size / PAGE_SIZE));
1126 			pages += tmp;
1127 		}
1128 		printk("\b%c", p[i++%4]);
1129 	} while (tmp > 0);
1130 	do_gettimeofday(&stop);
1131 	printk("\bdone (%lu pages freed)\n", pages);
1132 	swsusp_show_speed(&start, &stop, pages, "Freed");
1133 
1134 	return 0;
1135 }
1136 
1137 #ifdef CONFIG_HIGHMEM
1138 /**
1139   *	count_pages_for_highmem - compute the number of non-highmem pages
1140   *	that will be necessary for creating copies of highmem pages.
1141   */
1142 
1143 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1144 {
1145 	unsigned int free_highmem = count_free_highmem_pages();
1146 
1147 	if (free_highmem >= nr_highmem)
1148 		nr_highmem = 0;
1149 	else
1150 		nr_highmem -= free_highmem;
1151 
1152 	return nr_highmem;
1153 }
1154 #else
1155 static unsigned int
1156 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1157 #endif /* CONFIG_HIGHMEM */
1158 
1159 /**
1160  *	enough_free_mem - Make sure we have enough free memory for the
1161  *	snapshot image.
1162  */
1163 
1164 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1165 {
1166 	struct zone *zone;
1167 	unsigned int free = 0, meta = 0;
1168 
1169 	for_each_zone(zone) {
1170 		meta += snapshot_additional_pages(zone);
1171 		if (!is_highmem(zone))
1172 			free += zone_page_state(zone, NR_FREE_PAGES);
1173 	}
1174 
1175 	nr_pages += count_pages_for_highmem(nr_highmem);
1176 	pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1177 		nr_pages, PAGES_FOR_IO, meta, free);
1178 
1179 	return free > nr_pages + PAGES_FOR_IO + meta;
1180 }
1181 
1182 #ifdef CONFIG_HIGHMEM
1183 /**
1184  *	get_highmem_buffer - if there are some highmem pages in the suspend
1185  *	image, we may need the buffer to copy them and/or load their data.
1186  */
1187 
1188 static inline int get_highmem_buffer(int safe_needed)
1189 {
1190 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1191 	return buffer ? 0 : -ENOMEM;
1192 }
1193 
1194 /**
1195  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1196  *	Try to allocate as many pages as needed, but if the number of free
1197  *	highmem pages is lesser than that, allocate them all.
1198  */
1199 
1200 static inline unsigned int
1201 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1202 {
1203 	unsigned int to_alloc = count_free_highmem_pages();
1204 
1205 	if (to_alloc > nr_highmem)
1206 		to_alloc = nr_highmem;
1207 
1208 	nr_highmem -= to_alloc;
1209 	while (to_alloc-- > 0) {
1210 		struct page *page;
1211 
1212 		page = alloc_image_page(__GFP_HIGHMEM);
1213 		memory_bm_set_bit(bm, page_to_pfn(page));
1214 	}
1215 	return nr_highmem;
1216 }
1217 #else
1218 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1219 
1220 static inline unsigned int
1221 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1222 #endif /* CONFIG_HIGHMEM */
1223 
1224 /**
1225  *	swsusp_alloc - allocate memory for the suspend image
1226  *
1227  *	We first try to allocate as many highmem pages as there are
1228  *	saveable highmem pages in the system.  If that fails, we allocate
1229  *	non-highmem pages for the copies of the remaining highmem ones.
1230  *
1231  *	In this approach it is likely that the copies of highmem pages will
1232  *	also be located in the high memory, because of the way in which
1233  *	copy_data_pages() works.
