1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/snapshot.c 4 * 5 * This file provides system snapshot/restore functionality for swsusp. 6 * 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 9 */ 10 11 #define pr_fmt(fmt) "PM: hibernation: " fmt 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/memblock.h> 25 #include <linux/nmi.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 #include <linux/compiler.h> 32 #include <linux/ktime.h> 33 #include <linux/set_memory.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/mmu_context.h> 37 #include <asm/tlbflush.h> 38 #include <asm/io.h> 39 40 #include "power.h" 41 42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 43 static bool hibernate_restore_protection; 44 static bool hibernate_restore_protection_active; 45 46 void enable_restore_image_protection(void) 47 { 48 hibernate_restore_protection = true; 49 } 50 51 static inline void hibernate_restore_protection_begin(void) 52 { 53 hibernate_restore_protection_active = hibernate_restore_protection; 54 } 55 56 static inline void hibernate_restore_protection_end(void) 57 { 58 hibernate_restore_protection_active = false; 59 } 60 61 static inline int __must_check hibernate_restore_protect_page(void *page_address) 62 { 63 if (hibernate_restore_protection_active) 64 return set_memory_ro((unsigned long)page_address, 1); 65 return 0; 66 } 67 68 static inline int hibernate_restore_unprotect_page(void *page_address) 69 { 70 if (hibernate_restore_protection_active) 71 return set_memory_rw((unsigned long)page_address, 1); 72 return 0; 73 } 74 #else 75 static inline void hibernate_restore_protection_begin(void) {} 76 static inline void hibernate_restore_protection_end(void) {} 77 static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; } 78 static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; } 79 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 80 81 82 /* 83 * The calls to set_direct_map_*() should not fail because remapping a page 84 * here means that we only update protection bits in an existing PTE. 85 * It is still worth to have a warning here if something changes and this 86 * will no longer be the case. 87 */ 88 static inline void hibernate_map_page(struct page *page) 89 { 90 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 91 int ret = set_direct_map_default_noflush(page); 92 93 if (ret) 94 pr_warn_once("Failed to remap page\n"); 95 } else { 96 debug_pagealloc_map_pages(page, 1); 97 } 98 } 99 100 static inline void hibernate_unmap_page(struct page *page) 101 { 102 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 103 unsigned long addr = (unsigned long)page_address(page); 104 int ret = set_direct_map_invalid_noflush(page); 105 106 if (ret) 107 pr_warn_once("Failed to remap page\n"); 108 109 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 110 } else { 111 debug_pagealloc_unmap_pages(page, 1); 112 } 113 } 114 115 static int swsusp_page_is_free(struct page *); 116 static void swsusp_set_page_forbidden(struct page *); 117 static void swsusp_unset_page_forbidden(struct page *); 118 119 /* 120 * Number of bytes to reserve for memory allocations made by device drivers 121 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 122 * cause image creation to fail (tunable via /sys/power/reserved_size). 123 */ 124 unsigned long reserved_size; 125 126 void __init hibernate_reserved_size_init(void) 127 { 128 reserved_size = SPARE_PAGES * PAGE_SIZE; 129 } 130 131 /* 132 * Preferred image size in bytes (tunable via /sys/power/image_size). 133 * When it is set to N, swsusp will do its best to ensure the image 134 * size will not exceed N bytes, but if that is impossible, it will 135 * try to create the smallest image possible. 136 */ 137 unsigned long image_size; 138 139 void __init hibernate_image_size_init(void) 140 { 141 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 142 } 143 144 /* 145 * List of PBEs needed for restoring the pages that were allocated before 146 * the suspend and included in the suspend image, but have also been 147 * allocated by the "resume" kernel, so their contents cannot be written 148 * directly to their "original" page frames. 149 */ 150 struct pbe *restore_pblist; 151 152 /* struct linked_page is used to build chains of pages */ 153 154 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 155 156 struct linked_page { 157 struct linked_page *next; 158 char data[LINKED_PAGE_DATA_SIZE]; 159 } __packed; 160 161 /* 162 * List of "safe" pages (ie. pages that were not used by the image kernel 163 * before hibernation) that may be used as temporary storage for image kernel 164 * memory contents. 165 */ 166 static struct linked_page *safe_pages_list; 167 168 /* Pointer to an auxiliary buffer (1 page) */ 169 static void *buffer; 170 171 #define PG_ANY 0 172 #define PG_SAFE 1 173 #define PG_UNSAFE_CLEAR 1 174 #define PG_UNSAFE_KEEP 0 175 176 static unsigned int allocated_unsafe_pages; 177 178 /** 179 * get_image_page - Allocate a page for a hibernation image. 180 * @gfp_mask: GFP mask for the allocation. 181 * @safe_needed: Get pages that were not used before hibernation (restore only) 182 * 183 * During image restoration, for storing the PBE list and the image data, we can 184 * only use memory pages that do not conflict with the pages used before 185 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 186 * using allocated_unsafe_pages. 187 * 188 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 189 * swsusp_free() can release it. 190 */ 191 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 192 { 193 void *res; 194 195 res = (void *)get_zeroed_page(gfp_mask); 196 if (safe_needed) 197 while (res && swsusp_page_is_free(virt_to_page(res))) { 198 /* The page is unsafe, mark it for swsusp_free() */ 199 swsusp_set_page_forbidden(virt_to_page(res)); 200 allocated_unsafe_pages++; 201 res = (void *)get_zeroed_page(gfp_mask); 202 } 203 if (res) { 204 swsusp_set_page_forbidden(virt_to_page(res)); 205 swsusp_set_page_free(virt_to_page(res)); 206 } 207 return res; 208 } 209 210 static void *__get_safe_page(gfp_t gfp_mask) 211 { 212 if (safe_pages_list) { 213 void *ret = safe_pages_list; 214 215 safe_pages_list = safe_pages_list->next; 216 memset(ret, 0, PAGE_SIZE); 217 return ret; 218 } 219 return get_image_page(gfp_mask, PG_SAFE); 220 } 221 222 unsigned long get_safe_page(gfp_t gfp_mask) 223 { 224 return (unsigned long)__get_safe_page(gfp_mask); 225 } 226 227 static struct page *alloc_image_page(gfp_t gfp_mask) 228 { 229 struct page *page; 230 231 page = alloc_page(gfp_mask); 232 if (page) { 233 swsusp_set_page_forbidden(page); 234 swsusp_set_page_free(page); 235 } 236 return page; 237 } 238 239 static void recycle_safe_page(void *page_address) 240 { 241 struct linked_page *lp = page_address; 242 243 lp->next = safe_pages_list; 244 safe_pages_list = lp; 245 } 246 247 /** 248 * free_image_page - Free a page allocated for hibernation image. 249 * @addr: Address of the page to free. 250 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 251 * 252 * The page to free should have been allocated by get_image_page() (page flags 253 * set by it are affected). 254 */ 255 static inline void free_image_page(void *addr, int clear_nosave_free) 256 { 257 struct page *page; 258 259 BUG_ON(!virt_addr_valid(addr)); 260 261 page = virt_to_page(addr); 262 263 swsusp_unset_page_forbidden(page); 264 if (clear_nosave_free) 265 swsusp_unset_page_free(page); 266 267 __free_page(page); 268 } 269 270 static inline void free_list_of_pages(struct linked_page *list, 271 int clear_page_nosave) 272 { 273 while (list) { 274 struct linked_page *lp = list->next; 275 276 free_image_page(list, clear_page_nosave); 277 list = lp; 278 } 279 } 280 281 /* 282 * struct chain_allocator is used for allocating small objects out of 283 * a linked list of pages called 'the chain'. 284 * 285 * The chain grows each time when there is no room for a new object in 286 * the current page. The allocated objects cannot be freed individually. 287 * It is only possible to free them all at once, by freeing the entire 288 * chain. 289 * 290 * NOTE: The chain allocator may be inefficient if the allocated objects 291 * are not much smaller than PAGE_SIZE. 292 */ 293 struct chain_allocator { 294 struct linked_page *chain; /* the chain */ 295 unsigned int used_space; /* total size of objects allocated out 296 of the current page */ 297 gfp_t gfp_mask; /* mask for allocating pages */ 298 int safe_needed; /* if set, only "safe" pages are allocated */ 299 }; 300 301 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 302 int safe_needed) 303 { 304 ca->chain = NULL; 305 ca->used_space = LINKED_PAGE_DATA_SIZE; 306 ca->gfp_mask = gfp_mask; 307 ca->safe_needed = safe_needed; 308 } 309 310 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 311 { 312 void *ret; 313 314 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 315 struct linked_page *lp; 316 317 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 318 get_image_page(ca->gfp_mask, PG_ANY); 319 if (!lp) 320 return NULL; 321 322 lp->next = ca->chain; 323 ca->chain = lp; 324 ca->used_space = 0; 325 } 326 ret = ca->chain->data + ca->used_space; 327 ca->used_space += size; 328 return ret; 329 } 330 331 /* 332 * Data types related to memory bitmaps. 333 * 334 * Memory bitmap is a structure consisting of many linked lists of 335 * objects. The main list's elements are of type struct zone_bitmap 336 * and each of them corresponds to one zone. For each zone bitmap 337 * object there is a list of objects of type struct bm_block that 338 * represent each blocks of bitmap in which information is stored. 339 * 340 * struct memory_bitmap contains a pointer to the main list of zone 341 * bitmap objects, a struct bm_position used for browsing the bitmap, 342 * and a pointer to the list of pages used for allocating all of the 343 * zone bitmap objects and bitmap block objects. 344 * 345 * NOTE: It has to be possible to lay out the bitmap in memory 346 * using only allocations of order 0. Additionally, the bitmap is 347 * designed to work with arbitrary number of zones (this is over the 348 * top for now, but let's avoid making unnecessary assumptions ;-). 349 * 350 * struct zone_bitmap contains a pointer to a list of bitmap block 351 * objects and a pointer to the bitmap block object that has been 352 * most recently used for setting bits. Additionally, it contains the 353 * PFNs that correspond to the start and end of the represented zone. 354 * 355 * struct bm_block contains a pointer to the memory page in which 356 * information is stored (in the form of a block of bitmap) 357 * It also contains the pfns that correspond to the start and end of 358 * the represented memory area. 359 * 360 * The memory bitmap is organized as a radix tree to guarantee fast random 361 * access to the bits. There is one radix tree for each zone (as returned 362 * from create_mem_extents). 