1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Number of bytes to reserve for memory allocations made by device drivers 45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 46 * cause image creation to fail (tunable via /sys/power/reserved_size). 47 */ 48 unsigned long reserved_size; 49 50 void __init hibernate_reserved_size_init(void) 51 { 52 reserved_size = SPARE_PAGES * PAGE_SIZE; 53 } 54 55 /* 56 * Preferred image size in bytes (tunable via /sys/power/image_size). 57 * When it is set to N, swsusp will do its best to ensure the image 58 * size will not exceed N bytes, but if that is impossible, it will 59 * try to create the smallest image possible. 60 */ 61 unsigned long image_size; 62 63 void __init hibernate_image_size_init(void) 64 { 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 66 } 67 68 /* List of PBEs needed for restoring the pages that were allocated before 69 * the suspend and included in the suspend image, but have also been 70 * allocated by the "resume" kernel, so their contents cannot be written 71 * directly to their "original" page frames. 72 */ 73 struct pbe *restore_pblist; 74 75 /* Pointer to an auxiliary buffer (1 page) */ 76 static void *buffer; 77 78 /** 79 * @safe_needed - on resume, for storing the PBE list and the image, 80 * we can only use memory pages that do not conflict with the pages 81 * used before suspend. The unsafe pages have PageNosaveFree set 82 * and we count them using unsafe_pages. 83 * 84 * Each allocated image page is marked as PageNosave and PageNosaveFree 85 * so that swsusp_free() can release it. 86 */ 87 88 #define PG_ANY 0 89 #define PG_SAFE 1 90 #define PG_UNSAFE_CLEAR 1 91 #define PG_UNSAFE_KEEP 0 92 93 static unsigned int allocated_unsafe_pages; 94 95 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 96 { 97 void *res; 98 99 res = (void *)get_zeroed_page(gfp_mask); 100 if (safe_needed) 101 while (res && swsusp_page_is_free(virt_to_page(res))) { 102 /* The page is unsafe, mark it for swsusp_free() */ 103 swsusp_set_page_forbidden(virt_to_page(res)); 104 allocated_unsafe_pages++; 105 res = (void *)get_zeroed_page(gfp_mask); 106 } 107 if (res) { 108 swsusp_set_page_forbidden(virt_to_page(res)); 109 swsusp_set_page_free(virt_to_page(res)); 110 } 111 return res; 112 } 113 114 unsigned long get_safe_page(gfp_t gfp_mask) 115 { 116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 117 } 118 119 static struct page *alloc_image_page(gfp_t gfp_mask) 120 { 121 struct page *page; 122 123 page = alloc_page(gfp_mask); 124 if (page) { 125 swsusp_set_page_forbidden(page); 126 swsusp_set_page_free(page); 127 } 128 return page; 129 } 130 131 /** 132 * free_image_page - free page represented by @addr, allocated with 133 * get_image_page (page flags set by it must be cleared) 134 */ 135 136 static inline void free_image_page(void *addr, int clear_nosave_free) 137 { 138 struct page *page; 139 140 BUG_ON(!virt_addr_valid(addr)); 141 142 page = virt_to_page(addr); 143 144 swsusp_unset_page_forbidden(page); 145 if (clear_nosave_free) 146 swsusp_unset_page_free(page); 147 148 __free_page(page); 149 } 150 151 /* struct linked_page is used to build chains of pages */ 152 153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 154 155 struct linked_page { 156 struct linked_page *next; 157 char data[LINKED_PAGE_DATA_SIZE]; 158 } __attribute__((packed)); 159 160 static inline void 161 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 162 { 163 while (list) { 164 struct linked_page *lp = list->next; 165 166 free_image_page(list, clear_page_nosave); 167 list = lp; 168 } 169 } 170 171 /** 172 * struct chain_allocator is used for allocating small objects out of 173 * a linked list of pages called 'the chain'. 174 * 175 * The chain grows each time when there is no room for a new object in 176 * the current page. The allocated objects cannot be freed individually. 177 * It is only possible to free them all at once, by freeing the entire 178 * chain. 179 * 180 * NOTE: The chain allocator may be inefficient if the allocated objects 181 * are not much smaller than PAGE_SIZE. 182 */ 183 184 struct chain_allocator { 185 struct linked_page *chain; /* the chain */ 186 unsigned int used_space; /* total size of objects allocated out 187 * of the current page 188 */ 189 gfp_t gfp_mask; /* mask for allocating pages */ 190 int safe_needed; /* if set, only "safe" pages are allocated */ 191 }; 192 193 static void 194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 195 { 196 ca->chain = NULL; 197 ca->used_space = LINKED_PAGE_DATA_SIZE; 198 ca->gfp_mask = gfp_mask; 199 ca->safe_needed = safe_needed; 200 } 201 202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 203 { 204 void *ret; 205 206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 207 struct linked_page *lp; 208 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 210 if (!lp) 211 return NULL; 212 213 lp->next = ca->chain; 214 ca->chain = lp; 215 ca->used_space = 0; 216 } 217 ret = ca->chain->data + ca->used_space; 218 ca->used_space += size; 219 return ret; 220 } 221 222 /** 223 * Data types related to memory bitmaps. 224 * 225 * Memory bitmap is a structure consiting of many linked lists of 226 * objects. The main list's elements are of type struct zone_bitmap 227 * and each of them corresonds to one zone. For each zone bitmap 228 * object there is a list of objects of type struct bm_block that 229 * represent each blocks of bitmap in which information is stored. 230 * 231 * struct memory_bitmap contains a pointer to the main list of zone 232 * bitmap objects, a struct bm_position used for browsing the bitmap, 233 * and a pointer to the list of pages used for allocating all of the 234 * zone bitmap objects and bitmap block objects. 235 * 236 * NOTE: It has to be possible to lay out the bitmap in memory 237 * using only allocations of order 0. Additionally, the bitmap is 238 * designed to work with arbitrary number of zones (this is over the 239 * top for now, but let's avoid making unnecessary assumptions ;-). 240 * 241 * struct zone_bitmap contains a pointer to a list of bitmap block 242 * objects and a pointer to the bitmap block object that has been 243 * most recently used for setting bits. Additionally, it contains the 244 * pfns that correspond to the start and end of the represented zone. 245 * 246 * struct bm_block contains a pointer to the memory page in which 247 * information is stored (in the form of a block of bitmap) 248 * It also contains the pfns that correspond to the start and end of 249 * the represented memory area. 250 */ 251 252 #define BM_END_OF_MAP (~0UL) 253 254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 255 256 struct bm_block { 257 struct list_head hook; /* hook into a list of bitmap blocks */ 258 unsigned long start_pfn; /* pfn represented by the first bit */ 259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 260 unsigned long *data; /* bitmap representing pages */ 261 }; 262 263 static inline unsigned long bm_block_bits(struct bm_block *bb) 264 { 265 return bb->end_pfn - bb->start_pfn; 266 } 267 268 /* strcut bm_position is used for browsing memory bitmaps */ 269 270 struct bm_position { 271 struct bm_block *block; 272 int bit; 273 }; 274 275 struct memory_bitmap { 276 struct list_head blocks; /* list of bitmap blocks */ 277 struct linked_page *p_list; /* list of pages used to store zone 278 * bitmap objects and bitmap block 279 * objects 280 */ 281 struct bm_position cur; /* most recently used bit position */ 282 }; 283 284 /* Functions that operate on memory bitmaps */ 285 286 static void memory_bm_position_reset(struct memory_bitmap *bm) 287 { 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 289 bm->cur.bit = 0; 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 * @pages - number of pages to track 297 * @list - list to put the allocated blocks into 298 * @ca - chain allocator to be used for allocating memory 299 */ 300 static int create_bm_block_list(unsigned long pages, 301 struct list_head *list, 302 struct chain_allocator *ca) 303 { 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 305 306 while (nr_blocks-- > 0) { 307 struct bm_block *bb; 308 309 bb = chain_alloc(ca, sizeof(struct bm_block)); 