1234  */
1235 
1236 static int
1237 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1238 		unsigned int nr_pages, unsigned int nr_highmem)
1239 {
1240 	int error;
1241 
1242 	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1243 	if (error)
1244 		goto Free;
1245 
1246 	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1247 	if (error)
1248 		goto Free;
1249 
1250 	if (nr_highmem > 0) {
1251 		error = get_highmem_buffer(PG_ANY);
1252 		if (error)
1253 			goto Free;
1254 
1255 		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1256 	}
1257 	while (nr_pages-- > 0) {
1258 		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1259 
1260 		if (!page)
1261 			goto Free;
1262 
1263 		memory_bm_set_bit(copy_bm, page_to_pfn(page));
1264 	}
1265 	return 0;
1266 
1267  Free:
1268 	swsusp_free();
1269 	return -ENOMEM;
1270 }
1271 
1272 /* Memory bitmap used for marking saveable pages (during suspend) or the
1273  * suspend image pages (during resume)
1274  */
1275 static struct memory_bitmap orig_bm;
1276 /* Memory bitmap used on suspend for marking allocated pages that will contain
1277  * the copies of saveable pages.  During resume it is initially used for
1278  * marking the suspend image pages, but then its set bits are duplicated in
1279  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1280  * used for marking "safe" highmem pages, but it has to be reinitialized for
1281  * this purpose.
1282  */
1283 static struct memory_bitmap copy_bm;
1284 
1285 asmlinkage int swsusp_save(void)
1286 {
1287 	unsigned int nr_pages, nr_highmem;
1288 
1289 	printk(KERN_INFO "PM: Creating hibernation image: \n");
1290 
1291 	drain_local_pages(NULL);
1292 	nr_pages = count_data_pages();
1293 	nr_highmem = count_highmem_pages();
1294 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1295 
1296 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1297 		printk(KERN_ERR "PM: Not enough free memory\n");
1298 		return -ENOMEM;
1299 	}
1300 
1301 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1302 		printk(KERN_ERR "PM: Memory allocation failed\n");
1303 		return -ENOMEM;
1304 	}
1305 
1306 	/* During allocating of suspend pagedir, new cold pages may appear.
1307 	 * Kill them.
1308 	 */
1309 	drain_local_pages(NULL);
1310 	copy_data_pages(&copy_bm, &orig_bm);
1311 
1312 	/*
1313 	 * End of critical section. From now on, we can write to memory,
1314 	 * but we should not touch disk. This specially means we must _not_
1315 	 * touch swap space! Except we must write out our image of course.
1316 	 */
1317 
1318 	nr_pages += nr_highmem;
1319 	nr_copy_pages = nr_pages;
1320 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1321 
1322 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1323 		nr_pages);
1324 
1325 	return 0;
1326 }
1327 
1328 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1329 static int init_header_complete(struct swsusp_info *info)
1330 {
1331 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1332 	info->version_code = LINUX_VERSION_CODE;
1333 	return 0;
1334 }
1335 
1336 static char *check_image_kernel(struct swsusp_info *info)
1337 {
1338 	if (info->version_code != LINUX_VERSION_CODE)
1339 		return "kernel version";
1340 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1341 		return "system type";
1342 	if (strcmp(info->uts.release,init_utsname()->release))
1343 		return "kernel release";
1344 	if (strcmp(info->uts.version,init_utsname()->version))
1345 		return "version";
1346 	if (strcmp(info->uts.machine,init_utsname()->machine))
1347 		return "machine";
1348 	return NULL;
1349 }
1350 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1351 
1352 unsigned long snapshot_get_image_size(void)
1353 {
1354 	return nr_copy_pages + nr_meta_pages + 1;
1355 }
1356 
1357 static int init_header(struct swsusp_info *info)
1358 {
1359 	memset(info, 0, sizeof(struct swsusp_info));
1360 	info->num_physpages = num_physpages;
1361 	info->image_pages = nr_copy_pages;
1362 	info->pages = snapshot_get_image_size();
1363 	info->size = info->pages;
1364 	info->size <<= PAGE_SHIFT;
1365 	return init_header_complete(info);
1366 }
1367 
1368 /**
1369  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1370  *	are stored in the array @buf[] (1 page at a time)
1371  */
1372 
1373 static inline void
1374 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1375 {
1376 	int j;
1377 
1378 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1379 		buf[j] = memory_bm_next_pfn(bm);
1380 		if (unlikely(buf[j] == BM_END_OF_MAP))
1381 			break;
1382 	}
1383 }
1384 
1385 /**
1386  *	snapshot_read_next - used for reading the system memory snapshot.