363 * 364 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 365 * two linked lists for the nodes of the tree, one for the inner nodes and 366 * one for the leave nodes. The linked leave nodes are used for fast linear 367 * access of the memory bitmap. 368 * 369 * The struct rtree_node represents one node of the radix tree. 370 */ 371 372 #define BM_END_OF_MAP (~0UL) 373 374 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 375 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 376 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 377 378 /* 379 * struct rtree_node is a wrapper struct to link the nodes 380 * of the rtree together for easy linear iteration over 381 * bits and easy freeing 382 */ 383 struct rtree_node { 384 struct list_head list; 385 unsigned long *data; 386 }; 387 388 /* 389 * struct mem_zone_bm_rtree represents a bitmap used for one 390 * populated memory zone. 391 */ 392 struct mem_zone_bm_rtree { 393 struct list_head list; /* Link Zones together */ 394 struct list_head nodes; /* Radix Tree inner nodes */ 395 struct list_head leaves; /* Radix Tree leaves */ 396 unsigned long start_pfn; /* Zone start page frame */ 397 unsigned long end_pfn; /* Zone end page frame + 1 */ 398 struct rtree_node *rtree; /* Radix Tree Root */ 399 int levels; /* Number of Radix Tree Levels */ 400 unsigned int blocks; /* Number of Bitmap Blocks */ 401 }; 402 403 /* struct bm_position is used for browsing memory bitmaps */ 404 405 struct bm_position { 406 struct mem_zone_bm_rtree *zone; 407 struct rtree_node *node; 408 unsigned long node_pfn; 409 unsigned long cur_pfn; 410 int node_bit; 411 }; 412 413 struct memory_bitmap { 414 struct list_head zones; 415 struct linked_page *p_list; /* list of pages used to store zone 416 bitmap objects and bitmap block 417 objects */ 418 struct bm_position cur; /* most recently used bit position */ 419 }; 420 421 /* Functions that operate on memory bitmaps */ 422 423 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 424 #if BITS_PER_LONG == 32 425 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 426 #else 427 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 428 #endif 429 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 430 431 /** 432 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 433 * @gfp_mask: GFP mask for the allocation. 434 * @safe_needed: Get pages not used before hibernation (restore only) 435 * @ca: Pointer to a linked list of pages ("a chain") to allocate from 436 * @list: Radix Tree node to add. 437 * 438 * This function is used to allocate inner nodes as well as the 439 * leave nodes of the radix tree. It also adds the node to the 440 * corresponding linked list passed in by the *list parameter. 441 */ 442 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 443 struct chain_allocator *ca, 444 struct list_head *list) 445 { 446 struct rtree_node *node; 447 448 node = chain_alloc(ca, sizeof(struct rtree_node)); 449 if (!node) 450 return NULL; 451 452 node->data = get_image_page(gfp_mask, safe_needed); 453 if (!node->data) 454 return NULL; 455 456 list_add_tail(&node->list, list); 457 458 return node; 459 } 460 461 /** 462 * add_rtree_block - Add a new leave node to the radix tree. 463 * 464 * The leave nodes need to be allocated in order to keep the leaves 465 * linked list in order. This is guaranteed by the zone->blocks 466 * counter. 467 */ 468 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 469 int safe_needed, struct chain_allocator *ca) 470 { 471 struct rtree_node *node, *block, **dst; 472 unsigned int levels_needed, block_nr; 473 int i; 474 475 block_nr = zone->blocks; 476 levels_needed = 0; 477 478 /* How many levels do we need for this block nr? */ 479 while (block_nr) { 480 levels_needed += 1; 481 block_nr >>= BM_RTREE_LEVEL_SHIFT; 482 } 483 484 /* Make sure the rtree has enough levels */ 485 for (i = zone->levels; i < levels_needed; i++) { 486 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 487 &zone->nodes); 488 if (!node) 489 return -ENOMEM; 490 491 node->data[0] = (unsigned long)zone->rtree; 492 zone->rtree = node; 493 zone->levels += 1; 494 } 495 496 /* Allocate new block */ 497 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 498 if (!block) 499 return -ENOMEM; 500 501 /* Now walk the rtree to insert the block */ 502 node = zone->rtree; 503 dst = &zone->rtree; 504 block_nr = zone->blocks; 505 for (i = zone->levels; i > 0; i--) { 506 int index; 507 508 if (!node) { 509 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 510 &zone->nodes); 511 if (!node) 512 return -ENOMEM; 513 *dst = node; 514 } 515 516 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 517 index &= BM_RTREE_LEVEL_MASK; 518 dst = (struct rtree_node **)&((*dst)->data[index]); 519 node = *dst; 520 } 521 522 zone->blocks += 1; 523 *dst = block; 524 525 return 0; 526 } 527 528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 529 int clear_nosave_free); 530 531 /** 532 * create_zone_bm_rtree - Create a radix tree for one zone. 533 * 534 * Allocated the mem_zone_bm_rtree structure and initializes it. 535 * This function also allocated and builds the radix tree for the 536 * zone. 537 */ 538 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 539 int safe_needed, 540 struct chain_allocator *ca, 541 unsigned long start, 542 unsigned long end) 543 { 544 struct mem_zone_bm_rtree *zone; 545 unsigned int i, nr_blocks; 546 unsigned long pages; 547 548 pages = end - start; 549 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 550 if (!zone) 551 return NULL; 552 553 INIT_LIST_HEAD(&zone->nodes); 554 INIT_LIST_HEAD(&zone->leaves); 555 zone->start_pfn = start; 556 zone->end_pfn = end; 557 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 558 559 for (i = 0; i < nr_blocks; i++) { 560 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 561 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 562 return NULL; 563 } 564 } 565 566 return zone; 567 } 568 569 /** 570 * free_zone_bm_rtree - Free the memory of the radix tree. 571 * 572 * Free all node pages of the radix tree. The mem_zone_bm_rtree 573 * structure itself is not freed here nor are the rtree_node 574 * structs. 575 */ 576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 577 int clear_nosave_free) 578 { 579 struct rtree_node *node; 580 581 list_for_each_entry(node, &zone->nodes, list) 582 free_image_page(node->data, clear_nosave_free); 583 584 list_for_each_entry(node, &zone->leaves, list) 585 free_image_page(node->data, clear_nosave_free); 586 } 587 588 static void memory_bm_position_reset(struct memory_bitmap *bm) 589 { 590 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 591 list); 592 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 593 struct rtree_node, list); 594 bm->cur.node_pfn = 0; 595 bm->cur.cur_pfn = BM_END_OF_MAP; 596 bm->cur.node_bit = 0; 597 } 598 599 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 600 601 struct mem_extent { 602 struct list_head hook; 603 unsigned long start; 604 unsigned long end; 605 }; 606 607 /** 608 * free_mem_extents - Free a list of memory extents. 609 * @list: List of extents to free. 610 */ 611 static void free_mem_extents(struct list_head *list) 612 { 613 struct mem_extent *ext, *aux; 614 615 list_for_each_entry_safe(ext, aux, list, hook) { 616 list_del(&ext->hook); 617 kfree(ext); 618 } 619 } 620 621 /** 622 * create_mem_extents - Create a list of memory extents. 623 * @list: List to put the extents into. 624 * @gfp_mask: Mask to use for memory allocations. 625 * 626 * The extents represent contiguous ranges of PFNs. 627 */ 628 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 629 { 630 struct zone *zone; 631 632 INIT_LIST_HEAD(list); 633 634 for_each_populated_zone(zone) { 635 unsigned long zone_start, zone_end; 636 struct mem_extent *ext, *cur, *aux; 637 638 zone_start = zone->zone_start_pfn; 639 zone_end = zone_end_pfn(zone); 640 641 list_for_each_entry(ext, list, hook) 642 if (zone_start <= ext->end) 643 break; 644 645 if (&ext->hook == list || zone_end < ext->start) { 646 /* New extent is necessary */ 647 struct mem_extent *new_ext; 648 649 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 650 if (!new_ext) { 651 free_mem_extents(list); 652 return -ENOMEM; 653 } 654 new_ext->start = zone_start; 655 new_ext->end = zone_end; 656 list_add_tail(&new_ext->hook, &ext->hook); 657 continue; 658 } 659 660 /* Merge this zone's range of PFNs with the existing one */ 661 if (zone_start < ext->start) 662 ext->start = zone_start; 663 if (zone_end > ext->end) 664 ext->end = zone_end; 665 666 /* More merging may be possible */ 667 cur = ext; 668 list_for_each_entry_safe_continue(cur, aux, list, hook) { 669 if (zone_end < cur->start) 670 break; 671 if (zone_end < cur->end) 672 ext->end = cur->end; 673 list_del(&cur->hook); 674 kfree(cur); 675 } 676 } 677 678 return 0; 679 } 680 681 /** 682 * memory_bm_create - Allocate memory for a memory bitmap. 683 */ 684 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 685 int safe_needed) 686 { 687 struct chain_allocator ca; 688 struct list_head mem_extents; 689 struct mem_extent *ext; 690 int error; 691 692 chain_init(&ca, gfp_mask, safe_needed); 693 INIT_LIST_HEAD(&bm->zones); 694 695 error = create_mem_extents(&mem_extents, gfp_mask); 696 if (error) 697 return error; 698 699 list_for_each_entry(ext, &mem_extents, hook) { 700 struct mem_zone_bm_rtree *zone; 701 702 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 703 ext->start, ext->end); 704 if (!zone) { 705 error = -ENOMEM; 706 goto Error; 707 } 708 list_add_tail(&zone->list, &bm->zones); 709 } 710 711 bm->p_list = ca.chain; 712 memory_bm_position_reset(bm); 713 Exit: 714 free_mem_extents(&mem_extents); 715 return error; 716 717 Error: 718 bm->p_list = ca.chain; 719 memory_bm_free(bm, PG_UNSAFE_CLEAR); 720 goto Exit; 721 } 722 723 /** 724 * memory_bm_free - Free memory occupied by the memory bitmap. 725 * @bm: Memory bitmap. 