xref: /linux/kernel/power/snapshot.c (revision 3ea5eb68b9d624935108b5e696859304edfac202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline int __must_check hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		return set_memory_ro((unsigned long)page_address, 1);
65 	return 0;
66 }
67 
68 static inline int hibernate_restore_unprotect_page(void *page_address)
69 {
70 	if (hibernate_restore_protection_active)
71 		return set_memory_rw((unsigned long)page_address, 1);
72 	return 0;
73 }
74 #else
75 static inline void hibernate_restore_protection_begin(void) {}
76 static inline void hibernate_restore_protection_end(void) {}
77 static inline int __must_check hibernate_restore_protect_page(void *page_address) {return 0; }
78 static inline int hibernate_restore_unprotect_page(void *page_address) {return 0; }
79 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
80 
81 
82 /*
83  * The calls to set_direct_map_*() should not fail because remapping a page
84  * here means that we only update protection bits in an existing PTE.
85  * It is still worth to have a warning here if something changes and this
86  * will no longer be the case.
87  */
88 static inline void hibernate_map_page(struct page *page)
89 {
90 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
91 		int ret = set_direct_map_default_noflush(page);
92 
93 		if (ret)
94 			pr_warn_once("Failed to remap page\n");
95 	} else {
96 		debug_pagealloc_map_pages(page, 1);
97 	}
98 }
99 
100 static inline void hibernate_unmap_page(struct page *page)
101 {
102 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
103 		unsigned long addr = (unsigned long)page_address(page);
104 		int ret  = set_direct_map_invalid_noflush(page);
105 
106 		if (ret)
107 			pr_warn_once("Failed to remap page\n");
108 
109 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
110 	} else {
111 		debug_pagealloc_unmap_pages(page, 1);
112 	}
113 }
114 
115 static int swsusp_page_is_free(struct page *);
116 static void swsusp_set_page_forbidden(struct page *);
117 static void swsusp_unset_page_forbidden(struct page *);
118 
119 /*
120  * Number of bytes to reserve for memory allocations made by device drivers
121  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
122  * cause image creation to fail (tunable via /sys/power/reserved_size).
123  */
124 unsigned long reserved_size;
125 
126 void __init hibernate_reserved_size_init(void)
127 {
128 	reserved_size = SPARE_PAGES * PAGE_SIZE;
129 }
130 
131 /*
132  * Preferred image size in bytes (tunable via /sys/power/image_size).
133  * When it is set to N, swsusp will do its best to ensure the image
134  * size will not exceed N bytes, but if that is impossible, it will
135  * try to create the smallest image possible.
136  */
137 unsigned long image_size;
138 
139 void __init hibernate_image_size_init(void)
140 {
141 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
142 }
143 
144 /*
145  * List of PBEs needed for restoring the pages that were allocated before
146  * the suspend and included in the suspend image, but have also been
147  * allocated by the "resume" kernel, so their contents cannot be written
148  * directly to their "original" page frames.
149  */
150 struct pbe *restore_pblist;
151 
152 /* struct linked_page is used to build chains of pages */
153 
154 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
155 
156 struct linked_page {
157 	struct linked_page *next;
158 	char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160 
161 /*
162  * List of "safe" pages (ie. pages that were not used by the image kernel
163  * before hibernation) that may be used as temporary storage for image kernel
164  * memory contents.
165  */
166 static struct linked_page *safe_pages_list;
167 
168 /* Pointer to an auxiliary buffer (1 page) */
169 static void *buffer;
170 
171 #define PG_ANY		0
172 #define PG_SAFE		1
173 #define PG_UNSAFE_CLEAR	1
174 #define PG_UNSAFE_KEEP	0
175 
176 static unsigned int allocated_unsafe_pages;
177 
178 /**
179  * get_image_page - Allocate a page for a hibernation image.
180  * @gfp_mask: GFP mask for the allocation.
181  * @safe_needed: Get pages that were not used before hibernation (restore only)
182  *
183  * During image restoration, for storing the PBE list and the image data, we can
184  * only use memory pages that do not conflict with the pages used before
185  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
186  * using allocated_unsafe_pages.
187  *
188  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
189  * swsusp_free() can release it.