1387  *
1388  *	On the first call to it @handle should point to a zeroed
1389  *	snapshot_handle structure.  The structure gets updated and a pointer
1390  *	to it should be passed to this function every next time.
1391  *
1392  *	The @count parameter should contain the number of bytes the caller
1393  *	wants to read from the snapshot.  It must not be zero.
1394  *
1395  *	On success the function returns a positive number.  Then, the caller
1396  *	is allowed to read up to the returned number of bytes from the memory
1397  *	location computed by the data_of() macro.  The number returned
1398  *	may be smaller than @count, but this only happens if the read would
1399  *	cross a page boundary otherwise.
1400  *
1401  *	The function returns 0 to indicate the end of data stream condition,
1402  *	and a negative number is returned on error.  In such cases the
1403  *	structure pointed to by @handle is not updated and should not be used
1404  *	any more.
1405  */
1406 
1407 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1408 {
1409 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1410 		return 0;
1411 
1412 	if (!buffer) {
1413 		/* This makes the buffer be freed by swsusp_free() */
1414 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1415 		if (!buffer)
1416 			return -ENOMEM;
1417 	}
1418 	if (!handle->offset) {
1419 		int error;
1420 
1421 		error = init_header((struct swsusp_info *)buffer);
1422 		if (error)
1423 			return error;
1424 		handle->buffer = buffer;
1425 		memory_bm_position_reset(&orig_bm);
1426 		memory_bm_position_reset(&copy_bm);
1427 	}
1428 	if (handle->prev < handle->cur) {
1429 		if (handle->cur <= nr_meta_pages) {
1430 			memset(buffer, 0, PAGE_SIZE);
1431 			pack_pfns(buffer, &orig_bm);
1432 		} else {
1433 			struct page *page;
1434 
1435 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1436 			if (PageHighMem(page)) {
1437 				/* Highmem pages are copied to the buffer,
1438 				 * because we can't return with a kmapped
1439 				 * highmem page (we may not be called again).
1440 				 */
1441 				void *kaddr;
1442 
1443 				kaddr = kmap_atomic(page, KM_USER0);
1444 				memcpy(buffer, kaddr, PAGE_SIZE);
1445 				kunmap_atomic(kaddr, KM_USER0);
1446 				handle->buffer = buffer;
1447 			} else {
1448 				handle->buffer = page_address(page);
1449 			}
1450 		}
1451 		handle->prev = handle->cur;
1452 	}
1453 	handle->buf_offset = handle->cur_offset;
1454 	if (handle->cur_offset + count >= PAGE_SIZE) {
1455 		count = PAGE_SIZE - handle->cur_offset;
1456 		handle->cur_offset = 0;
1457 		handle->cur++;
1458 	} else {
1459 		handle->cur_offset += count;
1460 	}
1461 	handle->offset += count;
1462 	return count;
1463 }
1464 
1465 /**
1466  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1467  *	the image during resume, because they conflict with the pages that
1468  *	had been used before suspend
1469  */
1470 
1471 static int mark_unsafe_pages(struct memory_bitmap *bm)
1472 {
1473 	struct zone *zone;
1474 	unsigned long pfn, max_zone_pfn;
1475 
1476 	/* Clear page flags */
1477 	for_each_zone(zone) {
1478 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1479 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1480 			if (pfn_valid(pfn))
1481 				swsusp_unset_page_free(pfn_to_page(pfn));
1482 	}
1483 
1484 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1485 	memory_bm_position_reset(bm);
1486 	do {
1487 		pfn = memory_bm_next_pfn(bm);
1488 		if (likely(pfn != BM_END_OF_MAP)) {
1489 			if (likely(pfn_valid(pfn)))
1490 				swsusp_set_page_free(pfn_to_page(pfn));
1491 			else
1492 				return -EFAULT;
1493 		}
