xref: /linux/kernel/power/snapshot.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36 
37 #include "power.h"
38 
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42 
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49 
50 void __init hibernate_reserved_size_init(void)
51 {
52 	reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54 
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62 
63 void __init hibernate_image_size_init(void)
64 {
65 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67 
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74 
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77 
78 /**
79  *	@safe_needed - on resume, for storing the PBE list and the image,
80  *	we can only use memory pages that do not conflict with the pages
81  *	used before suspend.  The unsafe pages have PageNosaveFree set
82  *	and we count them using unsafe_pages.
83  *
84  *	Each allocated image page is marked as PageNosave and PageNosaveFree
85  *	so that swsusp_free() can release it.
86  */
87 
88 #define PG_ANY		0
89 #define PG_SAFE		1
90 #define PG_UNSAFE_CLEAR	1
91 #define PG_UNSAFE_KEEP	0
92 
93 static unsigned int allocated_unsafe_pages;
94 
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 	void *res;
98 
99 	res = (void *)get_zeroed_page(gfp_mask);
100 	if (safe_needed)
101 		while (res && swsusp_page_is_free(virt_to_page(res))) {
102 			/* The page is unsafe, mark it for swsusp_free() */
103 			swsusp_set_page_forbidden(virt_to_page(res));
104 			allocated_unsafe_pages++;
105 			res = (void *)get_zeroed_page(gfp_mask);
106 		}
107 	if (res) {
108 		swsusp_set_page_forbidden(virt_to_page(res));
109 		swsusp_set_page_free(virt_to_page(res));
110 	}
111 	return res;
112 }
113 
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118 
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 	struct page *page;
122 
123 	page = alloc_page(gfp_mask);
124 	if (page) {
125 		swsusp_set_page_forbidden(page);
126 		swsusp_set_page_free(page);
127 	}
128 	return page;
129 }
130 
131 /**
132  *	free_image_page - free page represented by @addr, allocated with
133  *	get_image_page (page flags set by it must be cleared)
134  */
135 
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 	struct page *page;
139 
140 	BUG_ON(!virt_addr_valid(addr));
141 
142 	page = virt_to_page(addr);
143 
144 	swsusp_unset_page_forbidden(page);
145 	if (clear_nosave_free)
146 		swsusp_unset_page_free(page);
147 
148 	__free_page(page);
149 }
150 
151 /* struct linked_page is used to build chains of pages */
152 
153 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
154 
155 struct linked_page {
156 	struct linked_page *next;
157 	char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159 
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 	while (list) {
164 		struct linked_page *lp = list->next;
165 
166 		free_image_page(list, clear_page_nosave);
167 		list = lp;
168 	}
169 }
170 
171 /**
172   *	struct chain_allocator is used for allocating small objects out of
173   *	a linked list of pages called 'the chain'.
174   *
175   *	The chain grows each time when there is no room for a new object in
176   *	the current page.  The allocated objects cannot be freed individually.
177   *	It is only possible to free them all at once, by freeing the entire
178   *	chain.
179   *
180   *	NOTE: The chain allocator may be inefficient if the allocated objects
181   *	are not much smaller than PAGE_SIZE.
182   */
183 
184 struct chain_allocator {
185 	struct linked_page *chain;	/* the chain */
186 	unsigned int used_space;	/* total size of objects allocated out
187 					 * of the current page
188 					 */
189 	gfp_t gfp_mask;		/* mask for allocating pages */
190 	int safe_needed;	/* if set, only "safe" pages are allocated */
191 };
192 
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 	ca->chain = NULL;
197 	ca->used_space = LINKED_PAGE_DATA_SIZE;
198 	ca->gfp_mask = gfp_mask;
199 	ca->safe_needed = safe_needed;
200 }
201 
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 	void *ret;
205 
206 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 		struct linked_page *lp;
208 
209 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 		if (!lp)
211 			return NULL;
212 
213 		lp->next = ca->chain;
214 		ca->chain = lp;
215 		ca->used_space = 0;
216 	}
217 	ret = ca->chain->data + ca->used_space;
218 	ca->used_space += size;
219 	return ret;
220 }
221 
222 /**
223  *	Data types related to memory bitmaps.
224  *
225  *	Memory bitmap is a structure consiting of many linked lists of
226  *	objects.  The main list's elements are of type struct zone_bitmap
227  *	and each of them corresonds to one zone.  For each zone bitmap
228  *	object there is a list of objects of type struct bm_block that
229  *	represent each blocks of bitmap in which information is stored.
230  *
231  *	struct memory_bitmap contains a pointer to the main list of zone
232  *	bitmap objects, a struct bm_position used for browsing the bitmap,
233  *	and a pointer to the list of pages used for allocating all of the
234  *	zone bitmap objects and bitmap block objects.
235  *
236  *	NOTE: It has to be possible to lay out the bitmap in memory
237  *	using only allocations of order 0.  Additionally, the bitmap is
238  *	designed to work with arbitrary number of zones (this is over the
239  *	top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *	struct zone_bitmap contains a pointer to a list of bitmap block
242  *	objects and a pointer to the bitmap block object that has been
243  *	most recently used for setting bits.  Additionally, it contains the
244  *	pfns that correspond to the start and end of the represented zone.
245  *
246  *	struct bm_block contains a pointer to the memory page in which
247  *	information is stored (in the form of a block of bitmap)
248  *	It also contains the pfns that correspond to the start and end of
249  *	the represented memory area.
250  */
251 
252 #define BM_END_OF_MAP	(~0UL)
253 
254 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
255 
256 struct bm_block {
257 	struct list_head hook;	/* hook into a list of bitmap blocks */
258 	unsigned long start_pfn;	/* pfn represented by the first bit */
259 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
260 	unsigned long *data;	/* bitmap representing pages */
261 };
262 
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 	return bb->end_pfn - bb->start_pfn;
266 }
267 
268 /* strcut bm_position is used for browsing memory bitmaps */
269 
270 struct bm_position {
271 	struct bm_block *block;
272 	int bit;
273 };
274 
275 struct memory_bitmap {
276 	struct list_head blocks;	/* list of bitmap blocks */
277 	struct linked_page *p_list;	/* list of pages used to store zone
278 					 * bitmap objects and bitmap block
279 					 * objects
280 					 */
281 	struct bm_position cur;	/* most recently used bit position */
282 };
283 
284 /* Functions that operate on memory bitmaps */
285 
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 	bm->cur.bit = 0;
290 }
291 
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293 
294 /**
295  *	create_bm_block_list - create a list of block bitmap objects
296  *	@pages - number of pages to track
297  *	@list - list to put the allocated blocks into
298  *	@ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301 				struct list_head *list,
302 				struct chain_allocator *ca)
303 {
304 	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305 
306 	while (nr_blocks-- > 0) {
307 		struct bm_block *bb;
308 
309 		bb = chain_alloc(ca, sizeof(struct bm_block));
310 		if (!bb)
311 			return -ENOMEM;
312 		list_add(&bb->hook, list);
313 	}
314 
315 	return 0;
316 }
317 
318 struct mem_extent {
319 	struct list_head hook;
320 	unsigned long start;
321 	unsigned long end;
322 };
323 
324 /**
325  *	free_mem_extents - free a list of memory extents
326  *	@list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330 	struct mem_extent *ext, *aux;
331 
332 	list_for_each_entry_safe(ext, aux, list, hook) {
333 		list_del(&ext->hook);
334 		kfree(ext);
335 	}
336 }
337 
338 /**
339  *	create_mem_extents - create a list of memory extents representing
340  *	                     contiguous ranges of PFNs
341  *	@list - list to put the extents into
342  *	@gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 	struct zone *zone;
347 
348 	INIT_LIST_HEAD(list);
349 
350 	for_each_populated_zone(zone) {
351 		unsigned long zone_start, zone_end;
352 		struct mem_extent *ext, *cur, *aux;
353 
354 		zone_start = zone->zone_start_pfn;
355 		zone_end = zone->zone_start_pfn + zone->spanned_pages;
356 
357 		list_for_each_entry(ext, list, hook)
358 			if (zone_start <= ext->end)
359 				break;
360 
361 		if (&ext->hook == list || zone_end < ext->start) {
362 			/* New extent is necessary */
363 			struct mem_extent *new_ext;
364 