726 */ 727 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 728 { 729 struct mem_zone_bm_rtree *zone; 730 731 list_for_each_entry(zone, &bm->zones, list) 732 free_zone_bm_rtree(zone, clear_nosave_free); 733 734 free_list_of_pages(bm->p_list, clear_nosave_free); 735 736 INIT_LIST_HEAD(&bm->zones); 737 } 738 739 /** 740 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 741 * 742 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 743 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 744 * 745 * Walk the radix tree to find the page containing the bit that represents @pfn 746 * and return the position of the bit in @addr and @bit_nr. 747 */ 748 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 749 void **addr, unsigned int *bit_nr) 750 { 751 struct mem_zone_bm_rtree *curr, *zone; 752 struct rtree_node *node; 753 int i, block_nr; 754 755 zone = bm->cur.zone; 756 757 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 758 goto zone_found; 759 760 zone = NULL; 761 762 /* Find the right zone */ 763 list_for_each_entry(curr, &bm->zones, list) { 764 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 765 zone = curr; 766 break; 767 } 768 } 769 770 if (!zone) 771 return -EFAULT; 772 773 zone_found: 774 /* 775 * We have found the zone. Now walk the radix tree to find the leaf node 776 * for our PFN. 777 */ 778 779 /* 780 * If the zone we wish to scan is the current zone and the 781 * pfn falls into the current node then we do not need to walk 782 * the tree. 783 */ 784 node = bm->cur.node; 785 if (zone == bm->cur.zone && 786 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 787 goto node_found; 788 789 node = zone->rtree; 790 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 791 792 for (i = zone->levels; i > 0; i--) { 793 int index; 794 795 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 796 index &= BM_RTREE_LEVEL_MASK; 797 BUG_ON(node->data[index] == 0); 798 node = (struct rtree_node *)node->data[index]; 799 } 800 801 node_found: 802 /* Update last position */ 803 bm->cur.zone = zone; 804 bm->cur.node = node; 805 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 806 bm->cur.cur_pfn = pfn; 807 808 /* Set return values */ 809 *addr = node->data; 810 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 811 812 return 0; 813 } 814 815 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 816 { 817 void *addr; 818 unsigned int bit; 819 int error; 820 821 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 822 BUG_ON(error); 823 set_bit(bit, addr); 824 } 825 826 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 827 { 828 void *addr; 829 unsigned int bit; 830 int error; 831 832 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 833 if (!error) 834 set_bit(bit, addr); 835 836 return error; 837 } 838 839 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 840 { 841 void *addr; 842 unsigned int bit; 843 int error; 844 845 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 846 BUG_ON(error); 847 clear_bit(bit, addr); 848 } 849 850 static void memory_bm_clear_current(struct memory_bitmap *bm) 851 { 852 int bit; 853 854 bit = max(bm->cur.node_bit - 1, 0); 855 clear_bit(bit, bm->cur.node->data); 856 } 857 858 static unsigned long memory_bm_get_current(struct memory_bitmap *bm) 859 { 860 return bm->cur.cur_pfn; 861 } 862 863 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 864 { 865 void *addr; 866 unsigned int bit; 867 int error; 868 869 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 870 BUG_ON(error); 871 return test_bit(bit, addr); 872 } 873 874 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 875 { 876 void *addr; 877 unsigned int bit; 878 879 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 880 } 881 882 /* 883 * rtree_next_node - Jump to the next leaf node. 884 * 885 * Set the position to the beginning of the next node in the 886 * memory bitmap. This is either the next node in the current 887 * zone's radix tree or the first node in the radix tree of the 888 * next zone. 889 * 890 * Return true if there is a next node, false otherwise. 891 */ 892 static bool rtree_next_node(struct memory_bitmap *bm) 893 { 894 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 895 bm->cur.node = list_entry(bm->cur.node->list.next, 896 struct rtree_node, list); 897 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 898 bm->cur.node_bit = 0; 899 touch_softlockup_watchdog(); 900 return true; 901 } 902 903 /* No more nodes, goto next zone */ 904 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 905 bm->cur.zone = list_entry(bm->cur.zone->list.next, 906 struct mem_zone_bm_rtree, list); 907 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 908 struct rtree_node, list); 909 bm->cur.node_pfn = 0; 910 bm->cur.node_bit = 0; 911 return true; 912 } 913 914 /* No more zones */ 915 return false; 916 } 917 918 /** 919 * memory_bm_next_pfn - Find the next set bit in a memory bitmap. 920 * @bm: Memory bitmap. 921 * 922 * Starting from the last returned position this function searches for the next 923 * set bit in @bm and returns the PFN represented by it. If no more bits are 924 * set, BM_END_OF_MAP is returned. 925 * 926 * It is required to run memory_bm_position_reset() before the first call to 927 * this function for the given memory bitmap. 928 */ 929 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 930 { 931 unsigned long bits, pfn, pages; 932 int bit; 933 934 do { 935 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 936 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 937 bit = find_next_bit(bm->cur.node->data, bits, 938 bm->cur.node_bit); 939 if (bit < bits) { 940 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 941 bm->cur.node_bit = bit + 1; 942 bm->cur.cur_pfn = pfn; 943 return pfn; 944 } 945 } while (rtree_next_node(bm)); 946 947 bm->cur.cur_pfn = BM_END_OF_MAP; 948 return BM_END_OF_MAP; 949 } 950 951 /* 952 * This structure represents a range of page frames the contents of which 953 * should not be saved during hibernation. 954 */ 955 struct nosave_region { 956 struct list_head list; 957 unsigned long start_pfn; 958 unsigned long end_pfn; 959 }; 960 961 static LIST_HEAD(nosave_regions); 962 963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 964 { 965 struct rtree_node *node; 966 967 list_for_each_entry(node, &zone->nodes, list) 968 recycle_safe_page(node->data); 969 970 list_for_each_entry(node, &zone->leaves, list) 971 recycle_safe_page(node->data); 972 } 973 974 static void memory_bm_recycle(struct memory_bitmap *bm) 975 { 976 struct mem_zone_bm_rtree *zone; 977 struct linked_page *p_list; 978 979 list_for_each_entry(zone, &bm->zones, list) 980 recycle_zone_bm_rtree(zone); 981 982 p_list = bm->p_list; 983 while (p_list) { 984 struct linked_page *lp = p_list; 985 986 p_list = lp->next; 987 recycle_safe_page(lp); 988 } 989 } 990 991 /** 992 * register_nosave_region - Register a region of unsaveable memory. 993 * 994 * Register a range of page frames the contents of which should not be saved 995 * during hibernation (to be used in the early initialization code). 996 */ 997 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn) 998 { 999 struct nosave_region *region; 1000 1001 if (start_pfn >= end_pfn) 1002 return; 1003 1004 if (!list_empty(&nosave_regions)) { 1005 /* Try to extend the previous region (they should be sorted) */ 1006 region = list_entry(nosave_regions.prev, 1007 struct nosave_region, list); 1008 if (region->end_pfn == start_pfn) { 1009 region->end_pfn = end_pfn; 1010 goto Report; 1011 } 1012 } 1013 /* This allocation cannot fail */ 1014 region = memblock_alloc(sizeof(struct nosave_region), 1015 SMP_CACHE_BYTES); 1016 if (!region) 1017 panic("%s: Failed to allocate %zu bytes\n", __func__, 1018 sizeof(struct nosave_region)); 1019 region->start_pfn = start_pfn; 1020 region->end_pfn = end_pfn; 1021 list_add_tail(®ion->list, &nosave_regions); 1022 Report: 1023 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 1024 (unsigned long long) start_pfn << PAGE_SHIFT, 1025 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1026 } 1027 1028 /* 1029 * Set bits in this map correspond to the page frames the contents of which 1030 * should not be saved during the suspend. 1031 */ 1032 static struct memory_bitmap *forbidden_pages_map; 1033 1034 /* Set bits in this map correspond to free page frames. */ 1035 static struct memory_bitmap *free_pages_map; 1036 1037 /* 1038 * Each page frame allocated for creating the image is marked by setting the 1039 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 1040 */ 1041 1042 void swsusp_set_page_free(struct page *page) 1043 { 1044 if (free_pages_map) 1045 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 1046 } 1047 1048 static int swsusp_page_is_free(struct page *page) 1049 { 1050 return free_pages_map ? 1051 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1052 } 1053 1054 void swsusp_unset_page_free(struct page *page) 1055 { 1056 if (free_pages_map) 1057 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1058 } 1059 1060 static void swsusp_set_page_forbidden(struct page *page) 1061 { 1062 if (forbidden_pages_map) 1063 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1064 } 1065 1066 int swsusp_page_is_forbidden(struct page *page) 1067 { 1068 return forbidden_pages_map ? 1069 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1070 } 1071 1072 static void swsusp_unset_page_forbidden(struct page *page) 1073 { 1074 if (forbidden_pages_map) 1075 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1076 } 1077 1078 /** 1079 * mark_nosave_pages - Mark pages that should not be saved. 1080 * @bm: Memory bitmap. 1081 * 1082 * Set the bits in @bm that correspond to the page frames the contents of which 1083 * should not be saved. 1084 */ 1085 static void mark_nosave_pages(struct memory_bitmap *bm) 1086 { 1087 struct nosave_region *region; 1088 1089 if (list_empty(&nosave_regions)) 1090 return; 1091 1092 list_for_each_entry(region, &nosave_regions, list) { 1093 unsigned long pfn; 1094 1095 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1096 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1097 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1098 - 1); 1099 1100 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1101 if (pfn_valid(pfn)) { 1102 /* 1103 * It is safe to ignore the result of 1104 * mem_bm_set_bit_check() here, since we won't 1105 * touch the PFNs for which the error is 1106 * returned anyway. 1107 */ 1108 mem_bm_set_bit_check(bm, pfn); 1109 } 1110 } 1111 } 1112 1113 /** 1114 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1115 * 1116 * Create bitmaps needed for marking page frames that should not be saved and 1117 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1118 * only modified if everything goes well, because we don't want the bits to be 1119 * touched before both bitmaps are set up. 1120 */ 1121 int create_basic_memory_bitmaps(void) 1122 { 1123 struct memory_bitmap *bm1, *bm2; 1124 int error; 1125 1126 if (forbidden_pages_map && free_pages_map) 1127 return 0; 1128 else 1129 BUG_ON(forbidden_pages_map || free_pages_map); 1130 1131 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1132 if (!bm1) 1133 return -ENOMEM; 1134 1135 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1136 if (error) 1137 goto Free_first_object; 1138 1139 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1140 if (!bm2) 1141 goto Free_first_bitmap; 1142 1143 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1144 if (error) 1145 goto Free_second_object; 1146 1147 forbidden_pages_map = bm1; 1148 free_pages_map = bm2; 1149 mark_nosave_pages(forbidden_pages_map); 1150 1151 pr_debug("Basic memory bitmaps created\n"); 1152 1153 return 0; 1154 1155 Free_second_object: 1156 kfree(bm2); 1157 Free_first_bitmap: 1158 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1159 Free_first_object: 1160 kfree(bm1); 1161 return -ENOMEM; 1162 } 1163 1164 /** 1165 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1166 * 1167 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1168 * auxiliary pointers are necessary so that the bitmaps themselves are not 1169 * referred to while they are being freed. 