1494 	} while (pfn != BM_END_OF_MAP);
1495 
1496 	allocated_unsafe_pages = 0;
1497 
1498 	return 0;
1499 }
1500 
1501 static void
1502 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1503 {
1504 	unsigned long pfn;
1505 
1506 	memory_bm_position_reset(src);
1507 	pfn = memory_bm_next_pfn(src);
1508 	while (pfn != BM_END_OF_MAP) {
1509 		memory_bm_set_bit(dst, pfn);
1510 		pfn = memory_bm_next_pfn(src);
1511 	}
1512 }
1513 
1514 static int check_header(struct swsusp_info *info)
1515 {
1516 	char *reason;
1517 
1518 	reason = check_image_kernel(info);
1519 	if (!reason && info->num_physpages != num_physpages)
1520 		reason = "memory size";
1521 	if (reason) {
1522 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1523 		return -EPERM;
1524 	}
1525 	return 0;
1526 }
1527 
1528 /**
1529  *	load header - check the image header and copy data from it
1530  */
1531 
1532 static int
1533 load_header(struct swsusp_info *info)
1534 {
1535 	int error;
1536 
1537 	restore_pblist = NULL;
1538 	error = check_header(info);
1539 	if (!error) {
1540 		nr_copy_pages = info->image_pages;
1541 		nr_meta_pages = info->pages - info->image_pages - 1;
1542 	}
1543 	return error;
1544 }
1545 
1546 /**
1547  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1548  *	the corresponding bit in the memory bitmap @bm
1549  */
1550 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1551 {
1552 	int j;
1553 
1554 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1555 		if (unlikely(buf[j] == BM_END_OF_MAP))
1556 			break;
1557 
1558 		if (memory_bm_pfn_present(bm, buf[j]))
1559 			memory_bm_set_bit(bm, buf[j]);
1560 		else
1561 			return -EFAULT;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /* List of "safe" pages that may be used to store data loaded from the suspend
1568  * image
1569  */
1570 static struct linked_page *safe_pages_list;
1571 
1572 #ifdef CONFIG_HIGHMEM
1573 /* struct highmem_pbe is used for creating the list of highmem pages that
1574  * should be restored atomically during the resume from disk, because the page
1575  * frames they have occupied before the suspend are in use.
1576  */
1577 struct highmem_pbe {
1578 	struct page *copy_page;	/* data is here now */
1579 	struct page *orig_page;	/* data was here before the suspend */
1580 	struct highmem_pbe *next;
1581 };
1582 
1583 /* List of highmem PBEs needed for restoring the highmem pages that were
1584  * allocated before the suspend and included in the suspend image, but have
1585  * also been allocated by the "resume" kernel, so their contents cannot be
1586  * written directly to their "original" page frames.
1587  */
1588 static struct highmem_pbe *highmem_pblist;
1589 
1590 /**
1591  *	count_highmem_image_pages - compute the number of highmem pages in the
1592  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1593  *	image pages are assumed to be set.
1594  */
1595 
1596 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1597 {
1598 	unsigned long pfn;
1599 	unsigned int cnt = 0;
1600 
1601 	memory_bm_position_reset(bm);
1602 	pfn = memory_bm_next_pfn(bm);
1603 	while (pfn != BM_END_OF_MAP) {
1604 		if (PageHighMem(pfn_to_page(pfn)))
1605 			cnt++;
1606 
1607 		pfn = memory_bm_next_pfn(bm);
1608 	}
1609 	return cnt;
1610 }
1611 
1612 /**
1613  *	prepare_highmem_image - try to allocate as many highmem pages as
1614  *	there are highmem image pages (@nr_highmem_p points to the variable
1615  *	containing the number of highmem image pages).  The pages that are
1616  *	"safe" (ie. will not be overwritten when the suspend image is
1617  *	restored) have the corresponding bits set in @bm (it must be
1618  *	unitialized).