365 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 			if (!new_ext) {
367 				free_mem_extents(list);
368 				return -ENOMEM;
369 			}
370 			new_ext->start = zone_start;
371 			new_ext->end = zone_end;
372 			list_add_tail(&new_ext->hook, &ext->hook);
373 			continue;
374 		}
375 
376 		/* Merge this zone's range of PFNs with the existing one */
377 		if (zone_start < ext->start)
378 			ext->start = zone_start;
379 		if (zone_end > ext->end)
380 			ext->end = zone_end;
381 
382 		/* More merging may be possible */
383 		cur = ext;
384 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 			if (zone_end < cur->start)
386 				break;
387 			if (zone_end < cur->end)
388 				ext->end = cur->end;
389 			list_del(&cur->hook);
390 			kfree(cur);
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 /**
398   *	memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 	struct chain_allocator ca;
404 	struct list_head mem_extents;
405 	struct mem_extent *ext;
406 	int error;
407 
408 	chain_init(&ca, gfp_mask, safe_needed);
409 	INIT_LIST_HEAD(&bm->blocks);
410 
411 	error = create_mem_extents(&mem_extents, gfp_mask);
412 	if (error)
413 		return error;
414 
415 	list_for_each_entry(ext, &mem_extents, hook) {
416 		struct bm_block *bb;
417 		unsigned long pfn = ext->start;
418 		unsigned long pages = ext->end - ext->start;
419 
420 		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421 
422 		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 		if (error)
424 			goto Error;
425 
426 		list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 			bb->data = get_image_page(gfp_mask, safe_needed);
428 			if (!bb->data) {
429 				error = -ENOMEM;
430 				goto Error;
431 			}
432 
433 			bb->start_pfn = pfn;
434 			if (pages >= BM_BITS_PER_BLOCK) {
435 				pfn += BM_BITS_PER_BLOCK;
436 				pages -= BM_BITS_PER_BLOCK;
437 			} else {
438 				/* This is executed only once in the loop */
439 				pfn += pages;
440 			}
441 			bb->end_pfn = pfn;
442 		}
443 	}
444 
445 	bm->p_list = ca.chain;
446 	memory_bm_position_reset(bm);
447  Exit:
448 	free_mem_extents(&mem_extents);
449 	return error;
450 
451  Error:
452 	bm->p_list = ca.chain;
453 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 	goto Exit;
455 }
456 
457 /**
458   *	memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 	struct bm_block *bb;
463 
464 	list_for_each_entry(bb, &bm->blocks, hook)
465 		if (bb->data)
466 			free_image_page(bb->data, clear_nosave_free);
467 
468 	free_list_of_pages(bm->p_list, clear_nosave_free);
469 
470 	INIT_LIST_HEAD(&bm->blocks);
471 }
472 
473 /**
474  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *	of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 				void **addr, unsigned int *bit_nr)
480 {
481 	struct bm_block *bb;
482 
483 	/*
484 	 * Check if the pfn corresponds to the current bitmap block and find
485 	 * the block where it fits if this is not the case.
486 	 */
487 	bb = bm->cur.block;
488 	if (pfn < bb->start_pfn)
489 		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 			if (pfn >= bb->start_pfn)
491 				break;
492 
493 	if (pfn >= bb->end_pfn)
494 		list_for_each_entry_continue(bb, &bm->blocks, hook)
495 			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 				break;
497 
498 	if (&bb->hook == &bm->blocks)
499 		return -EFAULT;
500 
501 	/* The block has been found */
502 	bm->cur.block = bb;
503 	pfn -= bb->start_pfn;
504 	bm->cur.bit = pfn + 1;
505 	*bit_nr = pfn;
506 	*addr = bb->data;
507 	return 0;
508 }
509 
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 	void *addr;
513 	unsigned int bit;
514 	int error;
515 
516 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 	BUG_ON(error);
518 	set_bit(bit, addr);
519 }
520 
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 	void *addr;
524 	unsigned int bit;
525 	int error;
526 
527 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 	if (!error)
529 		set_bit(bit, addr);
530 	return error;
531 }
532 
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 	void *addr;
536 	unsigned int bit;
537 	int error;
538 
539 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 	BUG_ON(error);
541 	clear_bit(bit, addr);
542 }
543 
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 	void *addr;
547 	unsigned int bit;
548 	int error;
549 
550 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 	BUG_ON(error);
552 	return test_bit(bit, addr);
553 }
554 
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 	void *addr;
558 	unsigned int bit;
559 
560 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562 
563 /**
564  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *	returned.
567  *
568  *	It is required to run memory_bm_position_reset() before the first call to
569  *	this function.
570  */
571 
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 	struct bm_block *bb;
575 	int bit;
576 
577 	bb = bm->cur.block;
578 	do {
579 		bit = bm->cur.bit;
580 		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 		if (bit < bm_block_bits(bb))
582 			goto Return_pfn;
583 
584 		bb = list_entry(bb->hook.next, struct bm_block, hook);
585 		bm->cur.block = bb;
586 		bm->cur.bit = 0;
587 	} while (&bb->hook != &bm->blocks);
588 
589 	memory_bm_position_reset(bm);
590 	return BM_END_OF_MAP;
591 
592  Return_pfn:
593 	bm->cur.bit = bit + 1;
594 	return bb->start_pfn + bit;
595 }
596 
597 /**
598  *	This structure represents a range of page frames the contents of which
599  *	should not be saved during the suspend.
600  */
601 
602 struct nosave_region {
603 	struct list_head list;
604 	unsigned long start_pfn;
605 	unsigned long end_pfn;
606 };
607 
608 static LIST_HEAD(nosave_regions);
609 
610 /**
611  *	register_nosave_region - register a range of page frames the contents
612  *	of which should not be saved during the suspend (to be used in the early
613  *	initialization code)
614  */
615 
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 			 int use_kmalloc)
619 {
620 	struct nosave_region *region;
621 
622 	if (start_pfn >= end_pfn)
623 		return;
624 
625 	if (!list_empty(&nosave_regions)) {
626 		/* Try to extend the previous region (they should be sorted) */
627 		region = list_entry(nosave_regions.prev,
628 					struct nosave_region, list);
629 		if (region->end_pfn == start_pfn) {
630 			region->end_pfn = end_pfn;
631 			goto Report;
632 		}
633 	}
634 	if (use_kmalloc) {
635 		/* during init, this shouldn't fail */
636 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 		BUG_ON(!region);
638 	} else
639 		/* This allocation cannot fail */
640 		region = alloc_bootmem(sizeof(struct nosave_region));
641 	region->start_pfn = start_pfn;
642 	region->end_pfn = end_pfn;
643 	list_add_tail(&region->list, &nosave_regions);
644  Report:
645 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648 
649 /*
650  * Set bits in this map correspond to the page frames the contents of which
651  * should not be saved during the suspend.
652  */
653 static struct memory_bitmap *forbidden_pages_map;
654 
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657 
658 /*
659  * Each page frame allocated for creating the image is marked by setting the
660  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661  */
662 
663 void swsusp_set_page_free(struct page *page)
664 {
665 	if (free_pages_map)
666 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668 
669 static int swsusp_page_is_free(struct page *page)
670 {
671 	return free_pages_map ?
672 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674 
675 void swsusp_unset_page_free(struct page *page)
676 {
677 	if (free_pages_map)
678 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680 
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683 	if (forbidden_pages_map)
684 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686 
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689 	return forbidden_pages_map ?
690 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692 
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695 	if (forbidden_pages_map)
696 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698 
699 /**
700  *	mark_nosave_pages - set bits corresponding to the page frames the
701  *	contents of which should not be saved in a given bitmap.
702  */
703 
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706 	struct nosave_region *region;
707 
708 	if (list_empty(&nosave_regions))
709 		return;
710 
711 	list_for_each_entry(region, &nosave_regions, list) {
712 		unsigned long pfn;
713 
714 		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715 				region->start_pfn << PAGE_SHIFT,
716 				region->end_pfn << PAGE_SHIFT);
717 
718 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719 			if (pfn_valid(pfn)) {
720 				/*
721 				 * It is safe to ignore the result of
722 				 * mem_bm_set_bit_check() here, since we won't
723 				 * touch the PFNs for which the error is
724 				 * returned anyway.