1170 */ 1171 void free_basic_memory_bitmaps(void) 1172 { 1173 struct memory_bitmap *bm1, *bm2; 1174 1175 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1176 return; 1177 1178 bm1 = forbidden_pages_map; 1179 bm2 = free_pages_map; 1180 forbidden_pages_map = NULL; 1181 free_pages_map = NULL; 1182 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1183 kfree(bm1); 1184 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1185 kfree(bm2); 1186 1187 pr_debug("Basic memory bitmaps freed\n"); 1188 } 1189 1190 static void clear_or_poison_free_page(struct page *page) 1191 { 1192 if (page_poisoning_enabled_static()) 1193 __kernel_poison_pages(page, 1); 1194 else if (want_init_on_free()) 1195 clear_highpage(page); 1196 } 1197 1198 void clear_or_poison_free_pages(void) 1199 { 1200 struct memory_bitmap *bm = free_pages_map; 1201 unsigned long pfn; 1202 1203 if (WARN_ON(!(free_pages_map))) 1204 return; 1205 1206 if (page_poisoning_enabled() || want_init_on_free()) { 1207 memory_bm_position_reset(bm); 1208 pfn = memory_bm_next_pfn(bm); 1209 while (pfn != BM_END_OF_MAP) { 1210 if (pfn_valid(pfn)) 1211 clear_or_poison_free_page(pfn_to_page(pfn)); 1212 1213 pfn = memory_bm_next_pfn(bm); 1214 } 1215 memory_bm_position_reset(bm); 1216 pr_info("free pages cleared after restore\n"); 1217 } 1218 } 1219 1220 /** 1221 * snapshot_additional_pages - Estimate the number of extra pages needed. 1222 * @zone: Memory zone to carry out the computation for. 1223 * 1224 * Estimate the number of additional pages needed for setting up a hibernation 1225 * image data structures for @zone (usually, the returned value is greater than 1226 * the exact number). 1227 */ 1228 unsigned int snapshot_additional_pages(struct zone *zone) 1229 { 1230 unsigned int rtree, nodes; 1231 1232 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1233 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1234 LINKED_PAGE_DATA_SIZE); 1235 while (nodes > 1) { 1236 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1237 rtree += nodes; 1238 } 1239 1240 return 2 * rtree; 1241 } 1242 1243 /* 1244 * Touch the watchdog for every WD_PAGE_COUNT pages. 1245 */ 1246 #define WD_PAGE_COUNT (128*1024) 1247 1248 static void mark_free_pages(struct zone *zone) 1249 { 1250 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 1251 unsigned long flags; 1252 unsigned int order, t; 1253 struct page *page; 1254 1255 if (zone_is_empty(zone)) 1256 return; 1257 1258 spin_lock_irqsave(&zone->lock, flags); 1259 1260 max_zone_pfn = zone_end_pfn(zone); 1261 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1262 if (pfn_valid(pfn)) { 1263 page = pfn_to_page(pfn); 1264 1265 if (!--page_count) { 1266 touch_nmi_watchdog(); 1267 page_count = WD_PAGE_COUNT; 1268 } 1269 1270 if (page_zone(page) != zone) 1271 continue; 1272 1273 if (!swsusp_page_is_forbidden(page)) 1274 swsusp_unset_page_free(page); 1275 } 1276 1277 for_each_migratetype_order(order, t) { 1278 list_for_each_entry(page, 1279 &zone->free_area[order].free_list[t], buddy_list) { 1280 unsigned long i; 1281 1282 pfn = page_to_pfn(page); 1283 for (i = 0; i < (1UL << order); i++) { 1284 if (!--page_count) { 1285 touch_nmi_watchdog(); 1286 page_count = WD_PAGE_COUNT; 1287 } 1288 swsusp_set_page_free(pfn_to_page(pfn + i)); 1289 } 1290 } 1291 } 1292 spin_unlock_irqrestore(&zone->lock, flags); 1293 } 1294 1295 #ifdef CONFIG_HIGHMEM 1296 /** 1297 * count_free_highmem_pages - Compute the total number of free highmem pages. 1298 * 1299 * The returned number is system-wide. 1300 */ 1301 static unsigned int count_free_highmem_pages(void) 1302 { 1303 struct zone *zone; 1304 unsigned int cnt = 0; 1305 1306 for_each_populated_zone(zone) 1307 if (is_highmem(zone)) 1308 cnt += zone_page_state(zone, NR_FREE_PAGES); 1309 1310 return cnt; 1311 } 1312 1313 /** 1314 * saveable_highmem_page - Check if a highmem page is saveable. 1315 * 1316 * Determine whether a highmem page should be included in a hibernation image. 1317 * 1318 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1319 * and it isn't part of a free chunk of pages. 1320 */ 1321 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1322 { 1323 struct page *page; 1324 1325 if (!pfn_valid(pfn)) 1326 return NULL; 1327 1328 page = pfn_to_online_page(pfn); 1329 if (!page || page_zone(page) != zone) 1330 return NULL; 1331 1332 BUG_ON(!PageHighMem(page)); 1333 1334 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1335 return NULL; 1336 1337 if (PageReserved(page) || PageOffline(page)) 1338 return NULL; 1339 1340 if (page_is_guard(page)) 1341 return NULL; 1342 1343 return page; 1344 } 1345 1346 /** 1347 * count_highmem_pages - Compute the total number of saveable highmem pages. 1348 */ 1349 static unsigned int count_highmem_pages(void) 1350 { 1351 struct zone *zone; 1352 unsigned int n = 0; 1353 1354 for_each_populated_zone(zone) { 1355 unsigned long pfn, max_zone_pfn; 1356 1357 if (!is_highmem(zone)) 1358 continue; 1359 1360 mark_free_pages(zone); 1361 max_zone_pfn = zone_end_pfn(zone); 1362 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1363 if (saveable_highmem_page(zone, pfn)) 1364 n++; 1365 } 1366 return n; 1367 } 1368 #else 1369 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1370 { 1371 return NULL; 1372 } 1373 #endif /* CONFIG_HIGHMEM */ 1374 1375 /** 1376 * saveable_page - Check if the given page is saveable. 1377 * 1378 * Determine whether a non-highmem page should be included in a hibernation 1379 * image. 1380 * 1381 * We should save the page if it isn't Nosave, and is not in the range 1382 * of pages statically defined as 'unsaveable', and it isn't part of 1383 * a free chunk of pages. 1384 */ 1385 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1386 { 1387 struct page *page; 1388 1389 if (!pfn_valid(pfn)) 1390 return NULL; 1391 1392 page = pfn_to_online_page(pfn); 1393 if (!page || page_zone(page) != zone) 1394 return NULL; 1395 1396 BUG_ON(PageHighMem(page)); 1397 1398 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1399 return NULL; 1400 1401 if (PageOffline(page)) 1402 return NULL; 1403 1404 if (PageReserved(page) 1405 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1406 return NULL; 1407 1408 if (page_is_guard(page)) 1409 return NULL; 1410 1411 return page; 1412 } 1413 1414 /** 1415 * count_data_pages - Compute the total number of saveable non-highmem pages. 1416 */ 1417 static unsigned int count_data_pages(void) 1418 { 1419 struct zone *zone; 1420 unsigned long pfn, max_zone_pfn; 1421 unsigned int n = 0; 1422 1423 for_each_populated_zone(zone) { 1424 if (is_highmem(zone)) 1425 continue; 1426 1427 mark_free_pages(zone); 1428 max_zone_pfn = zone_end_pfn(zone); 1429 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1430 if (saveable_page(zone, pfn)) 1431 n++; 1432 } 1433 return n; 1434 } 1435 1436 /* 1437 * This is needed, because copy_page and memcpy are not usable for copying 1438 * task structs. Returns true if the page was filled with only zeros, 1439 * otherwise false. 1440 */ 1441 static inline bool do_copy_page(long *dst, long *src) 1442 { 1443 long z = 0; 1444 int n; 1445 1446 for (n = PAGE_SIZE / sizeof(long); n; n--) { 1447 z |= *src; 1448 *dst++ = *src++; 1449 } 1450 return !z; 1451 } 1452 1453 /** 1454 * safe_copy_page - Copy a page in a safe way. 1455 * 1456 * Check if the page we are going to copy is marked as present in the kernel 1457 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or 1458 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present() 1459 * always returns 'true'. Returns true if the page was entirely composed of 1460 * zeros, otherwise it will return false. 1461 */ 1462 static bool safe_copy_page(void *dst, struct page *s_page) 1463 { 1464 bool zeros_only; 1465 1466 if (kernel_page_present(s_page)) { 1467 zeros_only = do_copy_page(dst, page_address(s_page)); 1468 } else { 1469 hibernate_map_page(s_page); 1470 zeros_only = do_copy_page(dst, page_address(s_page)); 1471 hibernate_unmap_page(s_page); 1472 } 1473 return zeros_only; 1474 } 1475 1476 #ifdef CONFIG_HIGHMEM 1477 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1478 { 1479 return is_highmem(zone) ? 1480 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1481 } 1482 1483 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1484 { 1485 struct page *s_page, *d_page; 1486 void *src, *dst; 1487 bool zeros_only; 1488 1489 s_page = pfn_to_page(src_pfn); 1490 d_page = pfn_to_page(dst_pfn); 1491 if (PageHighMem(s_page)) { 1492 src = kmap_local_page(s_page); 1493 dst = kmap_local_page(d_page); 1494 zeros_only = do_copy_page(dst, src); 1495 kunmap_local(dst); 1496 kunmap_local(src); 1497 } else { 1498 if (PageHighMem(d_page)) { 1499 /* 1500 * The page pointed to by src may contain some kernel 1501 * data modified by kmap_atomic() 1502 */ 1503 zeros_only = safe_copy_page(buffer, s_page); 1504 dst = kmap_local_page(d_page); 1505 copy_page(dst, buffer); 1506 kunmap_local(dst); 1507 } else { 1508 zeros_only = safe_copy_page(page_address(d_page), s_page); 1509 } 1510 } 1511 return zeros_only; 1512 } 1513 #else 1514 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1515 1516 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1517 { 1518 return safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1519 pfn_to_page(src_pfn)); 1520 } 1521 #endif /* CONFIG_HIGHMEM */ 1522 1523 /* 1524 * Copy data pages will copy all pages into pages pulled from the copy_bm. 1525 * If a page was entirely filled with zeros it will be marked in the zero_bm. 1526 * 1527 * Returns the number of pages copied. 1528 */ 1529 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm, 1530 struct memory_bitmap *orig_bm, 1531 struct memory_bitmap *zero_bm) 1532 { 1533 unsigned long copied_pages = 0; 1534 struct zone *zone; 1535 unsigned long pfn, copy_pfn; 1536 1537 for_each_populated_zone(zone) { 1538 unsigned long max_zone_pfn; 1539 1540 mark_free_pages(zone); 1541 max_zone_pfn = zone_end_pfn(zone); 1542 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1543 if (page_is_saveable(zone, pfn)) 1544 memory_bm_set_bit(orig_bm, pfn); 1545 } 1546 memory_bm_position_reset(orig_bm); 1547 memory_bm_position_reset(copy_bm); 1548 copy_pfn = memory_bm_next_pfn(copy_bm); 1549 for(;;) { 1550 pfn = memory_bm_next_pfn(orig_bm); 1551 if (unlikely(pfn == BM_END_OF_MAP)) 1552 break; 1553 if (copy_data_page(copy_pfn, pfn)) { 1554 memory_bm_set_bit(zero_bm, pfn); 1555 /* Use this copy_pfn for a page that is not full of zeros */ 1556 continue; 1557 } 1558 copied_pages++; 1559 copy_pfn = memory_bm_next_pfn(copy_bm); 1560 } 1561 return copied_pages; 1562 } 1563 1564 /* Total number of image pages */ 1565 static unsigned int nr_copy_pages; 1566 /* Number of pages needed for saving the original pfns of the image pages */ 1567 static unsigned int nr_meta_pages; 1568 /* Number of zero pages */ 1569 static unsigned int nr_zero_pages; 1570 1571 /* 1572 * Numbers of normal and highmem page frames allocated for hibernation image 1573 * before suspending devices. 