190  */
191 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
192 {
193 	void *res;
194 
195 	res = (void *)get_zeroed_page(gfp_mask);
196 	if (safe_needed)
197 		while (res && swsusp_page_is_free(virt_to_page(res))) {
198 			/* The page is unsafe, mark it for swsusp_free() */
199 			swsusp_set_page_forbidden(virt_to_page(res));
200 			allocated_unsafe_pages++;
201 			res = (void *)get_zeroed_page(gfp_mask);
202 		}
203 	if (res) {
204 		swsusp_set_page_forbidden(virt_to_page(res));
205 		swsusp_set_page_free(virt_to_page(res));
206 	}
207 	return res;
208 }
209 
210 static void *__get_safe_page(gfp_t gfp_mask)
211 {
212 	if (safe_pages_list) {
213 		void *ret = safe_pages_list;
214 
215 		safe_pages_list = safe_pages_list->next;
216 		memset(ret, 0, PAGE_SIZE);
217 		return ret;
218 	}
219 	return get_image_page(gfp_mask, PG_SAFE);
220 }
221 
222 unsigned long get_safe_page(gfp_t gfp_mask)
223 {
224 	return (unsigned long)__get_safe_page(gfp_mask);
225 }
226 
227 static struct page *alloc_image_page(gfp_t gfp_mask)
228 {
229 	struct page *page;
230 
231 	page = alloc_page(gfp_mask);
232 	if (page) {
233 		swsusp_set_page_forbidden(page);
234 		swsusp_set_page_free(page);
235 	}
236 	return page;
237 }
238 
239 static void recycle_safe_page(void *page_address)
240 {
241 	struct linked_page *lp = page_address;
242 
243 	lp->next = safe_pages_list;
244 	safe_pages_list = lp;
245 }
246 
247 /**
248  * free_image_page - Free a page allocated for hibernation image.
249  * @addr: Address of the page to free.
250  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
251  *
252  * The page to free should have been allocated by get_image_page() (page flags
253  * set by it are affected).
254  */
255 static inline void free_image_page(void *addr, int clear_nosave_free)
256 {
257 	struct page *page;
258 
259 	BUG_ON(!virt_addr_valid(addr));
260 
261 	page = virt_to_page(addr);
262 
263 	swsusp_unset_page_forbidden(page);
264 	if (clear_nosave_free)
265 		swsusp_unset_page_free(page);
266 
267 	__free_page(page);
268 }
269 
270 static inline void free_list_of_pages(struct linked_page *list,
271 				      int clear_page_nosave)
272 {
273 	while (list) {
274 		struct linked_page *lp = list->next;
275 
276 		free_image_page(list, clear_page_nosave);
277 		list = lp;
278 	}
279 }
280 
281 /*
282  * struct chain_allocator is used for allocating small objects out of
283  * a linked list of pages called 'the chain'.
284  *
285  * The chain grows each time when there is no room for a new object in
286  * the current page.  The allocated objects cannot be freed individually.
287  * It is only possible to free them all at once, by freeing the entire
288  * chain.
289  *
290  * NOTE: The chain allocator may be inefficient if the allocated objects
291  * are not much smaller than PAGE_SIZE.
292  */
293 struct chain_allocator {
294 	struct linked_page *chain;	/* the chain */
295 	unsigned int used_space;	/* total size of objects allocated out
296 					   of the current page */
297 	gfp_t gfp_mask;		/* mask for allocating pages */
298 	int safe_needed;	/* if set, only "safe" pages are allocated */
299 };
300 
301 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
302 		       int safe_needed)
303 {
304 	ca->chain = NULL;
305 	ca->used_space = LINKED_PAGE_DATA_SIZE;
306 	ca->gfp_mask = gfp_mask;
307 	ca->safe_needed = safe_needed;
308 }
309 
310 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
311 {
312 	void *ret;
313 
314 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
315 		struct linked_page *lp;
316 
317 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
318 					get_image_page(ca->gfp_mask, PG_ANY);
319 		if (!lp)
320 			return NULL;
321 
322 		lp->next = ca->chain;
323 		ca->chain = lp;
324 		ca->used_space = 0;
325 	}
326 	ret = ca->chain->data + ca->used_space;
327 	ca->used_space += size;
328 	return ret;
329 }
330 
331 /*
332  * Data types related to memory bitmaps.
333  *
334  * Memory bitmap is a structure consisting of many linked lists of
335  * objects.  The main list's elements are of type struct zone_bitmap
336  * and each of them corresponds to one zone.  For each zone bitmap
337  * object there is a list of objects of type struct bm_block that
338  * represent each blocks of bitmap in which information is stored.