725 				 */
726 				mem_bm_set_bit_check(bm, pfn);
727 			}
728 	}
729 }
730 
731 /**
732  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
733  *	frames that should not be saved and free page frames.  The pointers
734  *	forbidden_pages_map and free_pages_map are only modified if everything
735  *	goes well, because we don't want the bits to be used before both bitmaps
736  *	are set up.
737  */
738 
739 int create_basic_memory_bitmaps(void)
740 {
741 	struct memory_bitmap *bm1, *bm2;
742 	int error = 0;
743 
744 	BUG_ON(forbidden_pages_map || free_pages_map);
745 
746 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747 	if (!bm1)
748 		return -ENOMEM;
749 
750 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751 	if (error)
752 		goto Free_first_object;
753 
754 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755 	if (!bm2)
756 		goto Free_first_bitmap;
757 
758 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759 	if (error)
760 		goto Free_second_object;
761 
762 	forbidden_pages_map = bm1;
763 	free_pages_map = bm2;
764 	mark_nosave_pages(forbidden_pages_map);
765 
766 	pr_debug("PM: Basic memory bitmaps created\n");
767 
768 	return 0;
769 
770  Free_second_object:
771 	kfree(bm2);
772  Free_first_bitmap:
773  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774  Free_first_object:
775 	kfree(bm1);
776 	return -ENOMEM;
777 }
778 
779 /**
780  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
781  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
782  *	so that the bitmaps themselves are not referred to while they are being
783  *	freed.
784  */
785 
786 void free_basic_memory_bitmaps(void)
787 {
788 	struct memory_bitmap *bm1, *bm2;
789 
790 	BUG_ON(!(forbidden_pages_map && free_pages_map));
791 
792 	bm1 = forbidden_pages_map;
793 	bm2 = free_pages_map;
794 	forbidden_pages_map = NULL;
795 	free_pages_map = NULL;
796 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797 	kfree(bm1);
798 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799 	kfree(bm2);
800 
801 	pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803 
804 /**
805  *	snapshot_additional_pages - estimate the number of additional pages
806  *	be needed for setting up the suspend image data structures for given
807  *	zone (usually the returned value is greater than the exact number)
808  */
809 
810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812 	unsigned int res;
813 
814 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
816 	return 2 * res;
817 }
818 
819 #ifdef CONFIG_HIGHMEM
820 /**
821  *	count_free_highmem_pages - compute the total number of free highmem
822  *	pages, system-wide.
823  */
824 
825 static unsigned int count_free_highmem_pages(void)
826 {
827 	struct zone *zone;
828 	unsigned int cnt = 0;
829 
830 	for_each_populated_zone(zone)
831 		if (is_highmem(zone))
832 			cnt += zone_page_state(zone, NR_FREE_PAGES);
833 
834 	return cnt;
835 }
836 
837 /**
838  *	saveable_highmem_page - Determine whether a highmem page should be
839  *	included in the suspend image.
840  *
841  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
842  *	and it isn't a part of a free chunk of pages.
843  */
844 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
845 {
846 	struct page *page;
847 
848 	if (!pfn_valid(pfn))
849 		return NULL;
850 
851 	page = pfn_to_page(pfn);
852 	if (page_zone(page) != zone)
853 		return NULL;
854 
855 	BUG_ON(!PageHighMem(page));
856 
857 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
858 	    PageReserved(page))
859 		return NULL;
860 
861 	return page;
862 }
863 
864 /**
865  *	count_highmem_pages - compute the total number of saveable highmem
866  *	pages.
867  */
868 
869 static unsigned int count_highmem_pages(void)
870 {
871 	struct zone *zone;
872 	unsigned int n = 0;
873 
874 	for_each_populated_zone(zone) {
875 		unsigned long pfn, max_zone_pfn;
876 
877 		if (!is_highmem(zone))
878 			continue;
879 
880 		mark_free_pages(zone);
881 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
882 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
883 			if (saveable_highmem_page(zone, pfn))
884 				n++;
885 	}
886 	return n;
887 }
888 #else
889 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
890 {
891 	return NULL;
892 }
893 #endif /* CONFIG_HIGHMEM */
894 
895 /**
896  *	saveable_page - Determine whether a non-highmem page should be included
897  *	in the suspend image.
898  *
899  *	We should save the page if it isn't Nosave, and is not in the range
900  *	of pages statically defined as 'unsaveable', and it isn't a part of
901  *	a free chunk of pages.
902  */
903 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
904 {
905 	struct page *page;
906 
907 	if (!pfn_valid(pfn))
908 		return NULL;
909 
910 	page = pfn_to_page(pfn);
911 	if (page_zone(page) != zone)
912 		return NULL;
913 
914 	BUG_ON(PageHighMem(page));
915 
916 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
917 		return NULL;
918 
919 	if (PageReserved(page)
920 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
921 		return NULL;
922 
923 	return page;
924 }
925 
926 /**
927  *	count_data_pages - compute the total number of saveable non-highmem
928  *	pages.
929  */
930 
931 static unsigned int count_data_pages(void)
932 {
933 	struct zone *zone;
934 	unsigned long pfn, max_zone_pfn;
935 	unsigned int n = 0;
936 
937 	for_each_populated_zone(zone) {
938 		if (is_highmem(zone))
939 			continue;
940 
941 		mark_free_pages(zone);
942 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
943 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
944 			if (saveable_page(zone, pfn))
945 				n++;
946 	}
947 	return n;
948 }
949 
950 /* This is needed, because copy_page and memcpy are not usable for copying
951  * task structs.
952  */
953 static inline void do_copy_page(long *dst, long *src)
954 {
955 	int n;
956 
957 	for (n = PAGE_SIZE / sizeof(long); n; n--)
958 		*dst++ = *src++;
959 }
960 
961 
962 /**
963  *	safe_copy_page - check if the page we are going to copy is marked as
964  *		present in the kernel page tables (this always is the case if
965  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
966  *		kernel_page_present() always returns 'true').
967  */
968 static void safe_copy_page(void *dst, struct page *s_page)
969 {
970 	if (kernel_page_present(s_page)) {
971 		do_copy_page(dst, page_address(s_page));
972 	} else {
973 		kernel_map_pages(s_page, 1, 1);
974 		do_copy_page(dst, page_address(s_page));
975 		kernel_map_pages(s_page, 1, 0);
976 	}
977 }
978 
979 
980 #ifdef CONFIG_HIGHMEM
981 static inline struct page *
982 page_is_saveable(struct zone *zone, unsigned long pfn)
983 {
984 	return is_highmem(zone) ?
985 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
986 }
987 
988 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
989 {
990 	struct page *s_page, *d_page;
991 	void *src, *dst;
992 
993 	s_page = pfn_to_page(src_pfn);
994 	d_page = pfn_to_page(dst_pfn);
995 	if (PageHighMem(s_page)) {
996 		src = kmap_atomic(s_page, KM_USER0);
997 		dst = kmap_atomic(d_page, KM_USER1);
998 		do_copy_page(dst, src);
999 		kunmap_atomic(dst, KM_USER1);
1000 		kunmap_atomic(src, KM_USER0);
1001 	} else {
1002 		if (PageHighMem(d_page)) {
1003 			/* Page pointed to by src may contain some kernel
1004 			 * data modified by kmap_atomic()
1005 			 */
1006 			safe_copy_page(buffer, s_page);
1007 			dst = kmap_atomic(d_page, KM_USER0);
1008 			copy_page(dst, buffer);
1009 			kunmap_atomic(dst, KM_USER0);
1010 		} else {
1011 			safe_copy_page(page_address(d_page), s_page);
1012 		}
1013 	}
1014 }
1015 #else
1016 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1017 
1018 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1019 {
1020 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1021 				pfn_to_page(src_pfn));
1022 }
1023 #endif /* CONFIG_HIGHMEM */
1024 
1025 static void
1026 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1027 {
1028 	struct zone *zone;
1029 	unsigned long pfn;
1030 
1031 	for_each_populated_zone(zone) {
1032 		unsigned long max_zone_pfn;
1033 
1034 		mark_free_pages(zone);
1035 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1036 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1037 			if (page_is_saveable(zone, pfn))
1038 				memory_bm_set_bit(orig_bm, pfn);
1039 	}
1040 	memory_bm_position_reset(orig_bm);
1041 	memory_bm_position_reset(copy_bm);
1042 	for(;;) {
1043 		pfn = memory_bm_next_pfn(orig_bm);
1044 		if (unlikely(pfn == BM_END_OF_MAP))
1045 			break;
1046 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1047 	}
1048 }
1049 
1050 /* Total number of image pages */
1051 static unsigned int nr_copy_pages;
1052 /* Number of pages needed for saving the original pfns of the image pages */
1053 static unsigned int nr_meta_pages;
1054 /*
1055  * Numbers of normal and highmem page frames allocated for hibernation image
1056  * before suspending devices.