1619  *
1620  *	NOTE: This function should not be called if there are no highmem
1621  *	image pages.
1622  */
1623 
1624 static unsigned int safe_highmem_pages;
1625 
1626 static struct memory_bitmap *safe_highmem_bm;
1627 
1628 static int
1629 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1630 {
1631 	unsigned int to_alloc;
1632 
1633 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1634 		return -ENOMEM;
1635 
1636 	if (get_highmem_buffer(PG_SAFE))
1637 		return -ENOMEM;
1638 
1639 	to_alloc = count_free_highmem_pages();
1640 	if (to_alloc > *nr_highmem_p)
1641 		to_alloc = *nr_highmem_p;
1642 	else
1643 		*nr_highmem_p = to_alloc;
1644 
1645 	safe_highmem_pages = 0;
1646 	while (to_alloc-- > 0) {
1647 		struct page *page;
1648 
1649 		page = alloc_page(__GFP_HIGHMEM);
1650 		if (!swsusp_page_is_free(page)) {
1651 			/* The page is "safe", set its bit the bitmap */
1652 			memory_bm_set_bit(bm, page_to_pfn(page));
1653 			safe_highmem_pages++;
1654 		}
1655 		/* Mark the page as allocated */
1656 		swsusp_set_page_forbidden(page);
1657 		swsusp_set_page_free(page);
1658 	}
1659 	memory_bm_position_reset(bm);
1660 	safe_highmem_bm = bm;
1661 	return 0;
1662 }
1663 
1664 /**
1665  *	get_highmem_page_buffer - for given highmem image page find the buffer
1666  *	that suspend_write_next() should set for its caller to write to.
1667  *
1668  *	If the page is to be saved to its "original" page frame or a copy of
1669  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1670  *	the copy of the page is to be made in normal memory, so the address of
1671  *	the copy is returned.
1672  *
1673  *	If @buffer is returned, the caller of suspend_write_next() will write
1674  *	the page's contents to @buffer, so they will have to be copied to the
1675  *	right location on the next call to suspend_write_next() and it is done
1676  *	with the help of copy_last_highmem_page().  For this purpose, if
1677  *	@buffer is returned, @last_highmem page is set to the page to which
1678  *	the data will have to be copied from @buffer.
1679  */
1680 
1681 static struct page *last_highmem_page;
1682 
1683 static void *
1684 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1685 {
1686 	struct highmem_pbe *pbe;
1687 	void *kaddr;
1688 
1689 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1690 		/* We have allocated the "original" page frame and we can
1691 		 * use it directly to store the loaded page.
1692 		 */
1693 		last_highmem_page = page;
1694 		return buffer;
1695 	}
1696 	/* The "original" page frame has not been allocated and we have to
1697 	 * use a "safe" page frame to store the loaded page.
1698 	 */
1699 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1700 	if (!pbe) {
1701 		swsusp_free();
1702 		return ERR_PTR(-ENOMEM);
1703 	}
1704 	pbe->orig_page = page;
1705 	if (safe_highmem_pages > 0) {
1706 		struct page *tmp;
1707 
1708 		/* Copy of the page will be stored in high memory */
1709 		kaddr = buffer;
1710 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1711 		safe_highmem_pages--;
1712 		last_highmem_page = tmp;
1713 		pbe->copy_page = tmp;
1714 	} else {
1715 		/* Copy of the page will be stored in normal memory */
1716 		kaddr = safe_pages_list;
1717 		safe_pages_list = safe_pages_list->next;
1718 		pbe->copy_page = virt_to_page(kaddr);
1719 	}
1720 	pbe->next = highmem_pblist;
1721 	highmem_pblist = pbe;
1722 	return kaddr;
1723 }
1724 
1725 /**
1726  *	copy_last_highmem_page - copy the contents of a highmem image from
1727  *	@buffer, where the caller of snapshot_write_next() has place them,
1728  *	to the right location represented by @last_highmem_page .