310 if (!bb) 311 return -ENOMEM; 312 list_add(&bb->hook, list); 313 } 314 315 return 0; 316 } 317 318 struct mem_extent { 319 struct list_head hook; 320 unsigned long start; 321 unsigned long end; 322 }; 323 324 /** 325 * free_mem_extents - free a list of memory extents 326 * @list - list of extents to empty 327 */ 328 static void free_mem_extents(struct list_head *list) 329 { 330 struct mem_extent *ext, *aux; 331 332 list_for_each_entry_safe(ext, aux, list, hook) { 333 list_del(&ext->hook); 334 kfree(ext); 335 } 336 } 337 338 /** 339 * create_mem_extents - create a list of memory extents representing 340 * contiguous ranges of PFNs 341 * @list - list to put the extents into 342 * @gfp_mask - mask to use for memory allocations 343 */ 344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 345 { 346 struct zone *zone; 347 348 INIT_LIST_HEAD(list); 349 350 for_each_populated_zone(zone) { 351 unsigned long zone_start, zone_end; 352 struct mem_extent *ext, *cur, *aux; 353 354 zone_start = zone->zone_start_pfn; 355 zone_end = zone->zone_start_pfn + zone->spanned_pages; 356 357 list_for_each_entry(ext, list, hook) 358 if (zone_start <= ext->end) 359 break; 360 361 if (&ext->hook == list || zone_end < ext->start) { 362 /* New extent is necessary */ 363 struct mem_extent *new_ext; 364 365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 366 if (!new_ext) { 367 free_mem_extents(list); 368 return -ENOMEM; 369 } 370 new_ext->start = zone_start; 371 new_ext->end = zone_end; 372 list_add_tail(&new_ext->hook, &ext->hook); 373 continue; 374 } 375 376 /* Merge this zone's range of PFNs with the existing one */ 377 if (zone_start < ext->start) 378 ext->start = zone_start; 379 if (zone_end > ext->end) 380 ext->end = zone_end; 381 382 /* More merging may be possible */ 383 cur = ext; 384 list_for_each_entry_safe_continue(cur, aux, list, hook) { 385 if (zone_end < cur->start) 386 break; 387 if (zone_end < cur->end) 388 ext->end = cur->end; 389 list_del(&cur->hook); 390 kfree(cur); 391 } 392 } 393 394 return 0; 395 } 396 397 /** 398 * memory_bm_create - allocate memory for a memory bitmap 399 */ 400 static int 401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 402 { 403 struct chain_allocator ca; 404 struct list_head mem_extents; 405 struct mem_extent *ext; 406 int error; 407 408 chain_init(&ca, gfp_mask, safe_needed); 409 INIT_LIST_HEAD(&bm->blocks); 410 411 error = create_mem_extents(&mem_extents, gfp_mask); 412 if (error) 413 return error; 414 415 list_for_each_entry(ext, &mem_extents, hook) { 416 struct bm_block *bb; 417 unsigned long pfn = ext->start; 418 unsigned long pages = ext->end - ext->start; 419 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 421 422 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 423 if (error) 424 goto Error; 425 426 list_for_each_entry_continue(bb, &bm->blocks, hook) { 427 bb->data = get_image_page(gfp_mask, safe_needed); 428 if (!bb->data) { 429 error = -ENOMEM; 430 goto Error; 431 } 432 433 bb->start_pfn = pfn; 434 if (pages >= BM_BITS_PER_BLOCK) { 435 pfn += BM_BITS_PER_BLOCK; 436 pages -= BM_BITS_PER_BLOCK; 437 } else { 438 /* This is executed only once in the loop */ 439 pfn += pages; 440 } 441 bb->end_pfn = pfn; 442 } 443 } 444 445 bm->p_list = ca.chain; 446 memory_bm_position_reset(bm); 447 Exit: 448 free_mem_extents(&mem_extents); 449 return error; 450 451 Error: 452 bm->p_list = ca.chain; 453 memory_bm_free(bm, PG_UNSAFE_CLEAR); 454 goto Exit; 455 } 456 457 /** 458 * memory_bm_free - free memory occupied by the memory bitmap @bm 459 */ 460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 461 { 462 struct bm_block *bb; 463 464 list_for_each_entry(bb, &bm->blocks, hook) 465 if (bb->data) 466 free_image_page(bb->data, clear_nosave_free); 467 468 free_list_of_pages(bm->p_list, clear_nosave_free); 469 470 INIT_LIST_HEAD(&bm->blocks); 471 } 472 473 /** 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 476 * of @bm->cur_zone_bm are updated. 477 */ 478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 479 void **addr, unsigned int *bit_nr) 480 { 481 struct bm_block *bb; 482 483 /* 484 * Check if the pfn corresponds to the current bitmap block and find 485 * the block where it fits if this is not the case. 486 */ 487 bb = bm->cur.block; 488 if (pfn < bb->start_pfn) 489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 490 if (pfn >= bb->start_pfn) 491 break; 492 493 if (pfn >= bb->end_pfn) 494 list_for_each_entry_continue(bb, &bm->blocks, hook) 495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 496 break; 497 498 if (&bb->hook == &bm->blocks) 499 return -EFAULT; 500 501 /* The block has been found */ 502 bm->cur.block = bb; 503 pfn -= bb->start_pfn; 504 bm->cur.bit = pfn + 1; 505 *bit_nr = pfn; 506 *addr = bb->data; 507 return 0; 508 } 509 510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 511 { 512 void *addr; 513 unsigned int bit; 514 int error; 515 516 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 517 BUG_ON(error); 518 set_bit(bit, addr); 519 } 520 521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 if (!error) 529 set_bit(bit, addr); 530 return error; 531 } 532 533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 534 { 535 void *addr; 536 unsigned int bit; 537 int error; 538 539 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 540 BUG_ON(error); 541 clear_bit(bit, addr); 542 } 543 544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 545 { 546 void *addr; 547 unsigned int bit; 548 int error; 549 550 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 551 BUG_ON(error); 552 return test_bit(bit, addr); 553 } 554 555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 556 { 557 void *addr; 558 unsigned int bit; 559 560 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 561 } 562 563 /** 564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 566 * returned. 567 * 568 * It is required to run memory_bm_position_reset() before the first call to 569 * this function. 570 */ 571 572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 573 { 574 struct bm_block *bb; 575 int bit; 576 577 bb = bm->cur.block; 578 do { 579 bit = bm->cur.bit; 580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 581 if (bit < bm_block_bits(bb)) 582 goto Return_pfn; 583 584 bb = list_entry(bb->hook.next, struct bm_block, hook); 585 bm->cur.block = bb; 586 bm->cur.bit = 0; 587 } while (&bb->hook != &bm->blocks); 588 589 memory_bm_position_reset(bm); 590 return BM_END_OF_MAP; 591 592 Return_pfn: 593 bm->cur.bit = bit + 1; 594 return bb->start_pfn + bit; 595 } 596 597 /** 598 * This structure represents a range of page frames the contents of which 599 * should not be saved during the suspend. 600 */ 601 602 struct nosave_region { 603 struct list_head list; 604 unsigned long start_pfn; 605 unsigned long end_pfn; 606 }; 607 608 static LIST_HEAD(nosave_regions); 609 610 /** 611 * register_nosave_region - register a range of page frames the contents 612 * of which should not be saved during the suspend (to be used in the early 613 * initialization code) 614 */ 615 616 void __init 617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 618 int use_kmalloc) 619 { 620 struct nosave_region *region; 621 622 if (start_pfn >= end_pfn) 623 return; 624 625 if (!list_empty(&nosave_regions)) { 626 /* Try to extend the previous region (they should be sorted) */ 627 region = list_entry(nosave_regions.prev, 628 struct nosave_region, list); 629 if (region->end_pfn == start_pfn) { 630 region->end_pfn = end_pfn; 631 goto Report; 632 } 633 } 634 if (use_kmalloc) { 635 /* during init, this shouldn't fail */ 636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 637 BUG_ON(!region); 638 } else 639 /* This allocation cannot fail */ 640 region = alloc_bootmem(sizeof(struct nosave_region)); 641 region->start_pfn = start_pfn; 642 region->end_pfn = end_pfn; 643 list_add_tail(®ion->list, &nosave_regions); 644 Report: 645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 647 } 648 649 /* 650 * Set bits in this map correspond to the page frames the contents of which 651 * should not be saved during the suspend. 