1057  */
1058 unsigned int alloc_normal, alloc_highmem;
1059 /*
1060  * Memory bitmap used for marking saveable pages (during hibernation) or
1061  * hibernation image pages (during restore)
1062  */
1063 static struct memory_bitmap orig_bm;
1064 /*
1065  * Memory bitmap used during hibernation for marking allocated page frames that
1066  * will contain copies of saveable pages.  During restore it is initially used
1067  * for marking hibernation image pages, but then the set bits from it are
1068  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1069  * used for marking "safe" highmem pages, but it has to be reinitialized for
1070  * this purpose.
1071  */
1072 static struct memory_bitmap copy_bm;
1073 
1074 /**
1075  *	swsusp_free - free pages allocated for the suspend.
1076  *
1077  *	Suspend pages are alocated before the atomic copy is made, so we
1078  *	need to release them after the resume.
1079  */
1080 
1081 void swsusp_free(void)
1082 {
1083 	struct zone *zone;
1084 	unsigned long pfn, max_zone_pfn;
1085 
1086 	for_each_populated_zone(zone) {
1087 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1088 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1089 			if (pfn_valid(pfn)) {
1090 				struct page *page = pfn_to_page(pfn);
1091 
1092 				if (swsusp_page_is_forbidden(page) &&
1093 				    swsusp_page_is_free(page)) {
1094 					swsusp_unset_page_forbidden(page);
1095 					swsusp_unset_page_free(page);
1096 					__free_page(page);
1097 				}
1098 			}
1099 	}
1100 	nr_copy_pages = 0;
1101 	nr_meta_pages = 0;
1102 	restore_pblist = NULL;
1103 	buffer = NULL;
1104 	alloc_normal = 0;
1105 	alloc_highmem = 0;
1106 }
1107 
1108 /* Helper functions used for the shrinking of memory. */
1109 
1110 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1111 
1112 /**
1113  * preallocate_image_pages - Allocate a number of pages for hibernation image
1114  * @nr_pages: Number of page frames to allocate.
1115  * @mask: GFP flags to use for the allocation.
1116  *
1117  * Return value: Number of page frames actually allocated
1118  */
1119 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1120 {
1121 	unsigned long nr_alloc = 0;
1122 
1123 	while (nr_pages > 0) {
1124 		struct page *page;
1125 
1126 		page = alloc_image_page(mask);
1127 		if (!page)
1128 			break;
1129 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1130 		if (PageHighMem(page))
1131 			alloc_highmem++;
1132 		else
1133 			alloc_normal++;
1134 		nr_pages--;
1135 		nr_alloc++;
1136 	}
1137 
1138 	return nr_alloc;
1139 }
1140 
1141 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1142 					      unsigned long avail_normal)
1143 {
1144 	unsigned long alloc;
1145 
1146 	if (avail_normal <= alloc_normal)
1147 		return 0;
1148 
1149 	alloc = avail_normal - alloc_normal;
1150 	if (nr_pages < alloc)
1151 		alloc = nr_pages;
1152 
1153 	return preallocate_image_pages(alloc, GFP_IMAGE);
1154 }
1155 
1156 #ifdef CONFIG_HIGHMEM
1157 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1158 {
1159 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1160 }
1161 
1162 /**
1163  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1164  */
1165 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1166 {
1167 	x *= multiplier;
1168 	do_div(x, base);
1169 	return (unsigned long)x;
1170 }
1171 
1172 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1173 						unsigned long highmem,
1174 						unsigned long total)
1175 {
1176 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1177 
1178 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1179 }
1180 #else /* CONFIG_HIGHMEM */
1181 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1182 {
1183 	return 0;
1184 }
1185 
1186 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187 						unsigned long highmem,
1188 						unsigned long total)
1189 {
1190 	return 0;
1191 }
1192 #endif /* CONFIG_HIGHMEM */
1193 
1194 /**
1195  * free_unnecessary_pages - Release preallocated pages not needed for the image
1196  */
1197 static void free_unnecessary_pages(void)
1198 {
1199 	unsigned long save, to_free_normal, to_free_highmem;
1200 
1201 	save = count_data_pages();
1202 	if (alloc_normal >= save) {
1203 		to_free_normal = alloc_normal - save;
1204 		save = 0;
1205 	} else {
1206 		to_free_normal = 0;
1207 		save -= alloc_normal;
1208 	}
1209 	save += count_highmem_pages();
1210 	if (alloc_highmem >= save) {
1211 		to_free_highmem = alloc_highmem - save;
1212 	} else {
1213 		to_free_highmem = 0;
1214 		to_free_normal -= save - alloc_highmem;
1215 	}
1216 
1217 	memory_bm_position_reset(&copy_bm);
1218 
1219 	while (to_free_normal > 0 || to_free_highmem > 0) {
1220 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1221 		struct page *page = pfn_to_page(pfn);
1222 
1223 		if (PageHighMem(page)) {
1224 			if (!to_free_highmem)
1225 				continue;
1226 			to_free_highmem--;
1227 			alloc_highmem--;
1228 		} else {
1229 			if (!to_free_normal)
1230 				continue;
1231 			to_free_normal--;
1232 			alloc_normal--;
1233 		}
1234 		memory_bm_clear_bit(&copy_bm, pfn);
1235 		swsusp_unset_page_forbidden(page);
1236 		swsusp_unset_page_free(page);
1237 		__free_page(page);
1238 	}
1239 }
1240 
1241 /**
1242  * minimum_image_size - Estimate the minimum acceptable size of an image
1243  * @saveable: Number of saveable pages in the system.
1244  *
1245  * We want to avoid attempting to free too much memory too hard, so estimate the
1246  * minimum acceptable size of a hibernation image to use as the lower limit for
1247  * preallocating memory.
1248  *
1249  * We assume that the minimum image size should be proportional to
1250  *
1251  * [number of saveable pages] - [number of pages that can be freed in theory]
1252  *
1253  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1254  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1255  * minus mapped file pages.
1256  */
1257 static unsigned long minimum_image_size(unsigned long saveable)
1258 {
1259 	unsigned long size;
1260 
1261 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1262 		+ global_page_state(NR_ACTIVE_ANON)
1263 		+ global_page_state(NR_INACTIVE_ANON)
1264 		+ global_page_state(NR_ACTIVE_FILE)
1265 		+ global_page_state(NR_INACTIVE_FILE)
1266 		- global_page_state(NR_FILE_MAPPED);
1267 
1268 	return saveable <= size ? 0 : saveable - size;
1269 }
1270 
1271 /**
1272  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1273  *
1274  * To create a hibernation image it is necessary to make a copy of every page
1275  * frame in use.  We also need a number of page frames to be free during
1276  * hibernation for allocations made while saving the image and for device
1277  * drivers, in case they need to allocate memory from their hibernation
1278  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1279  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1280  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1281  * total number of available page frames and allocate at least
1282  *
1283  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1284  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1285  *
1286  * of them, which corresponds to the maximum size of a hibernation image.
1287  *
1288  * If image_size is set below the number following from the above formula,
1289  * the preallocation of memory is continued until the total number of saveable
1290  * pages in the system is below the requested image size or the minimum
1291  * acceptable image size returned by minimum_image_size(), whichever is greater.