339  *
340  * struct memory_bitmap contains a pointer to the main list of zone
341  * bitmap objects, a struct bm_position used for browsing the bitmap,
342  * and a pointer to the list of pages used for allocating all of the
343  * zone bitmap objects and bitmap block objects.
344  *
345  * NOTE: It has to be possible to lay out the bitmap in memory
346  * using only allocations of order 0.  Additionally, the bitmap is
347  * designed to work with arbitrary number of zones (this is over the
348  * top for now, but let's avoid making unnecessary assumptions ;-).
349  *
350  * struct zone_bitmap contains a pointer to a list of bitmap block
351  * objects and a pointer to the bitmap block object that has been
352  * most recently used for setting bits.  Additionally, it contains the
353  * PFNs that correspond to the start and end of the represented zone.
354  *
355  * struct bm_block contains a pointer to the memory page in which
356  * information is stored (in the form of a block of bitmap)
357  * It also contains the pfns that correspond to the start and end of
358  * the represented memory area.
359  *
360  * The memory bitmap is organized as a radix tree to guarantee fast random
361  * access to the bits. There is one radix tree for each zone (as returned
362  * from create_mem_extents).
363  *
364  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
365  * two linked lists for the nodes of the tree, one for the inner nodes and
366  * one for the leave nodes. The linked leave nodes are used for fast linear
367  * access of the memory bitmap.
368  *
369  * The struct rtree_node represents one node of the radix tree.
370  */
371 
372 #define BM_END_OF_MAP	(~0UL)
373 
374 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
375 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
376 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
377 
378 /*
379  * struct rtree_node is a wrapper struct to link the nodes
380  * of the rtree together for easy linear iteration over
381  * bits and easy freeing
382  */
383 struct rtree_node {
384 	struct list_head list;
385 	unsigned long *data;
386 };
387 
388 /*
389  * struct mem_zone_bm_rtree represents a bitmap used for one
390  * populated memory zone.
391  */
392 struct mem_zone_bm_rtree {
393 	struct list_head list;		/* Link Zones together         */
394 	struct list_head nodes;		/* Radix Tree inner nodes      */
395 	struct list_head leaves;	/* Radix Tree leaves           */
396 	unsigned long start_pfn;	/* Zone start page frame       */
397 	unsigned long end_pfn;		/* Zone end page frame + 1     */
398 	struct rtree_node *rtree;	/* Radix Tree Root             */
399 	int levels;			/* Number of Radix Tree Levels */
400 	unsigned int blocks;		/* Number of Bitmap Blocks     */
401 };
402 
403 /* struct bm_position is used for browsing memory bitmaps */
404 
405 struct bm_position {
406 	struct mem_zone_bm_rtree *zone;
407 	struct rtree_node *node;
408 	unsigned long node_pfn;
409 	unsigned long cur_pfn;
410 	int node_bit;
411 };
412 
413 struct memory_bitmap {
414 	struct list_head zones;
415 	struct linked_page *p_list;	/* list of pages used to store zone
416 					   bitmap objects and bitmap block
417 					   objects */
418 	struct bm_position cur;	/* most recently used bit position */
419 };
420 
421 /* Functions that operate on memory bitmaps */
422 
423 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
424 #if BITS_PER_LONG == 32
425 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
426 #else
427 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
428 #endif
429 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
430 
431 /**
432  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
433  * @gfp_mask: GFP mask for the allocation.
434  * @safe_needed: Get pages not used before hibernation (restore only)
435  * @ca: Pointer to a linked list of pages ("a chain") to allocate from
436  * @list: Radix Tree node to add.
437  *
438  * This function is used to allocate inner nodes as well as the
439  * leave nodes of the radix tree. It also adds the node to the
440  * corresponding linked list passed in by the *list parameter.
441  */
442 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
443 					   struct chain_allocator *ca,
444 					   struct list_head *list)
445 {
446 	struct rtree_node *node;
447 
448 	node = chain_alloc(ca, sizeof(struct rtree_node));
449 	if (!node)
450 		return NULL;
451 
452 	node->data = get_image_page(gfp_mask, safe_needed);
453 	if (!node->data)
454 		return NULL;
455 
456 	list_add_tail(&node->list, list);
457 
458 	return node;
459 }
460 
461 /**
462  * add_rtree_block - Add a new leave node to the radix tree.