652 */ 653 static struct memory_bitmap *forbidden_pages_map; 654 655 /* Set bits in this map correspond to free page frames. */ 656 static struct memory_bitmap *free_pages_map; 657 658 /* 659 * Each page frame allocated for creating the image is marked by setting the 660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 661 */ 662 663 void swsusp_set_page_free(struct page *page) 664 { 665 if (free_pages_map) 666 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 667 } 668 669 static int swsusp_page_is_free(struct page *page) 670 { 671 return free_pages_map ? 672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 673 } 674 675 void swsusp_unset_page_free(struct page *page) 676 { 677 if (free_pages_map) 678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 679 } 680 681 static void swsusp_set_page_forbidden(struct page *page) 682 { 683 if (forbidden_pages_map) 684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 685 } 686 687 int swsusp_page_is_forbidden(struct page *page) 688 { 689 return forbidden_pages_map ? 690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 691 } 692 693 static void swsusp_unset_page_forbidden(struct page *page) 694 { 695 if (forbidden_pages_map) 696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 697 } 698 699 /** 700 * mark_nosave_pages - set bits corresponding to the page frames the 701 * contents of which should not be saved in a given bitmap. 702 */ 703 704 static void mark_nosave_pages(struct memory_bitmap *bm) 705 { 706 struct nosave_region *region; 707 708 if (list_empty(&nosave_regions)) 709 return; 710 711 list_for_each_entry(region, &nosave_regions, list) { 712 unsigned long pfn; 713 714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 715 region->start_pfn << PAGE_SHIFT, 716 region->end_pfn << PAGE_SHIFT); 717 718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 719 if (pfn_valid(pfn)) { 720 /* 721 * It is safe to ignore the result of 722 * mem_bm_set_bit_check() here, since we won't 723 * touch the PFNs for which the error is 724 * returned anyway. 725 */ 726 mem_bm_set_bit_check(bm, pfn); 727 } 728 } 729 } 730 731 /** 732 * create_basic_memory_bitmaps - create bitmaps needed for marking page 733 * frames that should not be saved and free page frames. The pointers 734 * forbidden_pages_map and free_pages_map are only modified if everything 735 * goes well, because we don't want the bits to be used before both bitmaps 736 * are set up. 737 */ 738 739 int create_basic_memory_bitmaps(void) 740 { 741 struct memory_bitmap *bm1, *bm2; 742 int error = 0; 743 744 BUG_ON(forbidden_pages_map || free_pages_map); 745 746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 747 if (!bm1) 748 return -ENOMEM; 749 750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 751 if (error) 752 goto Free_first_object; 753 754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 755 if (!bm2) 756 goto Free_first_bitmap; 757 758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 759 if (error) 760 goto Free_second_object; 761 762 forbidden_pages_map = bm1; 763 free_pages_map = bm2; 764 mark_nosave_pages(forbidden_pages_map); 765 766 pr_debug("PM: Basic memory bitmaps created\n"); 767 768 return 0; 769 770 Free_second_object: 771 kfree(bm2); 772 Free_first_bitmap: 773 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 774 Free_first_object: 775 kfree(bm1); 776 return -ENOMEM; 777 } 778 779 /** 780 * free_basic_memory_bitmaps - free memory bitmaps allocated by 781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 782 * so that the bitmaps themselves are not referred to while they are being 783 * freed. 784 */ 785 786 void free_basic_memory_bitmaps(void) 787 { 788 struct memory_bitmap *bm1, *bm2; 789 790 BUG_ON(!(forbidden_pages_map && free_pages_map)); 791 792 bm1 = forbidden_pages_map; 793 bm2 = free_pages_map; 794 forbidden_pages_map = NULL; 795 free_pages_map = NULL; 796 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 797 kfree(bm1); 798 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 799 kfree(bm2); 800 801 pr_debug("PM: Basic memory bitmaps freed\n"); 802 } 803 804 /** 805 * snapshot_additional_pages - estimate the number of additional pages 806 * be needed for setting up the suspend image data structures for given 807 * zone (usually the returned value is greater than the exact number) 808 */ 809 810 unsigned int snapshot_additional_pages(struct zone *zone) 811 { 812 unsigned int res; 813 814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 815 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 816 return 2 * res; 817 } 818 819 #ifdef CONFIG_HIGHMEM 820 /** 821 * count_free_highmem_pages - compute the total number of free highmem 822 * pages, system-wide. 823 */ 824 825 static unsigned int count_free_highmem_pages(void) 826 { 827 struct zone *zone; 828 unsigned int cnt = 0; 829 830 for_each_populated_zone(zone) 831 if (is_highmem(zone)) 832 cnt += zone_page_state(zone, NR_FREE_PAGES); 833 834 return cnt; 835 } 836 837 /** 838 * saveable_highmem_page - Determine whether a highmem page should be 839 * included in the suspend image. 840 * 841 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 842 * and it isn't a part of a free chunk of pages. 843 */ 844 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 845 { 846 struct page *page; 847 848 if (!pfn_valid(pfn)) 849 return NULL; 850 851 page = pfn_to_page(pfn); 852 if (page_zone(page) != zone) 853 return NULL; 854 855 BUG_ON(!PageHighMem(page)); 856 857 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 858 PageReserved(page)) 859 return NULL; 860 861 return page; 862 } 863 864 /** 865 * count_highmem_pages - compute the total number of saveable highmem 866 * pages. 867 */ 868 869 static unsigned int count_highmem_pages(void) 870 { 871 struct zone *zone; 872 unsigned int n = 0; 873 874 for_each_populated_zone(zone) { 875 unsigned long pfn, max_zone_pfn; 876 877 if (!is_highmem(zone)) 878 continue; 879 880 mark_free_pages(zone); 881 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 882 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 883 if (saveable_highmem_page(zone, pfn)) 884 n++; 885 } 886 return n; 887 } 888 #else 889 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 890 { 891 return NULL; 892 } 893 #endif /* CONFIG_HIGHMEM */ 894 895 /** 896 * saveable_page - Determine whether a non-highmem page should be included 897 * in the suspend image. 898 * 899 * We should save the page if it isn't Nosave, and is not in the range 900 * of pages statically defined as 'unsaveable', and it isn't a part of 901 * a free chunk of pages. 902 */ 903 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 904 { 905 struct page *page; 906 907 if (!pfn_valid(pfn)) 908 return NULL; 909 910 page = pfn_to_page(pfn); 911 if (page_zone(page) != zone) 912 return NULL; 913 914 BUG_ON(PageHighMem(page)); 915 916 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 917 return NULL; 918 919 if (PageReserved(page) 920 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 921 return NULL; 922 923 return page; 924 } 925 926 /** 927 * count_data_pages - compute the total number of saveable non-highmem 928 * pages. 929 */ 930 931 static unsigned int count_data_pages(void) 932 { 933 struct zone *zone; 934 unsigned long pfn, max_zone_pfn; 935 unsigned int n = 0; 936 937 for_each_populated_zone(zone) { 938 if (is_highmem(zone)) 939 continue; 940 941 mark_free_pages(zone); 942 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 943 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 944 if (saveable_page(zone, pfn)) 945 n++; 946 } 947 return n; 948 } 949 950 /* This is needed, because copy_page and memcpy are not usable for copying 951 * task structs. 952 */ 953 static inline void do_copy_page(long *dst, long *src) 954 { 955 int n; 956 957 for (n = PAGE_SIZE / sizeof(long); n; n--) 958 *dst++ = *src++; 959 } 960 961 962 /** 963 * safe_copy_page - check if the page we are going to copy is marked as 964 * present in the kernel page tables (this always is the case if 965 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 966 * kernel_page_present() always returns 'true'). 