1292  */
1293 int hibernate_preallocate_memory(void)
1294 {
1295 	struct zone *zone;
1296 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1297 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1298 	struct timeval start, stop;
1299 	int error;
1300 
1301 	printk(KERN_INFO "PM: Preallocating image memory... ");
1302 	do_gettimeofday(&start);
1303 
1304 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1305 	if (error)
1306 		goto err_out;
1307 
1308 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1309 	if (error)
1310 		goto err_out;
1311 
1312 	alloc_normal = 0;
1313 	alloc_highmem = 0;
1314 
1315 	/* Count the number of saveable data pages. */
1316 	save_highmem = count_highmem_pages();
1317 	saveable = count_data_pages();
1318 
1319 	/*
1320 	 * Compute the total number of page frames we can use (count) and the
1321 	 * number of pages needed for image metadata (size).
1322 	 */
1323 	count = saveable;
1324 	saveable += save_highmem;
1325 	highmem = save_highmem;
1326 	size = 0;
1327 	for_each_populated_zone(zone) {
1328 		size += snapshot_additional_pages(zone);
1329 		if (is_highmem(zone))
1330 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1331 		else
1332 			count += zone_page_state(zone, NR_FREE_PAGES);
1333 	}
1334 	avail_normal = count;
1335 	count += highmem;
1336 	count -= totalreserve_pages;
1337 
1338 	/* Compute the maximum number of saveable pages to leave in memory. */
1339 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1340 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1341 	/* Compute the desired number of image pages specified by image_size. */
1342 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1343 	if (size > max_size)
1344 		size = max_size;
1345 	/*
1346 	 * If the desired number of image pages is at least as large as the
1347 	 * current number of saveable pages in memory, allocate page frames for
1348 	 * the image and we're done.
1349 	 */
1350 	if (size >= saveable) {
1351 		pages = preallocate_image_highmem(save_highmem);
1352 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1353 		goto out;
1354 	}
1355 
1356 	/* Estimate the minimum size of the image. */
1357 	pages = minimum_image_size(saveable);
1358 	/*
1359 	 * To avoid excessive pressure on the normal zone, leave room in it to
1360 	 * accommodate an image of the minimum size (unless it's already too
1361 	 * small, in which case don't preallocate pages from it at all).
1362 	 */
1363 	if (avail_normal > pages)
1364 		avail_normal -= pages;
1365 	else
1366 		avail_normal = 0;
1367 	if (size < pages)
1368 		size = min_t(unsigned long, pages, max_size);
1369 
1370 	/*
1371 	 * Let the memory management subsystem know that we're going to need a
1372 	 * large number of page frames to allocate and make it free some memory.
1373 	 * NOTE: If this is not done, performance will be hurt badly in some
1374 	 * test cases.
1375 	 */
1376 	shrink_all_memory(saveable - size);
1377 
1378 	/*
1379 	 * The number of saveable pages in memory was too high, so apply some
1380 	 * pressure to decrease it.  First, make room for the largest possible
1381 	 * image and fail if that doesn't work.  Next, try to decrease the size
1382 	 * of the image as much as indicated by 'size' using allocations from
1383 	 * highmem and non-highmem zones separately.
1384 	 */
1385 	pages_highmem = preallocate_image_highmem(highmem / 2);
1386 	alloc = (count - max_size) - pages_highmem;
1387 	pages = preallocate_image_memory(alloc, avail_normal);
1388 	if (pages < alloc) {
1389 		/* We have exhausted non-highmem pages, try highmem. */
1390 		alloc -= pages;
1391 		pages += pages_highmem;
1392 		pages_highmem = preallocate_image_highmem(alloc);
1393 		if (pages_highmem < alloc)
1394 			goto err_out;
1395 		pages += pages_highmem;
1396 		/*
1397 		 * size is the desired number of saveable pages to leave in
1398 		 * memory, so try to preallocate (all memory - size) pages.
1399 		 */
1400 		alloc = (count - pages) - size;
1401 		pages += preallocate_image_highmem(alloc);
1402 	} else {
1403 		/*
1404 		 * There are approximately max_size saveable pages at this point
1405 		 * and we want to reduce this number down to size.
1406 		 */
1407 		alloc = max_size - size;
1408 		size = preallocate_highmem_fraction(alloc, highmem, count);
1409 		pages_highmem += size;
1410 		alloc -= size;
1411 		size = preallocate_image_memory(alloc, avail_normal);
1412 		pages_highmem += preallocate_image_highmem(alloc - size);
1413 		pages += pages_highmem + size;
1414 	}
1415 
1416 	/*
1417 	 * We only need as many page frames for the image as there are saveable
1418 	 * pages in memory, but we have allocated more.  Release the excessive
1419 	 * ones now.
1420 	 */
1421 	free_unnecessary_pages();
1422 
1423  out:
1424 	do_gettimeofday(&stop);
1425 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1426 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1427 
1428 	return 0;
1429 
1430  err_out:
1431 	printk(KERN_CONT "\n");
1432 	swsusp_free();
1433 	return -ENOMEM;
1434 }
1435 
1436 #ifdef CONFIG_HIGHMEM
1437 /**
1438   *	count_pages_for_highmem - compute the number of non-highmem pages
1439   *	that will be necessary for creating copies of highmem pages.
1440   */
1441 
1442 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1443 {
1444 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1445 
1446 	if (free_highmem >= nr_highmem)
1447 		nr_highmem = 0;
1448 	else
1449 		nr_highmem -= free_highmem;
1450 
1451 	return nr_highmem;
1452 }
1453 #else
1454 static unsigned int
1455 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1456 #endif /* CONFIG_HIGHMEM */
1457 
1458 /**
1459  *	enough_free_mem - Make sure we have enough free memory for the
1460  *	snapshot image.
1461  */
1462 
1463 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1464 {
1465 	struct zone *zone;
1466 	unsigned int free = alloc_normal;
1467 
1468 	for_each_populated_zone(zone)
1469 		if (!is_highmem(zone))
1470 			free += zone_page_state(zone, NR_FREE_PAGES);
1471 
1472 	nr_pages += count_pages_for_highmem(nr_highmem);
1473 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1474 		nr_pages, PAGES_FOR_IO, free);
1475 
1476 	return free > nr_pages + PAGES_FOR_IO;
1477 }
1478 
1479 #ifdef CONFIG_HIGHMEM
1480 /**
1481  *	get_highmem_buffer - if there are some highmem pages in the suspend
1482  *	image, we may need the buffer to copy them and/or load their data.
1483  */
1484 
1485 static inline int get_highmem_buffer(int safe_needed)
1486 {
1487 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1488 	return buffer ? 0 : -ENOMEM;
1489 }
1490 
1491 /**
1492  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1493  *	Try to allocate as many pages as needed, but if the number of free
1494  *	highmem pages is lesser than that, allocate them all.
1495  */
1496 
1497 static inline unsigned int
1498 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1499 {
1500 	unsigned int to_alloc = count_free_highmem_pages();
1501 
1502 	if (to_alloc > nr_highmem)
1503 		to_alloc = nr_highmem;
1504 
1505 	nr_highmem -= to_alloc;
1506 	while (to_alloc-- > 0) {
1507 		struct page *page;
1508 
1509 		page = alloc_image_page(__GFP_HIGHMEM);
1510 		memory_bm_set_bit(bm, page_to_pfn(page));
1511 	}
1512 	return nr_highmem;
1513 }
1514 #else
1515 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1516 
1517 static inline unsigned int
1518 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1519 #endif /* CONFIG_HIGHMEM */
1520 
1521 /**
1522  *	swsusp_alloc - allocate memory for the suspend image
1523  *
1524  *	We first try to allocate as many highmem pages as there are
1525  *	saveable highmem pages in the system.  If that fails, we allocate
1526  *	non-highmem pages for the copies of the remaining highmem ones.
1527  *
1528  *	In this approach it is likely that the copies of highmem pages will
1529  *	also be located in the high memory, because of the way in which
1530  *	copy_data_pages() works.