463  *
464  * The leave nodes need to be allocated in order to keep the leaves
465  * linked list in order. This is guaranteed by the zone->blocks
466  * counter.
467  */
468 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
469 			   int safe_needed, struct chain_allocator *ca)
470 {
471 	struct rtree_node *node, *block, **dst;
472 	unsigned int levels_needed, block_nr;
473 	int i;
474 
475 	block_nr = zone->blocks;
476 	levels_needed = 0;
477 
478 	/* How many levels do we need for this block nr? */
479 	while (block_nr) {
480 		levels_needed += 1;
481 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
482 	}
483 
484 	/* Make sure the rtree has enough levels */
485 	for (i = zone->levels; i < levels_needed; i++) {
486 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
487 					&zone->nodes);
488 		if (!node)
489 			return -ENOMEM;
490 
491 		node->data[0] = (unsigned long)zone->rtree;
492 		zone->rtree = node;
493 		zone->levels += 1;
494 	}
495 
496 	/* Allocate new block */
497 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
498 	if (!block)
499 		return -ENOMEM;
500 
501 	/* Now walk the rtree to insert the block */
502 	node = zone->rtree;
503 	dst = &zone->rtree;
504 	block_nr = zone->blocks;
505 	for (i = zone->levels; i > 0; i--) {
506 		int index;
507 
508 		if (!node) {
509 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
510 						&zone->nodes);
511 			if (!node)
512 				return -ENOMEM;
513 			*dst = node;
514 		}
515 
516 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
517 		index &= BM_RTREE_LEVEL_MASK;
518 		dst = (struct rtree_node **)&((*dst)->data[index]);
519 		node = *dst;
520 	}
521 
522 	zone->blocks += 1;
523 	*dst = block;
524 
525 	return 0;
526 }
527 
528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
529 			       int clear_nosave_free);
530 
531 /**
532  * create_zone_bm_rtree - Create a radix tree for one zone.
533  *
534  * Allocated the mem_zone_bm_rtree structure and initializes it.
535  * This function also allocated and builds the radix tree for the
536  * zone.
537  */
538 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
539 						      int safe_needed,
540 						      struct chain_allocator *ca,
541 						      unsigned long start,
542 						      unsigned long end)
543 {
544 	struct mem_zone_bm_rtree *zone;
545 	unsigned int i, nr_blocks;
546 	unsigned long pages;
547 
548 	pages = end - start;
549 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
550 	if (!zone)
551 		return NULL;
552 
553 	INIT_LIST_HEAD(&zone->nodes);
554 	INIT_LIST_HEAD(&zone->leaves);
555 	zone->start_pfn = start;
556 	zone->end_pfn = end;
557 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
558 
559 	for (i = 0; i < nr_blocks; i++) {
560 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
561 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
562 			return NULL;
563 		}
564 	}
565 
566 	return zone;
567 }
568 
569 /**
570  * free_zone_bm_rtree - Free the memory of the radix tree.
571  *
572  * Free all node pages of the radix tree. The mem_zone_bm_rtree
573  * structure itself is not freed here nor are the rtree_node
574  * structs.
575  */
576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
577 			       int clear_nosave_free)
578 {
579 	struct rtree_node *node;
580 
581 	list_for_each_entry(node, &zone->nodes, list)
582 		free_image_page(node->data, clear_nosave_free);
583 
584 	list_for_each_entry(node, &zone->leaves, list)
585 		free_image_page(node->data, clear_nosave_free);
586 }
587 
588 static void memory_bm_position_reset(struct memory_bitmap *bm)
589 {
590 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
591 				  list);
592 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
593 				  struct rtree_node, list);
594 	bm->cur.node_pfn = 0;
595 	bm->cur.cur_pfn = BM_END_OF_MAP;
596 	bm->cur.node_bit = 0;
597 }
598 
599 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
600 
601 struct mem_extent {
602 	struct list_head hook;
603 	unsigned long start;
604 	unsigned long end;
605 };
606 
607 /**
608  * free_mem_extents - Free a list of memory extents.
609  * @list: List of extents to free.