967 */ 968 static void safe_copy_page(void *dst, struct page *s_page) 969 { 970 if (kernel_page_present(s_page)) { 971 do_copy_page(dst, page_address(s_page)); 972 } else { 973 kernel_map_pages(s_page, 1, 1); 974 do_copy_page(dst, page_address(s_page)); 975 kernel_map_pages(s_page, 1, 0); 976 } 977 } 978 979 980 #ifdef CONFIG_HIGHMEM 981 static inline struct page * 982 page_is_saveable(struct zone *zone, unsigned long pfn) 983 { 984 return is_highmem(zone) ? 985 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 986 } 987 988 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 989 { 990 struct page *s_page, *d_page; 991 void *src, *dst; 992 993 s_page = pfn_to_page(src_pfn); 994 d_page = pfn_to_page(dst_pfn); 995 if (PageHighMem(s_page)) { 996 src = kmap_atomic(s_page, KM_USER0); 997 dst = kmap_atomic(d_page, KM_USER1); 998 do_copy_page(dst, src); 999 kunmap_atomic(dst, KM_USER1); 1000 kunmap_atomic(src, KM_USER0); 1001 } else { 1002 if (PageHighMem(d_page)) { 1003 /* Page pointed to by src may contain some kernel 1004 * data modified by kmap_atomic() 1005 */ 1006 safe_copy_page(buffer, s_page); 1007 dst = kmap_atomic(d_page, KM_USER0); 1008 copy_page(dst, buffer); 1009 kunmap_atomic(dst, KM_USER0); 1010 } else { 1011 safe_copy_page(page_address(d_page), s_page); 1012 } 1013 } 1014 } 1015 #else 1016 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1017 1018 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1019 { 1020 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1021 pfn_to_page(src_pfn)); 1022 } 1023 #endif /* CONFIG_HIGHMEM */ 1024 1025 static void 1026 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1027 { 1028 struct zone *zone; 1029 unsigned long pfn; 1030 1031 for_each_populated_zone(zone) { 1032 unsigned long max_zone_pfn; 1033 1034 mark_free_pages(zone); 1035 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1036 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1037 if (page_is_saveable(zone, pfn)) 1038 memory_bm_set_bit(orig_bm, pfn); 1039 } 1040 memory_bm_position_reset(orig_bm); 1041 memory_bm_position_reset(copy_bm); 1042 for(;;) { 1043 pfn = memory_bm_next_pfn(orig_bm); 1044 if (unlikely(pfn == BM_END_OF_MAP)) 1045 break; 1046 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1047 } 1048 } 1049 1050 /* Total number of image pages */ 1051 static unsigned int nr_copy_pages; 1052 /* Number of pages needed for saving the original pfns of the image pages */ 1053 static unsigned int nr_meta_pages; 1054 /* 1055 * Numbers of normal and highmem page frames allocated for hibernation image 1056 * before suspending devices. 1057 */ 1058 unsigned int alloc_normal, alloc_highmem; 1059 /* 1060 * Memory bitmap used for marking saveable pages (during hibernation) or 1061 * hibernation image pages (during restore) 1062 */ 1063 static struct memory_bitmap orig_bm; 1064 /* 1065 * Memory bitmap used during hibernation for marking allocated page frames that 1066 * will contain copies of saveable pages. During restore it is initially used 1067 * for marking hibernation image pages, but then the set bits from it are 1068 * duplicated in @orig_bm and it is released. On highmem systems it is next 1069 * used for marking "safe" highmem pages, but it has to be reinitialized for 1070 * this purpose. 1071 */ 1072 static struct memory_bitmap copy_bm; 1073 1074 /** 1075 * swsusp_free - free pages allocated for the suspend. 1076 * 1077 * Suspend pages are alocated before the atomic copy is made, so we 1078 * need to release them after the resume. 1079 */ 1080 1081 void swsusp_free(void) 1082 { 1083 struct zone *zone; 1084 unsigned long pfn, max_zone_pfn; 1085 1086 for_each_populated_zone(zone) { 1087 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1088 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1089 if (pfn_valid(pfn)) { 1090 struct page *page = pfn_to_page(pfn); 1091 1092 if (swsusp_page_is_forbidden(page) && 1093 swsusp_page_is_free(page)) { 1094 swsusp_unset_page_forbidden(page); 1095 swsusp_unset_page_free(page); 1096 __free_page(page); 1097 } 1098 } 1099 } 1100 nr_copy_pages = 0; 1101 nr_meta_pages = 0; 1102 restore_pblist = NULL; 1103 buffer = NULL; 1104 alloc_normal = 0; 1105 alloc_highmem = 0; 1106 } 1107 1108 /* Helper functions used for the shrinking of memory. */ 1109 1110 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1111 1112 /** 1113 * preallocate_image_pages - Allocate a number of pages for hibernation image 1114 * @nr_pages: Number of page frames to allocate. 1115 * @mask: GFP flags to use for the allocation. 1116 * 1117 * Return value: Number of page frames actually allocated 1118 */ 1119 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1120 { 1121 unsigned long nr_alloc = 0; 1122 1123 while (nr_pages > 0) { 1124 struct page *page; 1125 1126 page = alloc_image_page(mask); 1127 if (!page) 1128 break; 1129 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1130 if (PageHighMem(page)) 1131 alloc_highmem++; 1132 else 1133 alloc_normal++; 1134 nr_pages--; 1135 nr_alloc++; 1136 } 1137 1138 return nr_alloc; 1139 } 1140 1141 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1142 unsigned long avail_normal) 1143 { 1144 unsigned long alloc; 1145 1146 if (avail_normal <= alloc_normal) 1147 return 0; 1148 1149 alloc = avail_normal - alloc_normal; 1150 if (nr_pages < alloc) 1151 alloc = nr_pages; 1152 1153 return preallocate_image_pages(alloc, GFP_IMAGE); 1154 } 1155 1156 #ifdef CONFIG_HIGHMEM 1157 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1158 { 1159 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1160 } 1161 1162 /** 1163 * __fraction - Compute (an approximation of) x * (multiplier / base) 1164 */ 1165 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1166 { 1167 x *= multiplier; 1168 do_div(x, base); 1169 return (unsigned long)x; 1170 } 1171 1172 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1173 unsigned long highmem, 1174 unsigned long total) 1175 { 1176 unsigned long alloc = __fraction(nr_pages, highmem, total); 1177 1178 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1179 } 1180 #else /* CONFIG_HIGHMEM */ 1181 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1182 { 1183 return 0; 1184 } 1185 1186 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1187 unsigned long highmem, 1188 unsigned long total) 1189 { 1190 return 0; 1191 } 1192 #endif /* CONFIG_HIGHMEM */ 1193 1194 /** 1195 * free_unnecessary_pages - Release preallocated pages not needed for the image 1196 */ 1197 static void free_unnecessary_pages(void) 1198 { 1199 unsigned long save, to_free_normal, to_free_highmem; 1200 1201 save = count_data_pages(); 1202 if (alloc_normal >= save) { 1203 to_free_normal = alloc_normal - save; 1204 save = 0; 1205 } else { 1206 to_free_normal = 0; 1207 save -= alloc_normal; 1208 } 1209 save += count_highmem_pages(); 1210 if (alloc_highmem >= save) { 1211 to_free_highmem = alloc_highmem - save; 1212 } else { 1213 to_free_highmem = 0; 1214 to_free_normal -= save - alloc_highmem; 1215 } 1216 1217 memory_bm_position_reset(©_bm); 1218 1219 while (to_free_normal > 0 || to_free_highmem > 0) { 1220 unsigned long pfn = memory_bm_next_pfn(©_bm); 1221 struct page *page = pfn_to_page(pfn); 1222 1223 if (PageHighMem(page)) { 1224 if (!to_free_highmem) 1225 continue; 1226 to_free_highmem--; 1227 alloc_highmem--; 1228 } else { 1229 if (!to_free_normal) 1230 continue; 1231 to_free_normal--; 1232 alloc_normal--; 1233 } 1234 memory_bm_clear_bit(©_bm, pfn); 1235 swsusp_unset_page_forbidden(page); 1236 swsusp_unset_page_free(page); 1237 __free_page(page); 1238 } 1239 } 1240 1241 /** 1242 * minimum_image_size - Estimate the minimum acceptable size of an image 1243 * @saveable: Number of saveable pages in the system. 1244 * 1245 * We want to avoid attempting to free too much memory too hard, so estimate the 1246 * minimum acceptable size of a hibernation image to use as the lower limit for 1247 * preallocating memory. 1248 * 1249 * We assume that the minimum image size should be proportional to 1250 * 1251 * [number of saveable pages] - [number of pages that can be freed in theory] 1252 * 1253 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1254 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1255 * minus mapped file pages. 