1729  */
1730 
1731 static void copy_last_highmem_page(void)
1732 {
1733 	if (last_highmem_page) {
1734 		void *dst;
1735 
1736 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1737 		memcpy(dst, buffer, PAGE_SIZE);
1738 		kunmap_atomic(dst, KM_USER0);
1739 		last_highmem_page = NULL;
1740 	}
1741 }
1742 
1743 static inline int last_highmem_page_copied(void)
1744 {
1745 	return !last_highmem_page;
1746 }
1747 
1748 static inline void free_highmem_data(void)
1749 {
1750 	if (safe_highmem_bm)
1751 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1752 
1753 	if (buffer)
1754 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1755 }
1756 #else
1757 static inline int get_safe_write_buffer(void) { return 0; }
1758 
1759 static unsigned int
1760 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1761 
1762 static inline int
1763 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1764 {
1765 	return 0;
1766 }
1767 
1768 static inline void *
1769 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1770 {
1771 	return ERR_PTR(-EINVAL);
1772 }
1773 
1774 static inline void copy_last_highmem_page(void) {}
1775 static inline int last_highmem_page_copied(void) { return 1; }
1776 static inline void free_highmem_data(void) {}
1777 #endif /* CONFIG_HIGHMEM */
1778 
1779 /**
1780  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1781  *	be overwritten in the process of restoring the system memory state
1782  *	from the suspend image ("unsafe" pages) and allocate memory for the
1783  *	image.
1784  *
1785  *	The idea is to allocate a new memory bitmap first and then allocate
1786  *	as many pages as needed for the image data, but not to assign these
1787  *	pages to specific tasks initially.  Instead, we just mark them as
1788  *	allocated and create a lists of "safe" pages that will be used
1789  *	later.  On systems with high memory a list of "safe" highmem pages is
1790  *	also created.
1791  */
1792 
1793 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1794 
1795 static int
1796 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1797 {
1798 	unsigned int nr_pages, nr_highmem;
1799 	struct linked_page *sp_list, *lp;
1800 	int error;
1801 
1802 	/* If there is no highmem, the buffer will not be necessary */
1803 	free_image_page(buffer, PG_UNSAFE_CLEAR);
1804 	buffer = NULL;
1805 
1806 	nr_highmem = count_highmem_image_pages(bm);
1807 	error = mark_unsafe_pages(bm);
1808 	if (error)
1809 		goto Free;
1810 
1811 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1812 	if (error)
1813 		goto Free;
1814 
1815 	duplicate_memory_bitmap(new_bm, bm);
1816 	memory_bm_free(bm, PG_UNSAFE_KEEP);
1817 	if (nr_highmem > 0) {
1818 		error = prepare_highmem_image(bm, &nr_highmem);
1819 		if (error)
1820 			goto Free;
1821 	}
1822 	/* Reserve some safe pages for potential later use.
1823 	 *
1824 	 * NOTE: This way we make sure there will be enough safe pages for the
1825 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
1826 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1827 	 */
1828 	sp_list = NULL;
1829 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1830 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1831 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1832 	while (nr_pages > 0) {
1833 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1834 		if (!lp) {
1835 			error = -ENOMEM;
1836 			goto Free;
1837 		}
1838 		lp->next = sp_list;
1839 		sp_list = lp;
1840 		nr_pages--;
1841 	}
1842 	/* Preallocate memory for the image */
1843 	safe_pages_list = NULL;
1844 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1845 	while (nr_pages > 0) {
1846 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1847 		if (!lp) {
1848 			error = -ENOMEM;
1849 			goto Free;
1850 		}
1851 		if (!swsusp_page_is_free(virt_to_page(lp))) {
1852 			/* The page is "safe", add it to the list */
1853 			lp->next = safe_pages_list;
1854 			safe_pages_list = lp;
1855 		}
1856 		/* Mark the page as allocated */
1857 		swsusp_set_page_forbidden(virt_to_page(lp));
1858 		swsusp_set_page_free(virt_to_page(lp));
1859 		nr_pages--;
1860 	}
1861 	/* Free the reserved safe pages so that chain_alloc() can use them */
1862 	while (sp_list) {
1863 		lp = sp_list->next;
1864 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
1865 		sp_list = lp;
1866 	}
1867 	return 0;
1868 
1869  Free:
1870 	swsusp_free();
1871 	return error;
1872 }
1873 
1874 /**
1875  *	get_buffer - compute the address that snapshot_write_next() should
1876  *	set for its caller to write to.