1574 */ 1575 static unsigned int alloc_normal, alloc_highmem; 1576 /* 1577 * Memory bitmap used for marking saveable pages (during hibernation) or 1578 * hibernation image pages (during restore) 1579 */ 1580 static struct memory_bitmap orig_bm; 1581 /* 1582 * Memory bitmap used during hibernation for marking allocated page frames that 1583 * will contain copies of saveable pages. During restore it is initially used 1584 * for marking hibernation image pages, but then the set bits from it are 1585 * duplicated in @orig_bm and it is released. On highmem systems it is next 1586 * used for marking "safe" highmem pages, but it has to be reinitialized for 1587 * this purpose. 1588 */ 1589 static struct memory_bitmap copy_bm; 1590 1591 /* Memory bitmap which tracks which saveable pages were zero filled. */ 1592 static struct memory_bitmap zero_bm; 1593 1594 /** 1595 * swsusp_free - Free pages allocated for hibernation image. 1596 * 1597 * Image pages are allocated before snapshot creation, so they need to be 1598 * released after resume. 1599 */ 1600 void swsusp_free(void) 1601 { 1602 unsigned long fb_pfn, fr_pfn; 1603 1604 if (!forbidden_pages_map || !free_pages_map) 1605 goto out; 1606 1607 memory_bm_position_reset(forbidden_pages_map); 1608 memory_bm_position_reset(free_pages_map); 1609 1610 loop: 1611 fr_pfn = memory_bm_next_pfn(free_pages_map); 1612 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1613 1614 /* 1615 * Find the next bit set in both bitmaps. This is guaranteed to 1616 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1617 */ 1618 do { 1619 if (fb_pfn < fr_pfn) 1620 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1621 if (fr_pfn < fb_pfn) 1622 fr_pfn = memory_bm_next_pfn(free_pages_map); 1623 } while (fb_pfn != fr_pfn); 1624 1625 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1626 struct page *page = pfn_to_page(fr_pfn); 1627 1628 memory_bm_clear_current(forbidden_pages_map); 1629 memory_bm_clear_current(free_pages_map); 1630 hibernate_restore_unprotect_page(page_address(page)); 1631 __free_page(page); 1632 goto loop; 1633 } 1634 1635 out: 1636 nr_copy_pages = 0; 1637 nr_meta_pages = 0; 1638 nr_zero_pages = 0; 1639 restore_pblist = NULL; 1640 buffer = NULL; 1641 alloc_normal = 0; 1642 alloc_highmem = 0; 1643 hibernate_restore_protection_end(); 1644 } 1645 1646 /* Helper functions used for the shrinking of memory. */ 1647 1648 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1649 1650 /** 1651 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1652 * @nr_pages: Number of page frames to allocate. 1653 * @mask: GFP flags to use for the allocation. 1654 * 1655 * Return value: Number of page frames actually allocated 1656 */ 1657 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1658 { 1659 unsigned long nr_alloc = 0; 1660 1661 while (nr_pages > 0) { 1662 struct page *page; 1663 1664 page = alloc_image_page(mask); 1665 if (!page) 1666 break; 1667 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1668 if (PageHighMem(page)) 1669 alloc_highmem++; 1670 else 1671 alloc_normal++; 1672 nr_pages--; 1673 nr_alloc++; 1674 } 1675 1676 return nr_alloc; 1677 } 1678 1679 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1680 unsigned long avail_normal) 1681 { 1682 unsigned long alloc; 1683 1684 if (avail_normal <= alloc_normal) 1685 return 0; 1686 1687 alloc = avail_normal - alloc_normal; 1688 if (nr_pages < alloc) 1689 alloc = nr_pages; 1690 1691 return preallocate_image_pages(alloc, GFP_IMAGE); 1692 } 1693 1694 #ifdef CONFIG_HIGHMEM 1695 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1696 { 1697 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1698 } 1699 1700 /** 1701 * __fraction - Compute (an approximation of) x * (multiplier / base). 1702 */ 1703 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1704 { 1705 return div64_u64(x * multiplier, base); 1706 } 1707 1708 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1709 unsigned long highmem, 1710 unsigned long total) 1711 { 1712 unsigned long alloc = __fraction(nr_pages, highmem, total); 1713 1714 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1715 } 1716 #else /* CONFIG_HIGHMEM */ 1717 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1718 { 1719 return 0; 1720 } 1721 1722 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1723 unsigned long highmem, 1724 unsigned long total) 1725 { 1726 return 0; 1727 } 1728 #endif /* CONFIG_HIGHMEM */ 1729 1730 /** 1731 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1732 */ 1733 static unsigned long free_unnecessary_pages(void) 1734 { 1735 unsigned long save, to_free_normal, to_free_highmem, free; 1736 1737 save = count_data_pages(); 1738 if (alloc_normal >= save) { 1739 to_free_normal = alloc_normal - save; 1740 save = 0; 1741 } else { 1742 to_free_normal = 0; 1743 save -= alloc_normal; 1744 } 1745 save += count_highmem_pages(); 1746 if (alloc_highmem >= save) { 1747 to_free_highmem = alloc_highmem - save; 1748 } else { 1749 to_free_highmem = 0; 1750 save -= alloc_highmem; 1751 if (to_free_normal > save) 1752 to_free_normal -= save; 1753 else 1754 to_free_normal = 0; 1755 } 1756 free = to_free_normal + to_free_highmem; 1757 1758 memory_bm_position_reset(©_bm); 1759 1760 while (to_free_normal > 0 || to_free_highmem > 0) { 1761 unsigned long pfn = memory_bm_next_pfn(©_bm); 1762 struct page *page = pfn_to_page(pfn); 1763 1764 if (PageHighMem(page)) { 1765 if (!to_free_highmem) 1766 continue; 1767 to_free_highmem--; 1768 alloc_highmem--; 1769 } else { 1770 if (!to_free_normal) 1771 continue; 1772 to_free_normal--; 1773 alloc_normal--; 1774 } 1775 memory_bm_clear_bit(©_bm, pfn); 1776 swsusp_unset_page_forbidden(page); 1777 swsusp_unset_page_free(page); 1778 __free_page(page); 1779 } 1780 1781 return free; 1782 } 1783 1784 /** 1785 * minimum_image_size - Estimate the minimum acceptable size of an image. 1786 * @saveable: Number of saveable pages in the system. 1787 * 1788 * We want to avoid attempting to free too much memory too hard, so estimate the 1789 * minimum acceptable size of a hibernation image to use as the lower limit for 1790 * preallocating memory. 1791 * 1792 * We assume that the minimum image size should be proportional to 1793 * 1794 * [number of saveable pages] - [number of pages that can be freed in theory] 1795 * 1796 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1797 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1798 */ 1799 static unsigned long minimum_image_size(unsigned long saveable) 1800 { 1801 unsigned long size; 1802 1803 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) 1804 + global_node_page_state(NR_ACTIVE_ANON) 1805 + global_node_page_state(NR_INACTIVE_ANON) 1806 + global_node_page_state(NR_ACTIVE_FILE) 1807 + global_node_page_state(NR_INACTIVE_FILE); 1808 1809 return saveable <= size ? 0 : saveable - size; 1810 } 1811 1812 /** 1813 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1814 * 1815 * To create a hibernation image it is necessary to make a copy of every page 1816 * frame in use. We also need a number of page frames to be free during 1817 * hibernation for allocations made while saving the image and for device 1818 * drivers, in case they need to allocate memory from their hibernation 1819 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1820 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through 1821 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1822 * total number of available page frames and allocate at least 1823 * 1824 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2 1825 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1826 * 1827 * of them, which corresponds to the maximum size of a hibernation image. 1828 * 1829 * If image_size is set below the number following from the above formula, 1830 * the preallocation of memory is continued until the total number of saveable 1831 * pages in the system is below the requested image size or the minimum 1832 * acceptable image size returned by minimum_image_size(), whichever is greater. 1833 */ 1834 int hibernate_preallocate_memory(void) 1835 { 1836 struct zone *zone; 1837 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1838 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1839 ktime_t start, stop; 1840 int error; 1841 1842 pr_info("Preallocating image memory\n"); 1843 start = ktime_get(); 1844 1845 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1846 if (error) { 1847 pr_err("Cannot allocate original bitmap\n"); 1848 goto err_out; 1849 } 1850 1851 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1852 if (error) { 1853 pr_err("Cannot allocate copy bitmap\n"); 1854 goto err_out; 1855 } 1856 1857 error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY); 1858 if (error) { 1859 pr_err("Cannot allocate zero bitmap\n"); 1860 goto err_out; 1861 } 1862 1863 alloc_normal = 0; 1864 alloc_highmem = 0; 1865 nr_zero_pages = 0; 1866 1867 /* Count the number of saveable data pages. */ 1868 save_highmem = count_highmem_pages(); 1869 saveable = count_data_pages(); 1870 1871 /* 1872 * Compute the total number of page frames we can use (count) and the 1873 * number of pages needed for image metadata (size). 1874 */ 1875 count = saveable; 1876 saveable += save_highmem; 1877 highmem = save_highmem; 1878 size = 0; 1879 for_each_populated_zone(zone) { 1880 size += snapshot_additional_pages(zone); 1881 if (is_highmem(zone)) 1882 highmem += zone_page_state(zone, NR_FREE_PAGES); 1883 else 1884 count += zone_page_state(zone, NR_FREE_PAGES); 1885 } 1886 avail_normal = count; 1887 count += highmem; 1888 count -= totalreserve_pages; 1889 1890 /* Compute the maximum number of saveable pages to leave in memory. */ 1891 max_size = (count - (size + PAGES_FOR_IO)) / 2 1892 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1893 /* Compute the desired number of image pages specified by image_size. */ 1894 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1895 if (size > max_size) 1896 size = max_size; 1897 /* 1898 * If the desired number of image pages is at least as large as the 1899 * current number of saveable pages in memory, allocate page frames for 1900 * the image and we're done. 1901 */ 1902 if (size >= saveable) { 1903 pages = preallocate_image_highmem(save_highmem); 1904 pages += preallocate_image_memory(saveable - pages, avail_normal); 1905 goto out; 1906 } 1907 1908 /* Estimate the minimum size of the image. */ 1909 pages = minimum_image_size(saveable); 1910 /* 1911 * To avoid excessive pressure on the normal zone, leave room in it to 1912 * accommodate an image of the minimum size (unless it's already too 1913 * small, in which case don't preallocate pages from it at all). 