610  */
611 static void free_mem_extents(struct list_head *list)
612 {
613 	struct mem_extent *ext, *aux;
614 
615 	list_for_each_entry_safe(ext, aux, list, hook) {
616 		list_del(&ext->hook);
617 		kfree(ext);
618 	}
619 }
620 
621 /**
622  * create_mem_extents - Create a list of memory extents.
623  * @list: List to put the extents into.
624  * @gfp_mask: Mask to use for memory allocations.
625  *
626  * The extents represent contiguous ranges of PFNs.
627  */
628 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
629 {
630 	struct zone *zone;
631 
632 	INIT_LIST_HEAD(list);
633 
634 	for_each_populated_zone(zone) {
635 		unsigned long zone_start, zone_end;
636 		struct mem_extent *ext, *cur, *aux;
637 
638 		zone_start = zone->zone_start_pfn;
639 		zone_end = zone_end_pfn(zone);
640 
641 		list_for_each_entry(ext, list, hook)
642 			if (zone_start <= ext->end)
643 				break;
644 
645 		if (&ext->hook == list || zone_end < ext->start) {
646 			/* New extent is necessary */
647 			struct mem_extent *new_ext;
648 
649 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
650 			if (!new_ext) {
651 				free_mem_extents(list);
652 				return -ENOMEM;
653 			}
654 			new_ext->start = zone_start;
655 			new_ext->end = zone_end;
656 			list_add_tail(&new_ext->hook, &ext->hook);
657 			continue;
658 		}
659 
660 		/* Merge this zone's range of PFNs with the existing one */
661 		if (zone_start < ext->start)
662 			ext->start = zone_start;
663 		if (zone_end > ext->end)
664 			ext->end = zone_end;
665 
666 		/* More merging may be possible */
667 		cur = ext;
668 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
669 			if (zone_end < cur->start)
670 				break;
671 			if (zone_end < cur->end)
672 				ext->end = cur->end;
673 			list_del(&cur->hook);
674 			kfree(cur);
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 /**
682  * memory_bm_create - Allocate memory for a memory bitmap.
683  */
684 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
685 			    int safe_needed)
686 {
687 	struct chain_allocator ca;
688 	struct list_head mem_extents;
689 	struct mem_extent *ext;
690 	int error;
691 
692 	chain_init(&ca, gfp_mask, safe_needed);
693 	INIT_LIST_HEAD(&bm->zones);
694 
695 	error = create_mem_extents(&mem_extents, gfp_mask);
696 	if (error)
697 		return error;
698 
699 	list_for_each_entry(ext, &mem_extents, hook) {
700 		struct mem_zone_bm_rtree *zone;
701 
702 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
703 					    ext->start, ext->end);
704 		if (!zone) {
705 			error = -ENOMEM;
706 			goto Error;
707 		}
708 		list_add_tail(&zone->list, &bm->zones);
709 	}
710 
711 	bm->p_list = ca.chain;
712 	memory_bm_position_reset(bm);
713  Exit:
714 	free_mem_extents(&mem_extents);
715 	return error;
716 
717  Error:
718 	bm->p_list = ca.chain;
719 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
720 	goto Exit;
721 }
722 
723 /**
724  * memory_bm_free - Free memory occupied by the memory bitmap.
725  * @bm: Memory bitmap.
726  */
727 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
728 {
729 	struct mem_zone_bm_rtree *zone;
730 
731 	list_for_each_entry(zone, &bm->zones, list)
732 		free_zone_bm_rtree(zone, clear_nosave_free);
733 
734 	free_list_of_pages(bm->p_list, clear_nosave_free);
735 
736 	INIT_LIST_HEAD(&bm->zones);
737 }
738 
739 /**
740  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
741  *
742  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
743  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
744  *
745  * Walk the radix tree to find the page containing the bit that represents @pfn
746  * and return the position of the bit in @addr and @bit_nr.
747  */
748 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
749 			      void **addr, unsigned int *bit_nr)
750 {
751 	struct mem_zone_bm_rtree *curr, *zone;
752 	struct rtree_node *node;
753 	int i, block_nr;
754 
755 	zone = bm->cur.zone;
756 
757 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
758 		goto zone_found;
759 
760 	zone = NULL;
761 
762 	/* Find the right zone */
763 	list_for_each_entry(curr, &bm->zones, list) {
764 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
765 			zone = curr;
766 			break;
767 		}
768 	}
769 
770 	if (!zone)
771 		return -EFAULT;
772 
773 zone_found:
774 	/*
775 	 * We have found the zone. Now walk the radix tree to find the leaf node
776 	 * for our PFN.