1256 */ 1257 static unsigned long minimum_image_size(unsigned long saveable) 1258 { 1259 unsigned long size; 1260 1261 size = global_page_state(NR_SLAB_RECLAIMABLE) 1262 + global_page_state(NR_ACTIVE_ANON) 1263 + global_page_state(NR_INACTIVE_ANON) 1264 + global_page_state(NR_ACTIVE_FILE) 1265 + global_page_state(NR_INACTIVE_FILE) 1266 - global_page_state(NR_FILE_MAPPED); 1267 1268 return saveable <= size ? 0 : saveable - size; 1269 } 1270 1271 /** 1272 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1273 * 1274 * To create a hibernation image it is necessary to make a copy of every page 1275 * frame in use. We also need a number of page frames to be free during 1276 * hibernation for allocations made while saving the image and for device 1277 * drivers, in case they need to allocate memory from their hibernation 1278 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1279 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1280 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1281 * total number of available page frames and allocate at least 1282 * 1283 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1284 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1285 * 1286 * of them, which corresponds to the maximum size of a hibernation image. 1287 * 1288 * If image_size is set below the number following from the above formula, 1289 * the preallocation of memory is continued until the total number of saveable 1290 * pages in the system is below the requested image size or the minimum 1291 * acceptable image size returned by minimum_image_size(), whichever is greater. 1292 */ 1293 int hibernate_preallocate_memory(void) 1294 { 1295 struct zone *zone; 1296 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1297 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1298 struct timeval start, stop; 1299 int error; 1300 1301 printk(KERN_INFO "PM: Preallocating image memory... "); 1302 do_gettimeofday(&start); 1303 1304 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1305 if (error) 1306 goto err_out; 1307 1308 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1309 if (error) 1310 goto err_out; 1311 1312 alloc_normal = 0; 1313 alloc_highmem = 0; 1314 1315 /* Count the number of saveable data pages. */ 1316 save_highmem = count_highmem_pages(); 1317 saveable = count_data_pages(); 1318 1319 /* 1320 * Compute the total number of page frames we can use (count) and the 1321 * number of pages needed for image metadata (size). 1322 */ 1323 count = saveable; 1324 saveable += save_highmem; 1325 highmem = save_highmem; 1326 size = 0; 1327 for_each_populated_zone(zone) { 1328 size += snapshot_additional_pages(zone); 1329 if (is_highmem(zone)) 1330 highmem += zone_page_state(zone, NR_FREE_PAGES); 1331 else 1332 count += zone_page_state(zone, NR_FREE_PAGES); 1333 } 1334 avail_normal = count; 1335 count += highmem; 1336 count -= totalreserve_pages; 1337 1338 /* Compute the maximum number of saveable pages to leave in memory. */ 1339 max_size = (count - (size + PAGES_FOR_IO)) / 2 1340 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1341 /* Compute the desired number of image pages specified by image_size. */ 1342 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1343 if (size > max_size) 1344 size = max_size; 1345 /* 1346 * If the desired number of image pages is at least as large as the 1347 * current number of saveable pages in memory, allocate page frames for 1348 * the image and we're done. 1349 */ 1350 if (size >= saveable) { 1351 pages = preallocate_image_highmem(save_highmem); 1352 pages += preallocate_image_memory(saveable - pages, avail_normal); 1353 goto out; 1354 } 1355 1356 /* Estimate the minimum size of the image. */ 1357 pages = minimum_image_size(saveable); 1358 /* 1359 * To avoid excessive pressure on the normal zone, leave room in it to 1360 * accommodate an image of the minimum size (unless it's already too 1361 * small, in which case don't preallocate pages from it at all). 1362 */ 1363 if (avail_normal > pages) 1364 avail_normal -= pages; 1365 else 1366 avail_normal = 0; 1367 if (size < pages) 1368 size = min_t(unsigned long, pages, max_size); 1369 1370 /* 1371 * Let the memory management subsystem know that we're going to need a 1372 * large number of page frames to allocate and make it free some memory. 1373 * NOTE: If this is not done, performance will be hurt badly in some 1374 * test cases. 1375 */ 1376 shrink_all_memory(saveable - size); 1377 1378 /* 1379 * The number of saveable pages in memory was too high, so apply some 1380 * pressure to decrease it. First, make room for the largest possible 1381 * image and fail if that doesn't work. Next, try to decrease the size 1382 * of the image as much as indicated by 'size' using allocations from 1383 * highmem and non-highmem zones separately. 1384 */ 1385 pages_highmem = preallocate_image_highmem(highmem / 2); 1386 alloc = (count - max_size) - pages_highmem; 1387 pages = preallocate_image_memory(alloc, avail_normal); 1388 if (pages < alloc) { 1389 /* We have exhausted non-highmem pages, try highmem. */ 1390 alloc -= pages; 1391 pages += pages_highmem; 1392 pages_highmem = preallocate_image_highmem(alloc); 1393 if (pages_highmem < alloc) 1394 goto err_out; 1395 pages += pages_highmem; 1396 /* 1397 * size is the desired number of saveable pages to leave in 1398 * memory, so try to preallocate (all memory - size) pages. 1399 */ 1400 alloc = (count - pages) - size; 1401 pages += preallocate_image_highmem(alloc); 1402 } else { 1403 /* 1404 * There are approximately max_size saveable pages at this point 1405 * and we want to reduce this number down to size. 1406 */ 1407 alloc = max_size - size; 1408 size = preallocate_highmem_fraction(alloc, highmem, count); 1409 pages_highmem += size; 1410 alloc -= size; 1411 size = preallocate_image_memory(alloc, avail_normal); 1412 pages_highmem += preallocate_image_highmem(alloc - size); 1413 pages += pages_highmem + size; 1414 } 1415 1416 /* 1417 * We only need as many page frames for the image as there are saveable 1418 * pages in memory, but we have allocated more. Release the excessive 1419 * ones now. 1420 */ 1421 free_unnecessary_pages(); 1422 1423 out: 1424 do_gettimeofday(&stop); 1425 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1426 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1427 1428 return 0; 1429 1430 err_out: 1431 printk(KERN_CONT "\n"); 1432 swsusp_free(); 1433 return -ENOMEM; 1434 } 1435 1436 #ifdef CONFIG_HIGHMEM 1437 /** 1438 * count_pages_for_highmem - compute the number of non-highmem pages 1439 * that will be necessary for creating copies of highmem pages. 1440 */ 1441 1442 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1443 { 1444 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1445 1446 if (free_highmem >= nr_highmem) 1447 nr_highmem = 0; 1448 else 1449 nr_highmem -= free_highmem; 1450 1451 return nr_highmem; 1452 } 1453 #else 1454 static unsigned int 1455 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1456 #endif /* CONFIG_HIGHMEM */ 1457 1458 /** 1459 * enough_free_mem - Make sure we have enough free memory for the 1460 * snapshot image. 1461 */ 1462 1463 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1464 { 1465 struct zone *zone; 1466 unsigned int free = alloc_normal; 1467 1468 for_each_populated_zone(zone) 1469 if (!is_highmem(zone)) 1470 free += zone_page_state(zone, NR_FREE_PAGES); 1471 1472 nr_pages += count_pages_for_highmem(nr_highmem); 1473 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1474 nr_pages, PAGES_FOR_IO, free); 1475 1476 return free > nr_pages + PAGES_FOR_IO; 1477 } 1478 1479 #ifdef CONFIG_HIGHMEM 1480 /** 1481 * get_highmem_buffer - if there are some highmem pages in the suspend 1482 * image, we may need the buffer to copy them and/or load their data. 1483 */ 1484 1485 static inline int get_highmem_buffer(int safe_needed) 1486 { 1487 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1488 return buffer ? 