1914 */ 1915 if (avail_normal > pages) 1916 avail_normal -= pages; 1917 else 1918 avail_normal = 0; 1919 if (size < pages) 1920 size = min_t(unsigned long, pages, max_size); 1921 1922 /* 1923 * Let the memory management subsystem know that we're going to need a 1924 * large number of page frames to allocate and make it free some memory. 1925 * NOTE: If this is not done, performance will be hurt badly in some 1926 * test cases. 1927 */ 1928 shrink_all_memory(saveable - size); 1929 1930 /* 1931 * The number of saveable pages in memory was too high, so apply some 1932 * pressure to decrease it. First, make room for the largest possible 1933 * image and fail if that doesn't work. Next, try to decrease the size 1934 * of the image as much as indicated by 'size' using allocations from 1935 * highmem and non-highmem zones separately. 1936 */ 1937 pages_highmem = preallocate_image_highmem(highmem / 2); 1938 alloc = count - max_size; 1939 if (alloc > pages_highmem) 1940 alloc -= pages_highmem; 1941 else 1942 alloc = 0; 1943 pages = preallocate_image_memory(alloc, avail_normal); 1944 if (pages < alloc) { 1945 /* We have exhausted non-highmem pages, try highmem. */ 1946 alloc -= pages; 1947 pages += pages_highmem; 1948 pages_highmem = preallocate_image_highmem(alloc); 1949 if (pages_highmem < alloc) { 1950 pr_err("Image allocation is %lu pages short\n", 1951 alloc - pages_highmem); 1952 goto err_out; 1953 } 1954 pages += pages_highmem; 1955 /* 1956 * size is the desired number of saveable pages to leave in 1957 * memory, so try to preallocate (all memory - size) pages. 1958 */ 1959 alloc = (count - pages) - size; 1960 pages += preallocate_image_highmem(alloc); 1961 } else { 1962 /* 1963 * There are approximately max_size saveable pages at this point 1964 * and we want to reduce this number down to size. 1965 */ 1966 alloc = max_size - size; 1967 size = preallocate_highmem_fraction(alloc, highmem, count); 1968 pages_highmem += size; 1969 alloc -= size; 1970 size = preallocate_image_memory(alloc, avail_normal); 1971 pages_highmem += preallocate_image_highmem(alloc - size); 1972 pages += pages_highmem + size; 1973 } 1974 1975 /* 1976 * We only need as many page frames for the image as there are saveable 1977 * pages in memory, but we have allocated more. Release the excessive 1978 * ones now. 1979 */ 1980 pages -= free_unnecessary_pages(); 1981 1982 out: 1983 stop = ktime_get(); 1984 pr_info("Allocated %lu pages for snapshot\n", pages); 1985 swsusp_show_speed(start, stop, pages, "Allocated"); 1986 1987 return 0; 1988 1989 err_out: 1990 swsusp_free(); 1991 return -ENOMEM; 1992 } 1993 1994 #ifdef CONFIG_HIGHMEM 1995 /** 1996 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1997 * 1998 * Compute the number of non-highmem pages that will be necessary for creating 1999 * copies of highmem pages. 2000 */ 2001 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 2002 { 2003 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 2004 2005 if (free_highmem >= nr_highmem) 2006 nr_highmem = 0; 2007 else 2008 nr_highmem -= free_highmem; 2009 2010 return nr_highmem; 2011 } 2012 #else 2013 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 2014 #endif /* CONFIG_HIGHMEM */ 2015 2016 /** 2017 * enough_free_mem - Check if there is enough free memory for the image. 2018 */ 2019 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 2020 { 2021 struct zone *zone; 2022 unsigned int free = alloc_normal; 2023 2024 for_each_populated_zone(zone) 2025 if (!is_highmem(zone)) 2026 free += zone_page_state(zone, NR_FREE_PAGES); 2027 2028 nr_pages += count_pages_for_highmem(nr_highmem); 2029 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 2030 nr_pages, PAGES_FOR_IO, free); 2031 2032 return free > nr_pages + PAGES_FOR_IO; 2033 } 2034 2035 #ifdef CONFIG_HIGHMEM 2036 /** 2037 * get_highmem_buffer - Allocate a buffer for highmem pages. 2038 * 2039 * If there are some highmem pages in the hibernation image, we may need a 2040 * buffer to copy them and/or load their data. 2041 */ 2042 static inline int get_highmem_buffer(int safe_needed) 2043 { 2044 buffer = get_image_page(GFP_ATOMIC, safe_needed); 2045 return buffer ? 0 : -ENOMEM; 2046 } 2047 2048 /** 2049 * alloc_highmem_pages - Allocate some highmem pages for the image. 2050 * 2051 * Try to allocate as many pages as needed, but if the number of free highmem 2052 * pages is less than that, allocate them all. 2053 */ 2054 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2055 unsigned int nr_highmem) 2056 { 2057 unsigned int to_alloc = count_free_highmem_pages(); 2058 2059 if (to_alloc > nr_highmem) 2060 to_alloc = nr_highmem; 2061 2062 nr_highmem -= to_alloc; 2063 while (to_alloc-- > 0) { 2064 struct page *page; 2065 2066 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 2067 memory_bm_set_bit(bm, page_to_pfn(page)); 2068 } 2069 return nr_highmem; 2070 } 2071 #else 2072 static inline int get_highmem_buffer(int safe_needed) { return 0; } 2073 2074 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2075 unsigned int n) { return 0; } 2076 #endif /* CONFIG_HIGHMEM */ 2077 2078 /** 2079 * swsusp_alloc - Allocate memory for hibernation image. 2080 * 2081 * We first try to allocate as many highmem pages as there are 2082 * saveable highmem pages in the system. If that fails, we allocate 2083 * non-highmem pages for the copies of the remaining highmem ones. 2084 * 2085 * In this approach it is likely that the copies of highmem pages will 2086 * also be located in the high memory, because of the way in which 2087 * copy_data_pages() works. 2088 */ 2089 static int swsusp_alloc(struct memory_bitmap *copy_bm, 2090 unsigned int nr_pages, unsigned int nr_highmem) 2091 { 2092 if (nr_highmem > 0) { 2093 if (get_highmem_buffer(PG_ANY)) 2094 goto err_out; 2095 if (nr_highmem > alloc_highmem) { 2096 nr_highmem -= alloc_highmem; 2097 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 2098 } 2099 } 2100 if (nr_pages > alloc_normal) { 2101 nr_pages -= alloc_normal; 2102 while (nr_pages-- > 0) { 2103 struct page *page; 2104 2105 page = alloc_image_page(GFP_ATOMIC); 2106 if (!page) 2107 goto err_out; 2108 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 2109 } 2110 } 2111 2112 return 0; 2113 2114 err_out: 2115 swsusp_free(); 2116 return -ENOMEM; 2117 } 2118 2119 asmlinkage __visible int swsusp_save(void) 2120 { 2121 unsigned int nr_pages, nr_highmem; 2122 2123 pr_info("Creating image:\n"); 2124 2125 drain_local_pages(NULL); 2126 nr_pages = count_data_pages(); 2127 nr_highmem = count_highmem_pages(); 2128 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 2129 2130 if (!enough_free_mem(nr_pages, nr_highmem)) { 2131 pr_err("Not enough free memory\n"); 2132 return -ENOMEM; 2133 } 2134 2135 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 2136 pr_err("Memory allocation failed\n"); 2137 return -ENOMEM; 2138 } 2139 2140 /* 2141 * During allocating of suspend pagedir, new cold pages may appear. 2142 * Kill them. 2143 */ 2144 drain_local_pages(NULL); 2145 nr_copy_pages = copy_data_pages(©_bm, &orig_bm, &zero_bm); 2146 2147 /* 2148 * End of critical section. From now on, we can write to memory, 2149 * but we should not touch disk. This specially means we must _not_ 2150 * touch swap space! Except we must write out our image of course. 2151 */ 2152 nr_pages += nr_highmem; 2153 /* We don't actually copy the zero pages */ 2154 nr_zero_pages = nr_pages - nr_copy_pages; 2155 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2156 2157 pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages); 2158 2159 return 0; 2160 } 2161 2162 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2163 static int init_header_complete(struct swsusp_info *info) 2164 { 2165 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2166 info->version_code = LINUX_VERSION_CODE; 2167 return 0; 2168 } 2169 2170 static const char *check_image_kernel(struct swsusp_info *info) 2171 { 2172 if (info->version_code != LINUX_VERSION_CODE) 2173 return "kernel version"; 2174 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2175 return "system type"; 2176 if (strcmp(info->uts.release,init_utsname()->release)) 2177 return "kernel release"; 2178 if (strcmp(info->uts.version,init_utsname()->version)) 2179 return "version"; 2180 if (strcmp(info->uts.machine,init_utsname()->machine)) 2181 return "machine"; 2182 return NULL; 2183 } 2184 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2185 2186 unsigned long snapshot_get_image_size(void) 2187 { 2188 return nr_copy_pages + nr_meta_pages + 1; 2189 } 2190 2191 static int init_header(struct swsusp_info *info) 2192 { 2193 memset(info, 0, sizeof(struct swsusp_info)); 2194 info->num_physpages = get_num_physpages(); 2195 info->image_pages = nr_copy_pages; 2196 info->pages = snapshot_get_image_size(); 2197 info->size = info->pages; 2198 info->size <<= PAGE_SHIFT; 2199 return init_header_complete(info); 2200 } 2201 2202 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1)) 2203 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG) 2204 2205 /** 2206 * pack_pfns - Prepare PFNs for saving. 2207 * @bm: Memory bitmap. 2208 * @buf: Memory buffer to store the PFNs in. 2209 * @zero_bm: Memory bitmap containing PFNs of zero pages. 2210 * 2211 * PFNs corresponding to set bits in @bm are stored in the area of memory 2212 * pointed to by @buf (1 page at a time). Pages which were filled with only 2213 * zeros will have the highest bit set in the packed format to distinguish 2214 * them from PFNs which will be contained in the image file. 2215 */ 2216 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm, 2217 struct memory_bitmap *zero_bm) 2218 { 2219 int j; 2220 2221 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2222 buf[j] = memory_bm_next_pfn(bm); 2223 if (unlikely(buf[j] == BM_END_OF_MAP)) 2224 break; 2225 if (memory_bm_test_bit(zero_bm, buf[j])) 2226 buf[j] |= ENCODED_PFN_ZERO_FLAG; 2227 } 2228 } 2229 2230 /** 2231 * snapshot_read_next - Get the address to read the next image page from. 2232 * @handle: Snapshot handle to be used for the reading. 2233 * 2234 * On the first call, @handle should point to a zeroed snapshot_handle 2235 * structure. The structure gets populated then and a pointer to it should be 2236 * passed to this function every next time. 2237 * 2238 * On success, the function returns a positive number. Then, the caller 2239 * is allowed to read up to the returned number of bytes from the memory 2240 * location computed by the data_of() macro. 