777 	 */
778 
779 	/*
780 	 * If the zone we wish to scan is the current zone and the
781 	 * pfn falls into the current node then we do not need to walk
782 	 * the tree.
783 	 */
784 	node = bm->cur.node;
785 	if (zone == bm->cur.zone &&
786 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
787 		goto node_found;
788 
789 	node      = zone->rtree;
790 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
791 
792 	for (i = zone->levels; i > 0; i--) {
793 		int index;
794 
795 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
796 		index &= BM_RTREE_LEVEL_MASK;
797 		BUG_ON(node->data[index] == 0);
798 		node = (struct rtree_node *)node->data[index];
799 	}
800 
801 node_found:
802 	/* Update last position */
803 	bm->cur.zone = zone;
804 	bm->cur.node = node;
805 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
806 	bm->cur.cur_pfn = pfn;
807 
808 	/* Set return values */
809 	*addr = node->data;
810 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
811 
812 	return 0;
813 }
814 
815 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
816 {
817 	void *addr;
818 	unsigned int bit;
819 	int error;
820 
821 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
822 	BUG_ON(error);
823 	set_bit(bit, addr);
824 }
825 
826 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
827 {
828 	void *addr;
829 	unsigned int bit;
830 	int error;
831 
832 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
833 	if (!error)
834 		set_bit(bit, addr);
835 
836 	return error;
837 }
838 
839 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
840 {
841 	void *addr;
842 	unsigned int bit;
843 	int error;
844 
845 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
846 	BUG_ON(error);
847 	clear_bit(bit, addr);
848 }
849 
850 static void memory_bm_clear_current(struct memory_bitmap *bm)
851 {
852 	int bit;
853 
854 	bit = max(bm->cur.node_bit - 1, 0);
855 	clear_bit(bit, bm->cur.node->data);
856 }
857 
858 static unsigned long memory_bm_get_current(struct memory_bitmap *bm)
859 {
860 	return bm->cur.cur_pfn;
861 }
862 
863 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
864 {
865 	void *addr;
866 	unsigned int bit;
867 	int error;
868 
869 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
870 	BUG_ON(error);
871 	return test_bit(bit, addr);
872 }
873 
874 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
875 {
876 	void *addr;
877 	unsigned int bit;
878 
879 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
880 }
881 
882 /*
883  * rtree_next_node - Jump to the next leaf node.
884  *
885  * Set the position to the beginning of the next node in the
886  * memory bitmap. This is either the next node in the current
887  * zone's radix tree or the first node in the radix tree of the
888  * next zone.
889  *
890  * Return true if there is a next node, false otherwise.
891  */
892 static bool rtree_next_node(struct memory_bitmap *bm)
893 {
894 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
895 		bm->cur.node = list_entry(bm->cur.node->list.next,
896 					  struct rtree_node, list);
897 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
898 		bm->cur.node_bit  = 0;
899 		touch_softlockup_watchdog();
900 		return true;
901 	}
902 
903 	/* No more nodes, goto next zone */
904 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
905 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
906 				  struct mem_zone_bm_rtree, list);
907 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
908 					  struct rtree_node, list);
909 		bm->cur.node_pfn = 0;
910 		bm->cur.node_bit = 0;
911 		return true;
912 	}
913 
914 	/* No more zones */
915 	return false;
916 }
917 
918 /**
919  * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
920  * @bm: Memory bitmap.
921  *
922  * Starting from the last returned position this function searches for the next
923  * set bit in @bm and returns the PFN represented by it.  If no more bits are
924  * set, BM_END_OF_MAP is returned.
925  *
926  * It is required to run memory_bm_position_reset() before the first call to
927  * this function for the given memory bitmap.
928  */
929 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
930 {
931 	unsigned long bits, pfn, pages;
932 	int bit;
933 
934 	do {
935 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
936 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
937 		bit	  = find_next_bit(bm->cur.node->data, bits,
938 					  bm->cur.node_bit);
939 		if (bit < bits) {
940 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
941 			bm->cur.node_bit = bit + 1;
942 			bm->cur.cur_pfn = pfn;
943 			return pfn;
944 		}
945 	} while (rtree_next_node(bm));
946 
947 	bm->cur.cur_pfn = BM_END_OF_MAP;
948 	return BM_END_OF_MAP;
949 }
950 
951 /*
952  * This structure represents a range of page frames the contents of which
953  * should not be saved during hibernation.