1531  */
1532 
1533 static int
1534 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1535 		unsigned int nr_pages, unsigned int nr_highmem)
1536 {
1537 	if (nr_highmem > 0) {
1538 		if (get_highmem_buffer(PG_ANY))
1539 			goto err_out;
1540 		if (nr_highmem > alloc_highmem) {
1541 			nr_highmem -= alloc_highmem;
1542 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1543 		}
1544 	}
1545 	if (nr_pages > alloc_normal) {
1546 		nr_pages -= alloc_normal;
1547 		while (nr_pages-- > 0) {
1548 			struct page *page;
1549 
1550 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1551 			if (!page)
1552 				goto err_out;
1553 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1554 		}
1555 	}
1556 
1557 	return 0;
1558 
1559  err_out:
1560 	swsusp_free();
1561 	return -ENOMEM;
1562 }
1563 
1564 asmlinkage int swsusp_save(void)
1565 {
1566 	unsigned int nr_pages, nr_highmem;
1567 
1568 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1569 
1570 	drain_local_pages(NULL);
1571 	nr_pages = count_data_pages();
1572 	nr_highmem = count_highmem_pages();
1573 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1574 
1575 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1576 		printk(KERN_ERR "PM: Not enough free memory\n");
1577 		return -ENOMEM;
1578 	}
1579 
1580 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1581 		printk(KERN_ERR "PM: Memory allocation failed\n");
1582 		return -ENOMEM;
1583 	}
1584 
1585 	/* During allocating of suspend pagedir, new cold pages may appear.
1586 	 * Kill them.
1587 	 */
1588 	drain_local_pages(NULL);
1589 	copy_data_pages(&copy_bm, &orig_bm);
1590 
1591 	/*
1592 	 * End of critical section. From now on, we can write to memory,
1593 	 * but we should not touch disk. This specially means we must _not_
1594 	 * touch swap space! Except we must write out our image of course.
1595 	 */
1596 
1597 	nr_pages += nr_highmem;
1598 	nr_copy_pages = nr_pages;
1599 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1600 
1601 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1602 		nr_pages);
1603 
1604 	return 0;
1605 }
1606 
1607 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1608 static int init_header_complete(struct swsusp_info *info)
1609 {
1610 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1611 	info->version_code = LINUX_VERSION_CODE;
1612 	return 0;
1613 }
1614 
1615 static char *check_image_kernel(struct swsusp_info *info)
1616 {
1617 	if (info->version_code != LINUX_VERSION_CODE)
1618 		return "kernel version";
1619 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1620 		return "system type";
1621 	if (strcmp(info->uts.release,init_utsname()->release))
1622 		return "kernel release";
1623 	if (strcmp(info->uts.version,init_utsname()->version))
1624 		return "version";
1625 	if (strcmp(info->uts.machine,init_utsname()->machine))
1626 		return "machine";
1627 	return NULL;
1628 }
1629 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1630 
1631 unsigned long snapshot_get_image_size(void)
1632 {
1633 	return nr_copy_pages + nr_meta_pages + 1;
1634 }
1635 
1636 static int init_header(struct swsusp_info *info)
1637 {
1638 	memset(info, 0, sizeof(struct swsusp_info));
1639 	info->num_physpages = num_physpages;
1640 	info->image_pages = nr_copy_pages;
1641 	info->pages = snapshot_get_image_size();
1642 	info->size = info->pages;
1643 	info->size <<= PAGE_SHIFT;
1644 	return init_header_complete(info);
1645 }
1646 
1647 /**
1648  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1649  *	are stored in the array @buf[] (1 page at a time)
1650  */
1651 
1652 static inline void
1653 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1654 {
1655 	int j;
1656 
1657 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1658 		buf[j] = memory_bm_next_pfn(bm);
1659 		if (unlikely(buf[j] == BM_END_OF_MAP))
1660 			break;
1661 	}
1662 }
1663 
1664 /**
1665  *	snapshot_read_next - used for reading the system memory snapshot.
1666  *
1667  *	On the first call to it @handle should point to a zeroed
1668  *	snapshot_handle structure.  The structure gets updated and a pointer
1669  *	to it should be passed to this function every next time.
1670  *
1671  *	On success the function returns a positive number.  Then, the caller
1672  *	is allowed to read up to the returned number of bytes from the memory
1673  *	location computed by the data_of() macro.
1674  *
1675  *	The function returns 0 to indicate the end of data stream condition,
1676  *	and a negative number is returned on error.  In such cases the
1677  *	structure pointed to by @handle is not updated and should not be used
1678  *	any more.
1679  */
1680 
1681 int snapshot_read_next(struct snapshot_handle *handle)
1682 {
1683 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1684 		return 0;
1685 
1686 	if (!buffer) {
1687 		/* This makes the buffer be freed by swsusp_free() */
1688 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1689 		if (!buffer)
1690 			return -ENOMEM;
1691 	}
1692 	if (!handle->cur) {
1693 		int error;
1694 
1695 		error = init_header((struct swsusp_info *)buffer);
1696 		if (error)
1697 			return error;
1698 		handle->buffer = buffer;
1699 		memory_bm_position_reset(&orig_bm);
1700 		memory_bm_position_reset(&copy_bm);
1701 	} else if (handle->cur <= nr_meta_pages) {
1702 		clear_page(buffer);
1703 		pack_pfns(buffer, &orig_bm);
1704 	} else {
1705 		struct page *page;
1706 
1707 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1708 		if (PageHighMem(page)) {
1709 			/* Highmem pages are copied to the buffer,
1710 			 * because we can't return with a kmapped
1711 			 * highmem page (we may not be called again).
1712 			 */
1713 			void *kaddr;
1714 
1715 			kaddr = kmap_atomic(page, KM_USER0);
1716 			copy_page(buffer, kaddr);
1717 			kunmap_atomic(kaddr, KM_USER0);
1718 			handle->buffer = buffer;
1719 		} else {
1720 			handle->buffer = page_address(page);
1721 		}
1722 	}
1723 	handle->cur++;
1724 	return PAGE_SIZE;
1725 }
1726 
1727 /**
1728  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1729  *	the image during resume, because they conflict with the pages that
1730  *	had been used before suspend
1731  */
1732 
1733 static int mark_unsafe_pages(struct memory_bitmap *bm)
1734 {
1735 	struct zone *zone;
1736 	unsigned long pfn, max_zone_pfn;
1737 
1738 	/* Clear page flags */
1739 	for_each_populated_zone(zone) {
1740 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1741 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1742 			if (pfn_valid(pfn))
1743 				swsusp_unset_page_free(pfn_to_page(pfn));
1744 	}
1745 
1746 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1747 	memory_bm_position_reset(bm);
1748 	do {
1749 		pfn = memory_bm_next_pfn(bm);
1750 		if (likely(pfn != BM_END_OF_MAP)) {
1751 			if (likely(pfn_valid(pfn)))
1752 				swsusp_set_page_free(pfn_to_page(pfn));
1753 			else
1754 				return -EFAULT;
1755 		}
1756 	} while (pfn != BM_END_OF_MAP);
1757 
1758 	allocated_unsafe_pages = 0;
1759 
1760 	return 0;
1761 }
1762 
1763 static void
1764 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1765 {
1766 	unsigned long pfn;
1767 
1768 	memory_bm_position_reset(src);
1769 	pfn = memory_bm_next_pfn(src);
1770 	while (pfn != BM_END_OF_MAP) {
1771 		memory_bm_set_bit(dst, pfn);
1772 		pfn = memory_bm_next_pfn(src);
1773 	}
1774 }
1775 
1776 static int check_header(struct swsusp_info *info)
1777 {
1778 	char *reason;
1779 
1780 	reason = check_image_kernel(info);
1781 	if (!reason && info->num_physpages != num_physpages)
1782 		reason = "memory size";
1783 	if (reason) {
1784 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1785 		return -EPERM;
1786 	}
1787 	return 0;
1788 }
1789 
1790 /**
1791  *	load header - check the image header and copy data from it
1792  */
1793 
1794 static int
1795 load_header(struct swsusp_info *info)
1796 {
1797 	int error;
1798 
1799 	restore_pblist = NULL;
1800 	error = check_header(info);
1801 	if (!error) {
1802 		nr_copy_pages = info->image_pages;
1803 		nr_meta_pages = info->pages - info->image_pages - 1;
1804 	}
1805 	return error;
1806 }
1807 
1808 /**
1809  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1810  *	the corresponding bit in the memory bitmap @bm
1811  */
1812 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1813 {
1814 	int j;
1815 
1816 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1817 		if (unlikely(buf[j] == BM_END_OF_MAP))
1818 			break;
1819 
1820 		if (memory_bm_pfn_present(bm, buf[j]))
1821 			memory_bm_set_bit(bm, buf[j]);
1822 		else
1823 			return -EFAULT;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 /* List of "safe" pages that may be used to store data loaded from the suspend
1830  * image
1831  */
1832 static struct linked_page *safe_pages_list;
1833 
1834 #ifdef CONFIG_HIGHMEM
1835 /* struct highmem_pbe is used for creating the list of highmem pages that
1836  * should be restored atomically during the resume from disk, because the page
1837  * frames they have occupied before the suspend are in use.