2241 * 2242 * The function returns 0 to indicate the end of the data stream condition, 2243 * and negative numbers are returned on errors. If that happens, the structure 2244 * pointed to by @handle is not updated and should not be used any more. 2245 */ 2246 int snapshot_read_next(struct snapshot_handle *handle) 2247 { 2248 if (handle->cur > nr_meta_pages + nr_copy_pages) 2249 return 0; 2250 2251 if (!buffer) { 2252 /* This makes the buffer be freed by swsusp_free() */ 2253 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2254 if (!buffer) 2255 return -ENOMEM; 2256 } 2257 if (!handle->cur) { 2258 int error; 2259 2260 error = init_header((struct swsusp_info *)buffer); 2261 if (error) 2262 return error; 2263 handle->buffer = buffer; 2264 memory_bm_position_reset(&orig_bm); 2265 memory_bm_position_reset(©_bm); 2266 } else if (handle->cur <= nr_meta_pages) { 2267 clear_page(buffer); 2268 pack_pfns(buffer, &orig_bm, &zero_bm); 2269 } else { 2270 struct page *page; 2271 2272 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2273 if (PageHighMem(page)) { 2274 /* 2275 * Highmem pages are copied to the buffer, 2276 * because we can't return with a kmapped 2277 * highmem page (we may not be called again). 2278 */ 2279 void *kaddr; 2280 2281 kaddr = kmap_atomic(page); 2282 copy_page(buffer, kaddr); 2283 kunmap_atomic(kaddr); 2284 handle->buffer = buffer; 2285 } else { 2286 handle->buffer = page_address(page); 2287 } 2288 } 2289 handle->cur++; 2290 return PAGE_SIZE; 2291 } 2292 2293 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2294 struct memory_bitmap *src) 2295 { 2296 unsigned long pfn; 2297 2298 memory_bm_position_reset(src); 2299 pfn = memory_bm_next_pfn(src); 2300 while (pfn != BM_END_OF_MAP) { 2301 memory_bm_set_bit(dst, pfn); 2302 pfn = memory_bm_next_pfn(src); 2303 } 2304 } 2305 2306 /** 2307 * mark_unsafe_pages - Mark pages that were used before hibernation. 2308 * 2309 * Mark the pages that cannot be used for storing the image during restoration, 2310 * because they conflict with the pages that had been used before hibernation. 2311 */ 2312 static void mark_unsafe_pages(struct memory_bitmap *bm) 2313 { 2314 unsigned long pfn; 2315 2316 /* Clear the "free"/"unsafe" bit for all PFNs */ 2317 memory_bm_position_reset(free_pages_map); 2318 pfn = memory_bm_next_pfn(free_pages_map); 2319 while (pfn != BM_END_OF_MAP) { 2320 memory_bm_clear_current(free_pages_map); 2321 pfn = memory_bm_next_pfn(free_pages_map); 2322 } 2323 2324 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2325 duplicate_memory_bitmap(free_pages_map, bm); 2326 2327 allocated_unsafe_pages = 0; 2328 } 2329 2330 static int check_header(struct swsusp_info *info) 2331 { 2332 const char *reason; 2333 2334 reason = check_image_kernel(info); 2335 if (!reason && info->num_physpages != get_num_physpages()) 2336 reason = "memory size"; 2337 if (reason) { 2338 pr_err("Image mismatch: %s\n", reason); 2339 return -EPERM; 2340 } 2341 return 0; 2342 } 2343 2344 /** 2345 * load_header - Check the image header and copy the data from it. 2346 */ 2347 static int load_header(struct swsusp_info *info) 2348 { 2349 int error; 2350 2351 restore_pblist = NULL; 2352 error = check_header(info); 2353 if (!error) { 2354 nr_copy_pages = info->image_pages; 2355 nr_meta_pages = info->pages - info->image_pages - 1; 2356 } 2357 return error; 2358 } 2359 2360 /** 2361 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2362 * @bm: Memory bitmap. 2363 * @buf: Area of memory containing the PFNs. 2364 * @zero_bm: Memory bitmap with the zero PFNs marked. 2365 * 2366 * For each element of the array pointed to by @buf (1 page at a time), set the 2367 * corresponding bit in @bm. If the page was originally populated with only 2368 * zeros then a corresponding bit will also be set in @zero_bm. 2369 */ 2370 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm, 2371 struct memory_bitmap *zero_bm) 2372 { 2373 unsigned long decoded_pfn; 2374 bool zero; 2375 int j; 2376 2377 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2378 if (unlikely(buf[j] == BM_END_OF_MAP)) 2379 break; 2380 2381 zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG); 2382 decoded_pfn = buf[j] & ENCODED_PFN_MASK; 2383 if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) { 2384 memory_bm_set_bit(bm, decoded_pfn); 2385 if (zero) { 2386 memory_bm_set_bit(zero_bm, decoded_pfn); 2387 nr_zero_pages++; 2388 } 2389 } else { 2390 if (!pfn_valid(decoded_pfn)) 2391 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n", 2392 (unsigned long long)PFN_PHYS(decoded_pfn)); 2393 return -EFAULT; 2394 } 2395 } 2396 2397 return 0; 2398 } 2399 2400 #ifdef CONFIG_HIGHMEM 2401 /* 2402 * struct highmem_pbe is used for creating the list of highmem pages that 2403 * should be restored atomically during the resume from disk, because the page 2404 * frames they have occupied before the suspend are in use. 2405 */ 2406 struct highmem_pbe { 2407 struct page *copy_page; /* data is here now */ 2408 struct page *orig_page; /* data was here before the suspend */ 2409 struct highmem_pbe *next; 2410 }; 2411 2412 /* 2413 * List of highmem PBEs needed for restoring the highmem pages that were 2414 * allocated before the suspend and included in the suspend image, but have 2415 * also been allocated by the "resume" kernel, so their contents cannot be 2416 * written directly to their "original" page frames. 2417 */ 2418 static struct highmem_pbe *highmem_pblist; 2419 2420 /** 2421 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2422 * @bm: Memory bitmap. 2423 * 2424 * The bits in @bm that correspond to image pages are assumed to be set. 2425 */ 2426 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2427 { 2428 unsigned long pfn; 2429 unsigned int cnt = 0; 2430 2431 memory_bm_position_reset(bm); 2432 pfn = memory_bm_next_pfn(bm); 2433 while (pfn != BM_END_OF_MAP) { 2434 if (PageHighMem(pfn_to_page(pfn))) 2435 cnt++; 2436 2437 pfn = memory_bm_next_pfn(bm); 2438 } 2439 return cnt; 2440 } 2441 2442 static unsigned int safe_highmem_pages; 2443 2444 static struct memory_bitmap *safe_highmem_bm; 2445 2446 /** 2447 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2448 * @bm: Pointer to an uninitialized memory bitmap structure. 2449 * @nr_highmem_p: Pointer to the number of highmem image pages. 2450 * 2451 * Try to allocate as many highmem pages as there are highmem image pages 2452 * (@nr_highmem_p points to the variable containing the number of highmem image 2453 * pages). The pages that are "safe" (ie. will not be overwritten when the 2454 * hibernation image is restored entirely) have the corresponding bits set in 2455 * @bm (it must be uninitialized). 2456 * 2457 * NOTE: This function should not be called if there are no highmem image pages. 2458 */ 2459 static int prepare_highmem_image(struct memory_bitmap *bm, 2460 unsigned int *nr_highmem_p) 2461 { 2462 unsigned int to_alloc; 2463 2464 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2465 return -ENOMEM; 2466 2467 if (get_highmem_buffer(PG_SAFE)) 2468 return -ENOMEM; 2469 2470 to_alloc = count_free_highmem_pages(); 2471 if (to_alloc > *nr_highmem_p) 2472 to_alloc = *nr_highmem_p; 2473 else 2474 *nr_highmem_p = to_alloc; 2475 2476 safe_highmem_pages = 0; 2477 while (to_alloc-- > 0) { 2478 struct page *page; 2479 2480 page = alloc_page(__GFP_HIGHMEM); 2481 if (!swsusp_page_is_free(page)) { 2482 /* The page is "safe", set its bit the bitmap */ 2483 memory_bm_set_bit(bm, page_to_pfn(page)); 2484 safe_highmem_pages++; 2485 } 2486 /* Mark the page as allocated */ 2487 swsusp_set_page_forbidden(page); 2488 swsusp_set_page_free(page); 2489 } 2490 memory_bm_position_reset(bm); 2491 safe_highmem_bm = bm; 2492 return 0; 2493 } 2494 2495 static struct page *last_highmem_page; 2496 2497 /** 2498 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2499 * 2500 * For a given highmem image page get a buffer that suspend_write_next() should 2501 * return to its caller to write to. 2502 * 2503 * If the page is to be saved to its "original" page frame or a copy of 2504 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2505 * the copy of the page is to be made in normal memory, so the address of 2506 * the copy is returned. 2507 * 2508 * If @buffer is returned, the caller of suspend_write_next() will write 2509 * the page's contents to @buffer, so they will have to be copied to the 2510 * right location on the next call to suspend_write_next() and it is done 2511 * with the help of copy_last_highmem_page(). For this purpose, if 2512 * @buffer is returned, @last_highmem_page is set to the page to which 2513 * the data will have to be copied from @buffer. 2514 */ 2515 static void *get_highmem_page_buffer(struct page *page, 2516 struct chain_allocator *ca) 2517 { 2518 struct highmem_pbe *pbe; 2519 void *kaddr; 2520 2521 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2522 /* 2523 * We have allocated the "original" page frame and we can 2524 * use it directly to store the loaded page. 2525 */ 2526 last_highmem_page = page; 2527 return buffer; 2528 } 2529 /* 2530 * The "original" page frame has not been allocated and we have to 2531 * use a "safe" page frame to store the loaded page. 2532 */ 2533 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2534 if (!pbe) { 2535 swsusp_free(); 2536 return ERR_PTR(-ENOMEM); 2537 } 2538 pbe->orig_page = page; 2539 if (safe_highmem_pages > 0) { 2540 struct page *tmp; 2541 2542 /* Copy of the page will be stored in high memory */ 2543 kaddr = buffer; 2544 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2545 safe_highmem_pages--; 2546 last_highmem_page = tmp; 2547 pbe->copy_page = tmp; 2548 } else { 2549 /* Copy of the page will be stored in normal memory */ 2550 kaddr = __get_safe_page(ca->gfp_mask); 2551 if (!kaddr) 2552 return ERR_PTR(-ENOMEM); 2553 pbe->copy_page = virt_to_page(kaddr); 2554 } 2555 pbe->next = highmem_pblist; 2556 highmem_pblist = pbe; 2557 return kaddr; 2558 } 2559 2560 /** 2561 * copy_last_highmem_page - Copy most the most recent highmem image page. 2562 * 2563 * Copy the contents of a highmem image from @buffer, where the caller of 2564 * snapshot_write_next() has stored them, to the right location represented by 2565 * @last_highmem_page . 