954  */
955 struct nosave_region {
956 	struct list_head list;
957 	unsigned long start_pfn;
958 	unsigned long end_pfn;
959 };
960 
961 static LIST_HEAD(nosave_regions);
962 
963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
964 {
965 	struct rtree_node *node;
966 
967 	list_for_each_entry(node, &zone->nodes, list)
968 		recycle_safe_page(node->data);
969 
970 	list_for_each_entry(node, &zone->leaves, list)
971 		recycle_safe_page(node->data);
972 }
973 
974 static void memory_bm_recycle(struct memory_bitmap *bm)
975 {
976 	struct mem_zone_bm_rtree *zone;
977 	struct linked_page *p_list;
978 
979 	list_for_each_entry(zone, &bm->zones, list)
980 		recycle_zone_bm_rtree(zone);
981 
982 	p_list = bm->p_list;
983 	while (p_list) {
984 		struct linked_page *lp = p_list;
985 
986 		p_list = lp->next;
987 		recycle_safe_page(lp);
988 	}
989 }
990 
991 /**
992  * register_nosave_region - Register a region of unsaveable memory.
993  *
994  * Register a range of page frames the contents of which should not be saved
995  * during hibernation (to be used in the early initialization code).
996  */
997 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
998 {
999 	struct nosave_region *region;
1000 
1001 	if (start_pfn >= end_pfn)
1002 		return;
1003 
1004 	if (!list_empty(&nosave_regions)) {
1005 		/* Try to extend the previous region (they should be sorted) */
1006 		region = list_entry(nosave_regions.prev,
1007 					struct nosave_region, list);
1008 		if (region->end_pfn == start_pfn) {
1009 			region->end_pfn = end_pfn;
1010 			goto Report;
1011 		}
1012 	}
1013 	/* This allocation cannot fail */
1014 	region = memblock_alloc(sizeof(struct nosave_region),
1015 				SMP_CACHE_BYTES);
1016 	if (!region)
1017 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1018 		      sizeof(struct nosave_region));
1019 	region->start_pfn = start_pfn;
1020 	region->end_pfn = end_pfn;
1021 	list_add_tail(&region->list, &nosave_regions);
1022  Report:
1023 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1024 		(unsigned long long) start_pfn << PAGE_SHIFT,
1025 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1026 }
1027 
1028 /*
1029  * Set bits in this map correspond to the page frames the contents of which
1030  * should not be saved during the suspend.
1031  */
1032 static struct memory_bitmap *forbidden_pages_map;
1033 
1034 /* Set bits in this map correspond to free page frames. */
1035 static struct memory_bitmap *free_pages_map;
1036 
1037 /*
1038  * Each page frame allocated for creating the image is marked by setting the
1039  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1040  */
1041 
1042 void swsusp_set_page_free(struct page *page)
1043 {
1044 	if (free_pages_map)
1045 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1046 }
1047 
1048 static int swsusp_page_is_free(struct page *page)
1049 {
1050 	return free_pages_map ?
1051 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1052 }
1053 
1054 void swsusp_unset_page_free(struct page *page)
1055 {
1056 	if (free_pages_map)
1057 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1058 }
1059 
1060 static void swsusp_set_page_forbidden(struct page *page)
1061 {
1062 	if (forbidden_pages_map)
1063 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1064 }
1065 
1066 int swsusp_page_is_forbidden(struct page *page)
1067 {
1068 	return forbidden_pages_map ?
1069 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1070 }
1071 
1072 static void swsusp_unset_page_forbidden(struct page *page)
1073 {
1074 	if (forbidden_pages_map)
1075 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1076 }
1077 
1078 /**
1079  * mark_nosave_pages - Mark pages that should not be saved.
1080  * @bm: Memory bitmap.
1081  *
1082  * Set the bits in @bm that correspond to the page frames the contents of which
1083  * should not be saved.