1838  */
1839 struct highmem_pbe {
1840 	struct page *copy_page;	/* data is here now */
1841 	struct page *orig_page;	/* data was here before the suspend */
1842 	struct highmem_pbe *next;
1843 };
1844 
1845 /* List of highmem PBEs needed for restoring the highmem pages that were
1846  * allocated before the suspend and included in the suspend image, but have
1847  * also been allocated by the "resume" kernel, so their contents cannot be
1848  * written directly to their "original" page frames.
1849  */
1850 static struct highmem_pbe *highmem_pblist;
1851 
1852 /**
1853  *	count_highmem_image_pages - compute the number of highmem pages in the
1854  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1855  *	image pages are assumed to be set.
1856  */
1857 
1858 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1859 {
1860 	unsigned long pfn;
1861 	unsigned int cnt = 0;
1862 
1863 	memory_bm_position_reset(bm);
1864 	pfn = memory_bm_next_pfn(bm);
1865 	while (pfn != BM_END_OF_MAP) {
1866 		if (PageHighMem(pfn_to_page(pfn)))
1867 			cnt++;
1868 
1869 		pfn = memory_bm_next_pfn(bm);
1870 	}
1871 	return cnt;
1872 }
1873 
1874 /**
1875  *	prepare_highmem_image - try to allocate as many highmem pages as
1876  *	there are highmem image pages (@nr_highmem_p points to the variable
1877  *	containing the number of highmem image pages).  The pages that are
1878  *	"safe" (ie. will not be overwritten when the suspend image is
1879  *	restored) have the corresponding bits set in @bm (it must be
1880  *	unitialized).
1881  *
1882  *	NOTE: This function should not be called if there are no highmem
1883  *	image pages.
1884  */
1885 
1886 static unsigned int safe_highmem_pages;
1887 
1888 static struct memory_bitmap *safe_highmem_bm;
1889 
1890 static int
1891 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1892 {
1893 	unsigned int to_alloc;
1894 
1895 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1896 		return -ENOMEM;
1897 
1898 	if (get_highmem_buffer(PG_SAFE))
1899 		return -ENOMEM;
1900 
1901 	to_alloc = count_free_highmem_pages();
1902 	if (to_alloc > *nr_highmem_p)
1903 		to_alloc = *nr_highmem_p;
1904 	else
1905 		*nr_highmem_p = to_alloc;
1906 
1907 	safe_highmem_pages = 0;
1908 	while (to_alloc-- > 0) {
1909 		struct page *page;
1910 
1911 		page = alloc_page(__GFP_HIGHMEM);
1912 		if (!swsusp_page_is_free(page)) {
1913 			/* The page is "safe", set its bit the bitmap */
1914 			memory_bm_set_bit(bm, page_to_pfn(page));
1915 			safe_highmem_pages++;
1916 		}
1917 		/* Mark the page as allocated */
1918 		swsusp_set_page_forbidden(page);
1919 		swsusp_set_page_free(page);
1920 	}
1921 	memory_bm_position_reset(bm);
1922 	safe_highmem_bm = bm;
1923 	return 0;
1924 }
1925 
1926 /**
1927  *	get_highmem_page_buffer - for given highmem image page find the buffer
1928  *	that suspend_write_next() should set for its caller to write to.
1929  *
1930  *	If the page is to be saved to its "original" page frame or a copy of
1931  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1932  *	the copy of the page is to be made in normal memory, so the address of
1933  *	the copy is returned.
1934  *
1935  *	If @buffer is returned, the caller of suspend_write_next() will write
1936  *	the page's contents to @buffer, so they will have to be copied to the
1937  *	right location on the next call to suspend_write_next() and it is done
1938  *	with the help of copy_last_highmem_page().  For this purpose, if
1939  *	@buffer is returned, @last_highmem page is set to the page to which
1940  *	the data will have to be copied from @buffer.
1941  */
1942 
1943 static struct page *last_highmem_page;
1944 
1945 static void *
1946 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1947 {
1948 	struct highmem_pbe *pbe;
1949 	void *kaddr;
1950 
1951 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1952 		/* We have allocated the "original" page frame and we can
1953 		 * use it directly to store the loaded page.
1954 		 */
1955 		last_highmem_page = page;
1956 		return buffer;
1957 	}
1958 	/* The "original" page frame has not been allocated and we have to
1959 	 * use a "safe" page frame to store the loaded page.
1960 	 */
1961 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1962 	if (!pbe) {
1963 		swsusp_free();
1964 		return ERR_PTR(-ENOMEM);
1965 	}
1966 	pbe->orig_page = page;
1967 	if (safe_highmem_pages > 0) {
1968 		struct page *tmp;
1969 
1970 		/* Copy of the page will be stored in high memory */
1971 		kaddr = buffer;
1972 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1973 		safe_highmem_pages--;
1974 		last_highmem_page = tmp;
1975 		pbe->copy_page = tmp;
1976 	} else {
1977 		/* Copy of the page will be stored in normal memory */
1978 		kaddr = safe_pages_list;
1979 		safe_pages_list = safe_pages_list->next;
1980 		pbe->copy_page = virt_to_page(kaddr);
1981 	}
1982 	pbe->next = highmem_pblist;
1983 	highmem_pblist = pbe;
1984 	return kaddr;
1985 }
1986 
1987 /**
1988  *	copy_last_highmem_page - copy the contents of a highmem image from
1989  *	@buffer, where the caller of snapshot_write_next() has place them,
1990  *	to the right location represented by @last_highmem_page .
1991  */
1992 
1993 static void copy_last_highmem_page(void)
1994 {
1995 	if (last_highmem_page) {
1996 		void *dst;
1997 
1998 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1999 		copy_page(dst, buffer);
2000 		kunmap_atomic(dst, KM_USER0);
2001 		last_highmem_page = NULL;
2002 	}
2003 }
2004 
2005 static inline int last_highmem_page_copied(void)
2006 {
2007 	return !last_highmem_page;
2008 }
2009 
2010 static inline void free_highmem_data(void)
2011 {
2012 	if (safe_highmem_bm)
2013 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2014 
2015 	if (buffer)
2016 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2017 }
2018 #else
2019 static inline int get_safe_write_buffer(void) { return 0; }
2020 
2021 static unsigned int
2022 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2023 
2024 static inline int
2025 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2026 {
2027 	return 0;
2028 }
2029 
2030 static inline void *
2031 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2032 {
2033 	return ERR_PTR(-EINVAL);
2034 }
2035 
2036 static inline void copy_last_highmem_page(void) {}
2037 static inline int last_highmem_page_copied(void) { return 1; }
2038 static inline void free_highmem_data(void) {}
2039 #endif /* CONFIG_HIGHMEM */
2040 
2041 /**
2042  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2043  *	be overwritten in the process of restoring the system memory state
2044  *	from the suspend image ("unsafe" pages) and allocate memory for the
2045  *	image.
2046  *
2047  *	The idea is to allocate a new memory bitmap first and then allocate
2048  *	as many pages as needed for the image data, but not to assign these
2049  *	pages to specific tasks initially.  Instead, we just mark them as
2050  *	allocated and create a lists of "safe" pages that will be used
2051  *	later.  On systems with high memory a list of "safe" highmem pages is
2052  *	also created.
2053  */
2054 
2055 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2056 
2057 static int
2058 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2059 {
2060 	unsigned int nr_pages, nr_highmem;
2061 	struct linked_page *sp_list, *lp;
2062 	int error;
2063 
2064 	/* If there is no highmem, the buffer will not be necessary */
2065 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2066 	buffer = NULL;
2067 
2068 	nr_highmem = count_highmem_image_pages(bm);
2069 	error = mark_unsafe_pages(bm);
2070 	if (error)
2071 		goto Free;
2072 
2073 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2074 	if (error)
2075 		goto Free;
2076 
2077 	duplicate_memory_bitmap(new_bm, bm);
2078 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2079 	if (nr_highmem > 0) {
2080 		error = prepare_highmem_image(bm, &nr_highmem);
2081 		if (error)
2082 			goto Free;
2083 	}
2084 	/* Reserve some safe pages for potential later use.