0 : -ENOMEM; 1489 } 1490 1491 /** 1492 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1493 * Try to allocate as many pages as needed, but if the number of free 1494 * highmem pages is lesser than that, allocate them all. 1495 */ 1496 1497 static inline unsigned int 1498 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1499 { 1500 unsigned int to_alloc = count_free_highmem_pages(); 1501 1502 if (to_alloc > nr_highmem) 1503 to_alloc = nr_highmem; 1504 1505 nr_highmem -= to_alloc; 1506 while (to_alloc-- > 0) { 1507 struct page *page; 1508 1509 page = alloc_image_page(__GFP_HIGHMEM); 1510 memory_bm_set_bit(bm, page_to_pfn(page)); 1511 } 1512 return nr_highmem; 1513 } 1514 #else 1515 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1516 1517 static inline unsigned int 1518 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1519 #endif /* CONFIG_HIGHMEM */ 1520 1521 /** 1522 * swsusp_alloc - allocate memory for the suspend image 1523 * 1524 * We first try to allocate as many highmem pages as there are 1525 * saveable highmem pages in the system. If that fails, we allocate 1526 * non-highmem pages for the copies of the remaining highmem ones. 1527 * 1528 * In this approach it is likely that the copies of highmem pages will 1529 * also be located in the high memory, because of the way in which 1530 * copy_data_pages() works. 1531 */ 1532 1533 static int 1534 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1535 unsigned int nr_pages, unsigned int nr_highmem) 1536 { 1537 if (nr_highmem > 0) { 1538 if (get_highmem_buffer(PG_ANY)) 1539 goto err_out; 1540 if (nr_highmem > alloc_highmem) { 1541 nr_highmem -= alloc_highmem; 1542 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1543 } 1544 } 1545 if (nr_pages > alloc_normal) { 1546 nr_pages -= alloc_normal; 1547 while (nr_pages-- > 0) { 1548 struct page *page; 1549 1550 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1551 if (!page) 1552 goto err_out; 1553 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1554 } 1555 } 1556 1557 return 0; 1558 1559 err_out: 1560 swsusp_free(); 1561 return -ENOMEM; 1562 } 1563 1564 asmlinkage int swsusp_save(void) 1565 { 1566 unsigned int nr_pages, nr_highmem; 1567 1568 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1569 1570 drain_local_pages(NULL); 1571 nr_pages = count_data_pages(); 1572 nr_highmem = count_highmem_pages(); 1573 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1574 1575 if (!enough_free_mem(nr_pages, nr_highmem)) { 1576 printk(KERN_ERR "PM: Not enough free memory\n"); 1577 return -ENOMEM; 1578 } 1579 1580 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1581 printk(KERN_ERR "PM: Memory allocation failed\n"); 1582 return -ENOMEM; 1583 } 1584 1585 /* During allocating of suspend pagedir, new cold pages may appear. 1586 * Kill them. 1587 */ 1588 drain_local_pages(NULL); 1589 copy_data_pages(©_bm, &orig_bm); 1590 1591 /* 1592 * End of critical section. From now on, we can write to memory, 1593 * but we should not touch disk. This specially means we must _not_ 1594 * touch swap space! Except we must write out our image of course. 1595 */ 1596 1597 nr_pages += nr_highmem; 1598 nr_copy_pages = nr_pages; 1599 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1600 1601 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1602 nr_pages); 1603 1604 return 0; 1605 } 1606 1607 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1608 static int init_header_complete(struct swsusp_info *info) 1609 { 1610 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1611 info->version_code = LINUX_VERSION_CODE; 1612 return 0; 1613 } 1614 1615 static char *check_image_kernel(struct swsusp_info *info) 1616 { 1617 if (info->version_code != LINUX_VERSION_CODE) 1618 return "kernel version"; 1619 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1620 return "system type"; 1621 if (strcmp(info->uts.release,init_utsname()->release)) 1622 return "kernel release"; 1623 if (strcmp(info->uts.version,init_utsname()->version)) 1624 return "version"; 1625 if (strcmp(info->uts.machine,init_utsname()->machine)) 1626 return "machine"; 1627 return NULL; 1628 } 1629 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1630 1631 unsigned long snapshot_get_image_size(void) 1632 { 1633 return nr_copy_pages + nr_meta_pages + 1; 1634 } 1635 1636 static int init_header(struct swsusp_info *info) 1637 { 1638 memset(info, 0, sizeof(struct swsusp_info)); 1639 info->num_physpages = num_physpages; 1640 info->image_pages = nr_copy_pages; 1641 info->pages = snapshot_get_image_size(); 1642 info->size = info->pages; 1643 info->size <<= PAGE_SHIFT; 1644 return init_header_complete(info); 1645 } 1646 1647 /** 1648 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1649 * are stored in the array @buf[] (1 page at a time) 1650 */ 1651 1652 static inline void 1653 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1654 { 1655 int j; 1656 1657 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1658 buf[j] = memory_bm_next_pfn(bm); 1659 if (unlikely(buf[j] == BM_END_OF_MAP)) 1660 break; 1661 } 1662 } 1663 1664 /** 1665 * snapshot_read_next - used for reading the system memory snapshot. 1666 * 1667 * On the first call to it @handle should point to a zeroed 1668 * snapshot_handle structure. The structure gets updated and a pointer 1669 * to it should be passed to this function every next time. 1670 * 1671 * On success the function returns a positive number. Then, the caller 1672 * is allowed to read up to the returned number of bytes from the memory 1673 * location computed by the data_of() macro. 1674 * 1675 * The function returns 0 to indicate the end of data stream condition, 1676 * and a negative number is returned on error. In such cases the 1677 * structure pointed to by @handle is not updated and should not be used 1678 * any more. 1679 */ 1680 1681 int snapshot_read_next(struct snapshot_handle *handle) 1682 { 1683 if (handle->cur > nr_meta_pages + nr_copy_pages) 1684 return 0; 1685 1686 if (!buffer) { 1687 /* This makes the buffer be freed by swsusp_free() */ 1688 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1689 if (!buffer) 1690 return -ENOMEM; 1691 } 1692 if (!handle->cur) { 1693 int error; 1694 1695 error = init_header((struct swsusp_info *)buffer); 1696 if (error) 1697 return error; 1698 handle->buffer = buffer; 1699 memory_bm_position_reset(&orig_bm); 1700 memory_bm_position_reset(©_bm); 1701 } else if (handle->cur <= nr_meta_pages) { 1702 clear_page(buffer); 1703 pack_pfns(buffer, &orig_bm); 1704 } else { 1705 struct page *page; 1706 1707 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1708 if (PageHighMem(page)) { 1709 /* Highmem pages are copied to the buffer, 1710 * because we can't return with a kmapped 1711 * highmem page (we may not be called again). 1712 */ 1713 void *kaddr; 1714 1715 kaddr = kmap_atomic(page, KM_USER0); 1716 copy_page(buffer, kaddr); 1717 kunmap_atomic(kaddr, KM_USER0); 1718 handle->buffer = buffer; 1719 } else { 1720 handle->buffer = page_address(page); 1721 } 1722 } 1723 handle->cur++; 1724 return PAGE_SIZE; 1725 } 1726 1727 /** 1728 * mark_unsafe_pages - mark the pages that cannot be used for storing 1729 * the image during resume, because they conflict with the pages that 1730 * had been used before suspend 1731 */ 1732 1733 static int mark_unsafe_pages(struct memory_bitmap *bm) 1734 { 1735 struct zone *zone; 1736 unsigned long pfn, max_zone_pfn; 1737 1738 /* Clear page flags */ 1739 for_each_populated_zone(zone) { 1740 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1741 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1742 if (pfn_valid(pfn)) 1743 swsusp_unset_page_free(pfn_to_page(pfn)); 1744 } 1745 1746 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1747 memory_bm_position_reset(bm); 1748 do { 1749 pfn = memory_bm_next_pfn(bm); 1750 if (likely(pfn != BM_END_OF_MAP)) { 1751 if (likely(pfn_valid(pfn))) 1752 swsusp_set_page_free(pfn_to_page(pfn)); 1753 else 1754 return -EFAULT; 1755 } 1756 } while (pfn != BM_END_OF_MAP); 1757 1758 allocated_unsafe_pages = 0; 1759 1760 return 0; 1761 } 1762 1763 static void 1764 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1765 { 1766 unsigned long pfn; 1767 1768 memory_bm_position_reset(src); 1769 pfn = memory_bm_next_pfn(src); 1770 while (pfn != BM_END_OF_MAP) { 1771 memory_bm_set_bit(dst, pfn); 1772 pfn = memory_bm_next_pfn(src); 1773 } 1774 } 1775 1776 static int check_header(struct swsusp_info *info) 1777 { 1778 char *reason; 1779 1780 reason = check_image_kernel(info); 1781 if (!reason && info->num_physpages != num_physpages) 1782 reason = "memory size"; 1783 if (reason) { 1784 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1785 return -EPERM; 1786 } 1787 return 0; 1788 } 1789 1790 /** 1791 * load header - check the image header and copy data from it 1792 */ 1793 1794 static int 1795 load_header(struct swsusp_info *info) 1796 { 1797 int error; 1798 1799 restore_pblist = NULL; 1800 error = check_header(info); 1801 if (!error) { 1802 nr_copy_pages = info->image_pages; 1803 nr_meta_pages = info->pages - info->image_pages - 1; 1804 } 1805 return error; 1806 } 1807 1808 /** 1809 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1810 * the corresponding bit in the memory bitmap @bm 1811 */ 1812 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1813 { 1814 int j; 1815 1816 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1817 if (unlikely(buf[j] == BM_END_OF_MAP)) 1818 break; 1819 1820 if (memory_bm_pfn_present(bm, buf[j])) 1821 memory_bm_set_bit(bm, buf[j]); 1822 else 1823 return -EFAULT; 1824 } 1825 1826 return 0; 1827 } 1828 1829 /* List of "safe" pages that may be used to store data loaded from the suspend 1830 * image 1831 */ 1832 static struct linked_page *safe_pages_list; 1833 1834 #ifdef CONFIG_HIGHMEM 1835 /* struct highmem_pbe is used for creating the list of highmem pages that 1836 * should be restored atomically during the resume from disk, because the page 1837 * frames they have occupied before the suspend are in use. 1838 */ 1839 struct highmem_pbe { 1840 struct page *copy_page; /* data is here now */ 1841 struct page *orig_page; /* data was here before the suspend */ 1842 struct highmem_pbe *next; 1843 }; 1844 1845 /* List of highmem PBEs needed for restoring the highmem pages that were 1846 * allocated before the suspend and included in the suspend image, but have 1847 * also been allocated by the "resume" kernel, so their contents cannot be 1848 * written directly to their "original" page frames. 1849 */ 1850 static struct highmem_pbe *highmem_pblist; 1851 1852 /** 1853 * count_highmem_image_pages - compute the number of highmem pages in the 1854 * suspend image. The bits in the memory bitmap @bm that correspond to the 1855 * image pages are assumed to be set. 1856 */ 1857 1858 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1859 { 1860 unsigned long pfn; 1861 unsigned int cnt = 0; 1862 1863 memory_bm_position_reset(bm); 1864 pfn = memory_bm_next_pfn(bm); 1865 while (pfn != BM_END_OF_MAP) { 1866 if (PageHighMem(pfn_to_page(pfn))) 1867 cnt++; 1868 1869 pfn = memory_bm_next_pfn(bm); 1870 } 1871 return cnt; 1872 } 1873 1874 /** 1875 * prepare_highmem_image - try to allocate as many highmem pages as 1876 * there are highmem image pages (@nr_highmem_p points to the variable 1877 * containing the number of highmem image pages). The pages that are 1878 * "safe" (ie. will not be overwritten when the suspend image is 1879 * restored) have the corresponding bits set in @bm (it must be 1880 * unitialized). 1881 * 1882 * NOTE: This function should not be called if there are no highmem 1883 * image pages. 1884 */ 1885 1886 static unsigned int safe_highmem_pages; 1887 1888 static struct memory_bitmap *safe_highmem_bm; 1889 1890 static int 1891 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1892 { 1893 unsigned int to_alloc; 1894 1895 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1896 return -ENOMEM; 1897 1898 if (get_highmem_buffer(PG_SAFE)) 1899 return -ENOMEM; 1900 1901 to_alloc = count_free_highmem_pages(); 1902 if (to_alloc > *nr_highmem_p) 1903 to_alloc = *nr_highmem_p; 1904 else 1905 *nr_highmem_p = to_alloc; 1906 1907 safe_highmem_pages = 0; 1908 while (to_alloc-- > 0) { 1909 struct page *page; 1910 1911 page = alloc_page(__GFP_HIGHMEM); 1912 if (!swsusp_page_is_free(page)) { 1913 /* The page is "safe", set its bit the bitmap */ 1914 memory_bm_set_bit(bm, page_to_pfn(page)); 1915 safe_highmem_pages++; 1916 } 1917 /* Mark the page as allocated */ 1918 swsusp_set_page_forbidden(page); 1919 swsusp_set_page_free(page); 1920 } 1921 memory_bm_position_reset(bm); 1922 safe_highmem_bm = bm; 1923 return 0; 1924 } 1925 1926 /** 1927 * get_highmem_page_buffer - for given highmem image page find the buffer 1928 * that suspend_write_next() should set for its caller to write to. 1929 * 1930 * If the page is to be saved to its "original" page frame or a copy of 1931 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1932 * the copy of the page is to be made in normal memory, so the address of 1933 * the copy is returned. 1934 * 1935 * If @buffer is returned, the caller of suspend_write_next() will write 1936 * the page's contents to @buffer, so they will have to be copied to the 1937 * right location on the next call to suspend_write_next() and it is done 1938 * with the help of copy_last_highmem_page(). For this purpose, if 1939 * @buffer is returned, @last_highmem page is set to the page to which 1940 * the data will have to be copied from @buffer. 1941 */ 1942 1943 static struct page *last_highmem_page; 1944 1945 static void * 1946 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1947 { 1948 struct highmem_pbe *pbe; 1949 void *kaddr; 1950 1951 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1952 /* We have allocated the "original" page frame and we can 1953 * use it directly to store the loaded page. 1954 */ 1955 last_highmem_page = page; 1956 return buffer; 1957 } 1958 /* The "original" page frame has not been allocated and we have to 1959 * use a "safe" page frame to store the loaded page. 1960 */ 1961 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1962 if (!pbe) { 1963 swsusp_free(); 1964 return ERR_PTR(-ENOMEM); 1965 } 1966 pbe->orig_page = page; 1967 if (safe_highmem_pages > 0) { 1968 struct page *tmp; 1969 1970 /* Copy of the page will be stored in high memory */ 1971 kaddr = buffer; 1972 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1973 safe_highmem_pages--; 1974 last_highmem_page = tmp; 1975 pbe->copy_page = tmp; 1976 } else { 1977 /* Copy of the page will be stored in normal memory */ 1978 kaddr = safe_pages_list; 1979 safe_pages_list = safe_pages_list->next; 1980 pbe->copy_page = virt_to_page(kaddr); 1981 } 1982 pbe->next = highmem_pblist; 1983 highmem_pblist = pbe; 1984 return kaddr; 1985 } 1986 1987 /** 1988 * copy_last_highmem_page - copy the contents of a highmem image from 1989 * @buffer, where the caller of snapshot_write_next() has place them, 1990 * to the right location represented by @last_highmem_page . 1991 */ 1992 1993 static void copy_last_highmem_page(void) 1994 { 1995 if (last_highmem_page) { 1996 void *dst; 1997 1998 dst = kmap_atomic(last_highmem_page, KM_USER0); 1999 copy_page(dst, buffer); 2000 kunmap_atomic(dst, KM_USER0); 2001 last_highmem_page = NULL; 2002 } 2003 } 2004 2005 static inline int last_highmem_page_copied(void) 2006 { 2007 return !last_highmem_page; 2008 } 2009 2010 static inline void free_highmem_data(void) 2011 { 2012 if (safe_highmem_bm) 2013 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2014 2015 if (buffer) 2016 free_image_page(buffer, PG_UNSAFE_CLEAR); 2017 } 2018 #else 2019 static inline int get_safe_write_buffer(void) { return 0; } 2020 2021 static unsigned int 2022 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2023 2024 static inline int 2025 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2026 { 2027 return 0; 2028 } 2029 2030 static inline void * 2031 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2032 { 2033 return ERR_PTR(-EINVAL); 2034 } 2035 2036 static inline void copy_last_highmem_page(void) {} 2037 static inline int last_highmem_page_copied(void) { return 1; } 2038 static inline void free_highmem_data(void) {} 2039 #endif /* CONFIG_HIGHMEM */ 2040 2041 /** 2042 * prepare_image - use the memory bitmap @bm to mark the pages that will 2043 * be overwritten in the process of restoring the system memory state 2044 * from the suspend image ("unsafe" pages) and allocate memory for the 2045 * image. 2046 * 2047 * The idea is to allocate a new memory bitmap first and then allocate 2048 * as many pages as needed for the image data, but not to assign these 2049 * pages to specific tasks initially. Instead, we just mark them as 2050 * allocated and create a lists of "safe" pages that will be used 2051 * later. On systems with high memory a list of "safe" highmem pages is 2052 * also created. 