2566 */ 2567 static void copy_last_highmem_page(void) 2568 { 2569 if (last_highmem_page) { 2570 void *dst; 2571 2572 dst = kmap_atomic(last_highmem_page); 2573 copy_page(dst, buffer); 2574 kunmap_atomic(dst); 2575 last_highmem_page = NULL; 2576 } 2577 } 2578 2579 static inline int last_highmem_page_copied(void) 2580 { 2581 return !last_highmem_page; 2582 } 2583 2584 static inline void free_highmem_data(void) 2585 { 2586 if (safe_highmem_bm) 2587 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2588 2589 if (buffer) 2590 free_image_page(buffer, PG_UNSAFE_CLEAR); 2591 } 2592 #else 2593 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2594 2595 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2596 unsigned int *nr_highmem_p) { return 0; } 2597 2598 static inline void *get_highmem_page_buffer(struct page *page, 2599 struct chain_allocator *ca) 2600 { 2601 return ERR_PTR(-EINVAL); 2602 } 2603 2604 static inline void copy_last_highmem_page(void) {} 2605 static inline int last_highmem_page_copied(void) { return 1; } 2606 static inline void free_highmem_data(void) {} 2607 #endif /* CONFIG_HIGHMEM */ 2608 2609 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2610 2611 /** 2612 * prepare_image - Make room for loading hibernation image. 2613 * @new_bm: Uninitialized memory bitmap structure. 2614 * @bm: Memory bitmap with unsafe pages marked. 2615 * @zero_bm: Memory bitmap containing the zero pages. 2616 * 2617 * Use @bm to mark the pages that will be overwritten in the process of 2618 * restoring the system memory state from the suspend image ("unsafe" pages) 2619 * and allocate memory for the image. 2620 * 2621 * The idea is to allocate a new memory bitmap first and then allocate 2622 * as many pages as needed for image data, but without specifying what those 2623 * pages will be used for just yet. Instead, we mark them all as allocated and 2624 * create a lists of "safe" pages to be used later. On systems with high 2625 * memory a list of "safe" highmem pages is created too. 2626 * 2627 * Because it was not known which pages were unsafe when @zero_bm was created, 2628 * make a copy of it and recreate it within safe pages. 2629 */ 2630 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm, 2631 struct memory_bitmap *zero_bm) 2632 { 2633 unsigned int nr_pages, nr_highmem; 2634 struct memory_bitmap tmp; 2635 struct linked_page *lp; 2636 int error; 2637 2638 /* If there is no highmem, the buffer will not be necessary */ 2639 free_image_page(buffer, PG_UNSAFE_CLEAR); 2640 buffer = NULL; 2641 2642 nr_highmem = count_highmem_image_pages(bm); 2643 mark_unsafe_pages(bm); 2644 2645 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2646 if (error) 2647 goto Free; 2648 2649 duplicate_memory_bitmap(new_bm, bm); 2650 memory_bm_free(bm, PG_UNSAFE_KEEP); 2651 2652 /* Make a copy of zero_bm so it can be created in safe pages */ 2653 error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE); 2654 if (error) 2655 goto Free; 2656 2657 duplicate_memory_bitmap(&tmp, zero_bm); 2658 memory_bm_free(zero_bm, PG_UNSAFE_KEEP); 2659 2660 /* Recreate zero_bm in safe pages */ 2661 error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE); 2662 if (error) 2663 goto Free; 2664 2665 duplicate_memory_bitmap(zero_bm, &tmp); 2666 memory_bm_free(&tmp, PG_UNSAFE_CLEAR); 2667 /* At this point zero_bm is in safe pages and it can be used for restoring. */ 2668 2669 if (nr_highmem > 0) { 2670 error = prepare_highmem_image(bm, &nr_highmem); 2671 if (error) 2672 goto Free; 2673 } 2674 /* 2675 * Reserve some safe pages for potential later use. 2676 * 2677 * NOTE: This way we make sure there will be enough safe pages for the 2678 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2679 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2680 * 2681 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2682 */ 2683 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2684 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2685 while (nr_pages > 0) { 2686 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2687 if (!lp) { 2688 error = -ENOMEM; 2689 goto Free; 2690 } 2691 lp->next = safe_pages_list; 2692 safe_pages_list = lp; 2693 nr_pages--; 2694 } 2695 /* Preallocate memory for the image */ 2696 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2697 while (nr_pages > 0) { 2698 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2699 if (!lp) { 2700 error = -ENOMEM; 2701 goto Free; 2702 } 2703 if (!swsusp_page_is_free(virt_to_page(lp))) { 2704 /* The page is "safe", add it to the list */ 2705 lp->next = safe_pages_list; 2706 safe_pages_list = lp; 2707 } 2708 /* Mark the page as allocated */ 2709 swsusp_set_page_forbidden(virt_to_page(lp)); 2710 swsusp_set_page_free(virt_to_page(lp)); 2711 nr_pages--; 2712 } 2713 return 0; 2714 2715 Free: 2716 swsusp_free(); 2717 return error; 2718 } 2719 2720 /** 2721 * get_buffer - Get the address to store the next image data page. 2722 * 2723 * Get the address that snapshot_write_next() should return to its caller to 2724 * write to. 2725 */ 2726 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2727 { 2728 struct pbe *pbe; 2729 struct page *page; 2730 unsigned long pfn = memory_bm_next_pfn(bm); 2731 2732 if (pfn == BM_END_OF_MAP) 2733 return ERR_PTR(-EFAULT); 2734 2735 page = pfn_to_page(pfn); 2736 if (PageHighMem(page)) 2737 return get_highmem_page_buffer(page, ca); 2738 2739 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2740 /* 2741 * We have allocated the "original" page frame and we can 2742 * use it directly to store the loaded page. 2743 */ 2744 return page_address(page); 2745 2746 /* 2747 * The "original" page frame has not been allocated and we have to 2748 * use a "safe" page frame to store the loaded page. 2749 */ 2750 pbe = chain_alloc(ca, sizeof(struct pbe)); 2751 if (!pbe) { 2752 swsusp_free(); 2753 return ERR_PTR(-ENOMEM); 2754 } 2755 pbe->orig_address = page_address(page); 2756 pbe->address = __get_safe_page(ca->gfp_mask); 2757 if (!pbe->address) 2758 return ERR_PTR(-ENOMEM); 2759 pbe->next = restore_pblist; 2760 restore_pblist = pbe; 2761 return pbe->address; 2762 } 2763 2764 /** 2765 * snapshot_write_next - Get the address to store the next image page. 2766 * @handle: Snapshot handle structure to guide the writing. 2767 * 2768 * On the first call, @handle should point to a zeroed snapshot_handle 2769 * structure. The structure gets populated then and a pointer to it should be 2770 * passed to this function every next time. 2771 * 2772 * On success, the function returns a positive number. Then, the caller 2773 * is allowed to write up to the returned number of bytes to the memory 2774 * location computed by the data_of() macro. 2775 * 2776 * The function returns 0 to indicate the "end of file" condition. Negative 2777 * numbers are returned on errors, in which cases the structure pointed to by 2778 * @handle is not updated and should not be used any more. 2779 */ 2780 int snapshot_write_next(struct snapshot_handle *handle) 2781 { 2782 static struct chain_allocator ca; 2783 int error; 2784 2785 next: 2786 /* Check if we have already loaded the entire image */ 2787 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) 2788 return 0; 2789 2790 if (!handle->cur) { 2791 if (!buffer) 2792 /* This makes the buffer be freed by swsusp_free() */ 2793 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2794 2795 if (!buffer) 2796 return -ENOMEM; 2797 2798 handle->buffer = buffer; 2799 } else if (handle->cur == 1) { 2800 error = load_header(buffer); 2801 if (error) 2802 return error; 2803 2804 safe_pages_list = NULL; 2805 2806 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2807 if (error) 2808 return error; 2809 2810 error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY); 2811 if (error) 2812 return error; 2813 2814 nr_zero_pages = 0; 2815 2816 hibernate_restore_protection_begin(); 2817 } else if (handle->cur <= nr_meta_pages + 1) { 2818 error = unpack_orig_pfns(buffer, ©_bm, &zero_bm); 2819 if (error) 2820 return error; 2821 2822 if (handle->cur == nr_meta_pages + 1) { 2823 error = prepare_image(&orig_bm, ©_bm, &zero_bm); 2824 if (error) 2825 return error; 2826 2827 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2828 memory_bm_position_reset(&orig_bm); 2829 memory_bm_position_reset(&zero_bm); 2830 restore_pblist = NULL; 2831 handle->buffer = get_buffer(&orig_bm, &ca); 2832 if (IS_ERR(handle->buffer)) 2833 return PTR_ERR(handle->buffer); 2834 } 2835 } else { 2836 copy_last_highmem_page(); 2837 error = hibernate_restore_protect_page(handle->buffer); 2838 if (error) 2839 return error; 2840 handle->buffer = get_buffer(&orig_bm, &ca); 2841 if (IS_ERR(handle->buffer)) 2842 return PTR_ERR(handle->buffer); 2843 } 2844 handle->sync_read = (handle->buffer == buffer); 2845 handle->cur++; 2846 2847 /* Zero pages were not included in the image, memset it and move on. */ 2848 if (handle->cur > nr_meta_pages + 1 && 2849 memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) { 2850 memset(handle->buffer, 0, PAGE_SIZE); 2851 goto next; 2852 } 2853 2854 return PAGE_SIZE; 2855 } 2856 2857 /** 2858 * snapshot_write_finalize - Complete the loading of a hibernation image. 2859 * 2860 * Must be called after the last call to snapshot_write_next() in case the last 2861 * page in the image happens to be a highmem page and its contents should be 2862 * stored in highmem. Additionally, it recycles bitmap memory that's not 2863 * necessary any more. 2864 */ 2865 int snapshot_write_finalize(struct snapshot_handle *handle) 2866 { 2867 int error; 2868 2869 copy_last_highmem_page(); 2870 error = hibernate_restore_protect_page(handle->buffer); 2871 /* Do that only if we have loaded the image entirely */ 2872 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) { 2873 memory_bm_recycle(&orig_bm); 2874 free_highmem_data(); 2875 } 2876 return error; 2877 } 2878 2879 int snapshot_image_loaded(struct snapshot_handle *handle) 2880 { 2881 return !(!nr_copy_pages || !last_highmem_page_copied() || 2882 handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages); 2883 } 2884 2885 #ifdef CONFIG_HIGHMEM 2886 /* Assumes that @buf is ready and points to a "safe" page */ 2887 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2888 void *buf) 2889 { 2890 void *kaddr1, *kaddr2; 2891 2892 kaddr1 = kmap_atomic(p1); 2893 kaddr2 = kmap_atomic(p2); 2894 copy_page(buf, kaddr1); 2895 copy_page(kaddr1, kaddr2); 2896 copy_page(kaddr2, buf); 2897 kunmap_atomic(kaddr2); 2898 kunmap_atomic(kaddr1); 2899 } 2900 2901 /** 2902 * restore_highmem - Put highmem image pages into their original locations. 2903 * 2904 * For each highmem page that was in use before hibernation and is included in 2905 * the image, and also has been allocated by the "restore" kernel, swap its 2906 * current contents with the previous (ie. "before hibernation") ones. 2907 * 2908 * If the restore eventually fails, we can call this function once again and 2909 * restore the highmem state as seen by the restore kernel. 2910 */ 2911 int restore_highmem(void) 2912 { 2913 struct highmem_pbe *pbe = highmem_pblist; 2914 void *buf; 2915 2916 if (!pbe) 2917 return 0; 2918 2919 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2920 if (!buf) 2921 return -ENOMEM; 2922 2923 while (pbe) { 2924 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2925 pbe = pbe->next; 2926 } 2927 free_image_page(buf, PG_UNSAFE_CLEAR); 2928 return 0; 2929 } 2930 #endif /* CONFIG_HIGHMEM */ 2931