1877  */
1878 
1879 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1880 {
1881 	struct pbe *pbe;
1882 	struct page *page;
1883 	unsigned long pfn = memory_bm_next_pfn(bm);
1884 
1885 	if (pfn == BM_END_OF_MAP)
1886 		return ERR_PTR(-EFAULT);
1887 
1888 	page = pfn_to_page(pfn);
1889 	if (PageHighMem(page))
1890 		return get_highmem_page_buffer(page, ca);
1891 
1892 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1893 		/* We have allocated the "original" page frame and we can
1894 		 * use it directly to store the loaded page.
1895 		 */
1896 		return page_address(page);
1897 
1898 	/* The "original" page frame has not been allocated and we have to
1899 	 * use a "safe" page frame to store the loaded page.
1900 	 */
1901 	pbe = chain_alloc(ca, sizeof(struct pbe));
1902 	if (!pbe) {
1903 		swsusp_free();
1904 		return ERR_PTR(-ENOMEM);
1905 	}
1906 	pbe->orig_address = page_address(page);
1907 	pbe->address = safe_pages_list;
1908 	safe_pages_list = safe_pages_list->next;
1909 	pbe->next = restore_pblist;
1910 	restore_pblist = pbe;
1911 	return pbe->address;
1912 }
1913 
1914 /**
1915  *	snapshot_write_next - used for writing the system memory snapshot.
1916  *
1917  *	On the first call to it @handle should point to a zeroed
1918  *	snapshot_handle structure.  The structure gets updated and a pointer
1919  *	to it should be passed to this function every next time.
1920  *
1921  *	The @count parameter should contain the number of bytes the caller
1922  *	wants to write to the image.  It must not be zero.
1923  *
1924  *	On success the function returns a positive number.  Then, the caller
1925  *	is allowed to write up to the returned number of bytes to the memory
1926  *	location computed by the data_of() macro.  The number returned
1927  *	may be smaller than @count, but this only happens if the write would
1928  *	cross a page boundary otherwise.
1929  *
1930  *	The function returns 0 to indicate the "end of file" condition,
1931  *	and a negative number is returned on error.  In such cases the
1932  *	structure pointed to by @handle is not updated and should not be used
1933  *	any more.