2053 */ 2054 2055 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2056 2057 static int 2058 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2059 { 2060 unsigned int nr_pages, nr_highmem; 2061 struct linked_page *sp_list, *lp; 2062 int error; 2063 2064 /* If there is no highmem, the buffer will not be necessary */ 2065 free_image_page(buffer, PG_UNSAFE_CLEAR); 2066 buffer = NULL; 2067 2068 nr_highmem = count_highmem_image_pages(bm); 2069 error = mark_unsafe_pages(bm); 2070 if (error) 2071 goto Free; 2072 2073 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2074 if (error) 2075 goto Free; 2076 2077 duplicate_memory_bitmap(new_bm, bm); 2078 memory_bm_free(bm, PG_UNSAFE_KEEP); 2079 if (nr_highmem > 0) { 2080 error = prepare_highmem_image(bm, &nr_highmem); 2081 if (error) 2082 goto Free; 2083 } 2084 /* Reserve some safe pages for potential later use. 2085 * 2086 * NOTE: This way we make sure there will be enough safe pages for the 2087 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2088 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2089 */ 2090 sp_list = NULL; 2091 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2092 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2093 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2094 while (nr_pages > 0) { 2095 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2096 if (!lp) { 2097 error = -ENOMEM; 2098 goto Free; 2099 } 2100 lp->next = sp_list; 2101 sp_list = lp; 2102 nr_pages--; 2103 } 2104 /* Preallocate memory for the image */ 2105 safe_pages_list = NULL; 2106 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2107 while (nr_pages > 0) { 2108 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2109 if (!lp) { 2110 error = -ENOMEM; 2111 goto Free; 2112 } 2113 if (!swsusp_page_is_free(virt_to_page(lp))) { 2114 /* The page is "safe", add it to the list */ 2115 lp->next = safe_pages_list; 2116 safe_pages_list = lp; 2117 } 2118 /* Mark the page as allocated */ 2119 swsusp_set_page_forbidden(virt_to_page(lp)); 2120 swsusp_set_page_free(virt_to_page(lp)); 2121 nr_pages--; 2122 } 2123 /* Free the reserved safe pages so that chain_alloc() can use them */ 2124 while (sp_list) { 2125 lp = sp_list->next; 2126 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2127 sp_list = lp; 2128 } 2129 return 0; 2130 2131 Free: 2132 swsusp_free(); 2133 return error; 2134 } 2135 2136 /** 2137 * get_buffer - compute the address that snapshot_write_next() should 2138 * set for its caller to write to. 2139 */ 2140 2141 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2142 { 2143 struct pbe *pbe; 2144 struct page *page; 2145 unsigned long pfn = memory_bm_next_pfn(bm); 2146 2147 if (pfn == BM_END_OF_MAP) 2148 return ERR_PTR(-EFAULT); 2149 2150 page = pfn_to_page(pfn); 2151 if (PageHighMem(page)) 2152 return get_highmem_page_buffer(page, ca); 2153 2154 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2155 /* We have allocated the "original" page frame and we can 2156 * use it directly to store the loaded page. 2157 */ 2158 return page_address(page); 2159 2160 /* The "original" page frame has not been allocated and we have to 2161 * use a "safe" page frame to store the loaded page. 2162 */ 2163 pbe = chain_alloc(ca, sizeof(struct pbe)); 2164 if (!pbe) { 2165 swsusp_free(); 2166 return ERR_PTR(-ENOMEM); 2167 } 2168 pbe->orig_address = page_address(page); 2169 pbe->address = safe_pages_list; 2170 safe_pages_list = safe_pages_list->next; 2171 pbe->next = restore_pblist; 2172 restore_pblist = pbe; 2173 return pbe->address; 2174 } 2175 2176 /** 2177 * snapshot_write_next - used for writing the system memory snapshot. 2178 * 2179 * On the first call to it @handle should point to a zeroed 2180 * snapshot_handle structure. The structure gets updated and a pointer 2181 * to it should be passed to this function every next time. 2182 * 2183 * On success the function returns a positive number. Then, the caller 2184 * is allowed to write up to the returned number of bytes to the memory 2185 * location computed by the data_of() macro. 2186 * 2187 * The function returns 0 to indicate the "end of file" condition, 2188 * and a negative number is returned on error. In such cases the 2189 * structure pointed to by @handle is not updated and should not be used 2190 * any more. 2191 */ 2192 2193 int snapshot_write_next(struct snapshot_handle *handle) 2194 { 2195 static struct chain_allocator ca; 2196 int error = 0; 2197 2198 /* Check if we have already loaded the entire image */ 2199 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2200 return 0; 2201 2202 handle->sync_read = 1; 2203 2204 if (!handle->cur) { 2205 if (!buffer) 2206 /* This makes the buffer be freed by swsusp_free() */ 2207 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2208 2209 if (!buffer) 2210 return -ENOMEM; 2211 2212 handle->buffer = buffer; 2213 } else if (handle->cur == 1) { 2214 error = load_header(buffer); 2215 if (error) 2216 return error; 2217 2218 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2219 if (error) 2220 return error; 2221 2222 } else if (handle->cur <= nr_meta_pages + 1) { 2223 error = unpack_orig_pfns(buffer, ©_bm); 2224 if (error) 2225 return error; 2226 2227 if (handle->cur == nr_meta_pages + 1) { 2228 error = prepare_image(&orig_bm, ©_bm); 2229 if (error) 2230 return error; 2231 2232 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2233 memory_bm_position_reset(&orig_bm); 2234 restore_pblist = NULL; 2235 handle->buffer = get_buffer(&orig_bm, &ca); 2236 handle->sync_read = 0; 2237 if (IS_ERR(handle->buffer)) 2238 return PTR_ERR(handle->buffer); 2239 } 2240 } else { 2241 copy_last_highmem_page(); 2242 handle->buffer = get_buffer(&orig_bm, &ca); 2243 if (IS_ERR(handle->buffer)) 2244 return PTR_ERR(handle->buffer); 2245 if (handle->buffer != buffer) 2246 handle->sync_read = 0; 2247 } 2248 handle->cur++; 2249 return PAGE_SIZE; 2250 } 2251 2252 /** 2253 * snapshot_write_finalize - must be called after the last call to 2254 * snapshot_write_next() in case the last page in the image happens 2255 * to be a highmem page and its contents should be stored in the 2256 * highmem. Additionally, it releases the memory that will not be 2257 * used any more. 2258 */ 2259 2260 void snapshot_write_finalize(struct snapshot_handle *handle) 2261 { 2262 copy_last_highmem_page(); 2263 /* Free only if we have loaded the image entirely */ 2264 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2265 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2266 free_highmem_data(); 2267 } 2268 } 2269 2270 int snapshot_image_loaded(struct snapshot_handle *handle) 2271 { 2272 return !(!nr_copy_pages || !last_highmem_page_copied() || 2273 handle->cur <= nr_meta_pages + nr_copy_pages); 2274 } 2275 2276 #ifdef CONFIG_HIGHMEM 2277 /* Assumes that @buf is ready and points to a "safe" page */ 2278 static inline void 2279 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2280 { 2281 void *kaddr1, *kaddr2; 2282 2283 kaddr1 = kmap_atomic(p1, KM_USER0); 2284 kaddr2 = kmap_atomic(p2, KM_USER1); 2285 copy_page(buf, kaddr1); 2286 copy_page(kaddr1, kaddr2); 2287 copy_page(kaddr2, buf); 2288 kunmap_atomic(kaddr2, KM_USER1); 2289 kunmap_atomic(kaddr1, KM_USER0); 2290 } 2291 2292 /** 2293 * restore_highmem - for each highmem page that was allocated before 2294 * the suspend and included in the suspend image, and also has been 2295 * allocated by the "resume" kernel swap its current (ie. "before 2296 * resume") contents with the previous (ie. "before suspend") one. 2297 * 2298 * If the resume eventually fails, we can call this function once 2299 * again and restore the "before resume" highmem state. 2300 */ 2301 2302 int restore_highmem(void) 2303 { 2304 struct highmem_pbe *pbe = highmem_pblist; 2305 void *buf; 2306 2307 if (!pbe) 2308 return 0; 2309 2310 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2311 if (!buf) 2312 return -ENOMEM; 2313 2314 while (pbe) { 2315 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2316 pbe = pbe->next; 2317 } 2318 free_image_page(buf, PG_UNSAFE_CLEAR); 2319 return 0; 2320 } 2321 #endif /* CONFIG_HIGHMEM */ 2322