2085 	 *
2086 	 * NOTE: This way we make sure there will be enough safe pages for the
2087 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2088 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2089 	 */
2090 	sp_list = NULL;
2091 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2092 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2093 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2094 	while (nr_pages > 0) {
2095 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2096 		if (!lp) {
2097 			error = -ENOMEM;
2098 			goto Free;
2099 		}
2100 		lp->next = sp_list;
2101 		sp_list = lp;
2102 		nr_pages--;
2103 	}
2104 	/* Preallocate memory for the image */
2105 	safe_pages_list = NULL;
2106 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2107 	while (nr_pages > 0) {
2108 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2109 		if (!lp) {
2110 			error = -ENOMEM;
2111 			goto Free;
2112 		}
2113 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2114 			/* The page is "safe", add it to the list */
2115 			lp->next = safe_pages_list;
2116 			safe_pages_list = lp;
2117 		}
2118 		/* Mark the page as allocated */
2119 		swsusp_set_page_forbidden(virt_to_page(lp));
2120 		swsusp_set_page_free(virt_to_page(lp));
2121 		nr_pages--;
2122 	}
2123 	/* Free the reserved safe pages so that chain_alloc() can use them */
2124 	while (sp_list) {
2125 		lp = sp_list->next;
2126 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2127 		sp_list = lp;
2128 	}
2129 	return 0;
2130 
2131  Free:
2132 	swsusp_free();
2133 	return error;
2134 }
2135 
2136 /**
2137  *	get_buffer - compute the address that snapshot_write_next() should
2138  *	set for its caller to write to.
2139  */
2140 
2141 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2142 {
2143 	struct pbe *pbe;
2144 	struct page *page;
2145 	unsigned long pfn = memory_bm_next_pfn(bm);
2146 
2147 	if (pfn == BM_END_OF_MAP)
2148 		return ERR_PTR(-EFAULT);
2149 
2150 	page = pfn_to_page(pfn);
2151 	if (PageHighMem(page))
2152 		return get_highmem_page_buffer(page, ca);
2153 
2154 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2155 		/* We have allocated the "original" page frame and we can
2156 		 * use it directly to store the loaded page.
2157 		 */
2158 		return page_address(page);
2159 
2160 	/* The "original" page frame has not been allocated and we have to
2161 	 * use a "safe" page frame to store the loaded page.
2162 	 */
2163 	pbe = chain_alloc(ca, sizeof(struct pbe));
2164 	if (!pbe) {
2165 		swsusp_free();
2166 		return ERR_PTR(-ENOMEM);
2167 	}
2168 	pbe->orig_address = page_address(page);
2169 	pbe->address = safe_pages_list;
2170 	safe_pages_list = safe_pages_list->next;
2171 	pbe->next = restore_pblist;
2172 	restore_pblist = pbe;
2173 	return pbe->address;
2174 }
2175 
2176 /**
2177  *	snapshot_write_next - used for writing the system memory snapshot.
2178  *
2179  *	On the first call to it @handle should point to a zeroed
2180  *	snapshot_handle structure.  The structure gets updated and a pointer
2181  *	to it should be passed to this function every next time.
2182  *
2183  *	On success the function returns a positive number.  Then, the caller
2184  *	is allowed to write up to the returned number of bytes to the memory
2185  *	location computed by the data_of() macro.
2186  *
2187  *	The function returns 0 to indicate the "end of file" condition,
2188  *	and a negative number is returned on error.  In such cases the
2189  *	structure pointed to by @handle is not updated and should not be used
2190  *	any more.
2191  */
2192 
2193 int snapshot_write_next(struct snapshot_handle *handle)
2194 {
2195 	static struct chain_allocator ca;
2196 	int error = 0;
2197 
2198 	/* Check if we have already loaded the entire image */
2199 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2200 		return 0;
2201 
2202 	handle->sync_read = 1;
2203 
2204 	if (!handle->cur) {
2205 		if (!buffer)
2206 			/* This makes the buffer be freed by swsusp_free() */
2207 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2208 
2209 		if (!buffer)
2210 			return -ENOMEM;
2211 
2212 		handle->buffer = buffer;
2213 	} else if (handle->cur == 1) {
2214 		error = load_header(buffer);
2215 		if (error)
2216 			return error;
2217 
2218 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2219 		if (error)
2220 			return error;
2221 
2222 	} else if (handle->cur <= nr_meta_pages + 1) {
2223 		error = unpack_orig_pfns(buffer, &copy_bm);
2224 		if (error)
2225 			return error;
2226 
2227 		if (handle->cur == nr_meta_pages + 1) {
2228 			error = prepare_image(&orig_bm, &copy_bm);
2229 			if (error)
2230 				return error;
2231 
2232 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2233 			memory_bm_position_reset(&orig_bm);
2234 			restore_pblist = NULL;
2235 			handle->buffer = get_buffer(&orig_bm, &ca);
2236 			handle->sync_read = 0;
2237 			if (IS_ERR(handle->buffer))
2238 				return PTR_ERR(handle->buffer);
2239 		}
2240 	} else {
2241 		copy_last_highmem_page();
2242 		handle->buffer = get_buffer(&orig_bm, &ca);
2243 		if (IS_ERR(handle->buffer))
2244 			return PTR_ERR(handle->buffer);
2245 		if (handle->buffer != buffer)
2246 			handle->sync_read = 0;
2247 	}
2248 	handle->cur++;
2249 	return PAGE_SIZE;
2250 }
2251 
2252 /**
2253  *	snapshot_write_finalize - must be called after the last call to
2254  *	snapshot_write_next() in case the last page in the image happens
2255  *	to be a highmem page and its contents should be stored in the
2256  *	highmem.  Additionally, it releases the memory that will not be
2257  *	used any more.
2258  */
2259 
2260 void snapshot_write_finalize(struct snapshot_handle *handle)
2261 {
2262 	copy_last_highmem_page();
2263 	/* Free only if we have loaded the image entirely */
2264 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2265 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2266 		free_highmem_data();
2267 	}
2268 }
2269 
2270 int snapshot_image_loaded(struct snapshot_handle *handle)
2271 {
2272 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2273 			handle->cur <= nr_meta_pages + nr_copy_pages);
2274 }
2275 
2276 #ifdef CONFIG_HIGHMEM
2277 /* Assumes that @buf is ready and points to a "safe" page */
2278 static inline void
2279 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2280 {
2281 	void *kaddr1, *kaddr2;
2282 
2283 	kaddr1 = kmap_atomic(p1, KM_USER0);
2284 	kaddr2 = kmap_atomic(p2, KM_USER1);
2285 	copy_page(buf, kaddr1);
2286 	copy_page(kaddr1, kaddr2);
2287 	copy_page(kaddr2, buf);
2288 	kunmap_atomic(kaddr2, KM_USER1);
2289 	kunmap_atomic(kaddr1, KM_USER0);
2290 }
2291 
2292 /**
2293  *	restore_highmem - for each highmem page that was allocated before
2294  *	the suspend and included in the suspend image, and also has been
2295  *	allocated by the "resume" kernel swap its current (ie. "before
2296  *	resume") contents with the previous (ie. "before suspend") one.
2297  *
2298  *	If the resume eventually fails, we can call this function once
2299  *	again and restore the "before resume" highmem state.
2300  */
2301 
2302 int restore_highmem(void)
2303 {
2304 	struct highmem_pbe *pbe = highmem_pblist;
2305 	void *buf;
2306 
2307 	if (!pbe)
2308 		return 0;
2309 
2310 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2311 	if (!buf)
2312 		return -ENOMEM;
2313 
2314 	while (pbe) {
2315 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2316 		pbe = pbe->next;
2317 	}
2318 	free_image_page(buf, PG_UNSAFE_CLEAR);
2319 	return 0;
2320 }
2321 #endif /* CONFIG_HIGHMEM */
2322