1934  */
1935 
1936 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1937 {
1938 	static struct chain_allocator ca;
1939 	int error = 0;
1940 
1941 	/* Check if we have already loaded the entire image */
1942 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1943 		return 0;
1944 
1945 	if (handle->offset == 0) {
1946 		if (!buffer)
1947 			/* This makes the buffer be freed by swsusp_free() */
1948 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1949 
1950 		if (!buffer)
1951 			return -ENOMEM;
1952 
1953 		handle->buffer = buffer;
1954 	}
1955 	handle->sync_read = 1;
1956 	if (handle->prev < handle->cur) {
1957 		if (handle->prev == 0) {
1958 			error = load_header(buffer);
1959 			if (error)
1960 				return error;
1961 
1962 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1963 			if (error)
1964 				return error;
1965 
1966 		} else if (handle->prev <= nr_meta_pages) {
1967 			error = unpack_orig_pfns(buffer, &copy_bm);
1968 			if (error)
1969 				return error;
1970 
1971 			if (handle->prev == nr_meta_pages) {
1972 				error = prepare_image(&orig_bm, &copy_bm);
1973 				if (error)
1974 					return error;
1975 
1976 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1977 				memory_bm_position_reset(&orig_bm);
1978 				restore_pblist = NULL;
1979 				handle->buffer = get_buffer(&orig_bm, &ca);
1980 				handle->sync_read = 0;
1981 				if (IS_ERR(handle->buffer))
1982 					return PTR_ERR(handle->buffer);
1983 			}
1984 		} else {
1985 			copy_last_highmem_page();
1986 			handle->buffer = get_buffer(&orig_bm, &ca);
1987 			if (IS_ERR(handle->buffer))
1988 				return PTR_ERR(handle->buffer);
1989 			if (handle->buffer != buffer)
1990 				handle->sync_read = 0;
1991 		}
1992 		handle->prev = handle->cur;
1993 	}
1994 	handle->buf_offset = handle->cur_offset;
1995 	if (handle->cur_offset + count >= PAGE_SIZE) {
1996 		count = PAGE_SIZE - handle->cur_offset;
1997 		handle->cur_offset = 0;
1998 		handle->cur++;
1999 	} else {
2000 		handle->cur_offset += count;
2001 	}
2002 	handle->offset += count;
2003 	return count;
2004 }
2005 
2006 /**
2007  *	snapshot_write_finalize - must be called after the last call to
2008  *	snapshot_write_next() in case the last page in the image happens
2009  *	to be a highmem page and its contents should be stored in the
2010  *	highmem.  Additionally, it releases the memory that will not be
2011  *	used any more.
2012  */
2013 
2014 void snapshot_write_finalize(struct snapshot_handle *handle)
2015 {
2016 	copy_last_highmem_page();
2017 	/* Free only if we have loaded the image entirely */
2018 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
2019 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2020 		free_highmem_data();
2021 	}
2022 }
2023 
2024 int snapshot_image_loaded(struct snapshot_handle *handle)
2025 {
2026 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2027 			handle->cur <= nr_meta_pages + nr_copy_pages);
2028 }
2029 
2030 #ifdef CONFIG_HIGHMEM
2031 /* Assumes that @buf is ready and points to a "safe" page */
2032 static inline void
2033 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2034 {
2035 	void *kaddr1, *kaddr2;
2036 
2037 	kaddr1 = kmap_atomic(p1, KM_USER0);
2038 	kaddr2 = kmap_atomic(p2, KM_USER1);
2039 	memcpy(buf, kaddr1, PAGE_SIZE);
2040 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
2041 	memcpy(kaddr2, buf, PAGE_SIZE);
2042 	kunmap_atomic(kaddr1, KM_USER0);
2043 	kunmap_atomic(kaddr2, KM_USER1);
2044 }
2045 
2046 /**
2047  *	restore_highmem - for each highmem page that was allocated before
2048  *	the suspend and included in the suspend image, and also has been
2049  *	allocated by the "resume" kernel swap its current (ie. "before
2050  *	resume") contents with the previous (ie. "before suspend") one.
2051  *
2052  *	If the resume eventually fails, we can call this function once
2053  *	again and restore the "before resume" highmem state.
2054  */
2055 
2056 int restore_highmem(void)
2057 {
2058 	struct highmem_pbe *pbe = highmem_pblist;
2059 	void *buf;
2060 
2061 	if (!pbe)
2062 		return 0;
2063 
2064 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2065 	if (!buf)
2066 		return -ENOMEM;
2067 
2068 	while (pbe) {
2069 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2070 		pbe = pbe->next;
2071 	}
2072 	free_image_page(buf, PG_UNSAFE_CLEAR);
2073 	return 0;
2074 }
2075 #endif /* CONFIG_HIGHMEM */
2076