1084  */
1085 static void mark_nosave_pages(struct memory_bitmap *bm)
1086 {
1087 	struct nosave_region *region;
1088 
1089 	if (list_empty(&nosave_regions))
1090 		return;
1091 
1092 	list_for_each_entry(region, &nosave_regions, list) {
1093 		unsigned long pfn;
1094 
1095 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1096 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1097 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1098 				- 1);
1099 
1100 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1101 			if (pfn_valid(pfn)) {
1102 				/*
1103 				 * It is safe to ignore the result of
1104 				 * mem_bm_set_bit_check() here, since we won't
1105 				 * touch the PFNs for which the error is
1106 				 * returned anyway.
1107 				 */
1108 				mem_bm_set_bit_check(bm, pfn);
1109 			}
1110 	}
1111 }
1112 
1113 /**
1114  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1115  *
1116  * Create bitmaps needed for marking page frames that should not be saved and
1117  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1118  * only modified if everything goes well, because we don't want the bits to be
1119  * touched before both bitmaps are set up.
1120  */
1121 int create_basic_memory_bitmaps(void)
1122 {
1123 	struct memory_bitmap *bm1, *bm2;
1124 	int error;
1125 
1126 	if (forbidden_pages_map && free_pages_map)
1127 		return 0;
1128 	else
1129 		BUG_ON(forbidden_pages_map || free_pages_map);
1130 
1131 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1132 	if (!bm1)
1133 		return -ENOMEM;
1134 
1135 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1136 	if (error)
1137 		goto Free_first_object;
1138 
1139 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1140 	if (!bm2)
1141 		goto Free_first_bitmap;
1142 
1143 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1144 	if (error)
1145 		goto Free_second_object;
1146 
1147 	forbidden_pages_map = bm1;
1148 	free_pages_map = bm2;
1149 	mark_nosave_pages(forbidden_pages_map);
1150 
1151 	pr_debug("Basic memory bitmaps created\n");
1152 
1153 	return 0;
1154 
1155  Free_second_object:
1156 	kfree(bm2);
1157  Free_first_bitmap:
1158 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1159  Free_first_object:
1160 	kfree(bm1);
1161 	return -ENOMEM;
1162 }
1163 
1164 /**
1165  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1166  *
1167  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1168  * auxiliary pointers are necessary so that the bitmaps themselves are not
1169  * referred to while they are being freed.
1170  */
1171 void free_basic_memory_bitmaps(void)
1172 {
1173 	struct memory_bitmap *bm1, *bm2;
1174 
1175 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1176 		return;
1177 
1178 	bm1 = forbidden_pages_map;
1179 	bm2 = free_pages_map;
1180 	forbidden_pages_map = NULL;
1181 	free_pages_map = NULL;
1182 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1183 	kfree(bm1);
1184 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1185 	kfree(bm2);
1186 
1187 	pr_debug("Basic memory bitmaps freed\n");
1188 }
1189 
1190 static void clear_or_poison_free_page(struct page *page)
1191 {
1192 	if (page_poisoning_enabled_static())
1193 		__kernel_poison_pages(page, 1);
1194 	else if (want_init_on_free())
1195 		clear_highpage(page);
1196 }
1197 
1198 void clear_or_poison_free_pages(void)
1199 {
1200 	struct memory_bitmap *bm = free_pages_map;
1201 	unsigned long pfn;
1202 
1203 	if (WARN_ON(!(free_pages_map)))
1204 		return;
1205 
1206 	if (page_poisoning_enabled() || want_init_on_free()) {
1207 		memory_bm_position_reset(bm);
1208 		pfn = memory_bm_next_pfn(bm);
1209 		while (pfn != BM_END_OF_MAP) {
1210 			if (pfn_valid(pfn))
1211 				clear_or_poison_free_page(pfn_to_page(pfn));
1212 
1213 			pfn = memory_bm_next_pfn(bm);
1214 		}
1215 		memory_bm_position_reset(bm);
1216 		pr_info("free pages cleared after restore\n");
1217 	}
1218 }
1219 
1220 /**
1221  * snapshot_additional_pages - Estimate the number of extra pages needed.
1222  * @zone: Memory zone to carry out the computation for.
1223  *
1224  * Estimate the number of additional pages needed for setting up a hibernation
1225  * image data structures for @zone (usually, the returned value is greater than
1226  * the exact number).
1227  */
1228 unsigned int snapshot_additional_pages(struct zone *zone)
1229 {
1230 	unsigned int rtree, nodes;
1231 
1232 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1233 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1234 			      LINKED_PAGE_DATA_SIZE);
1235 	while (nodes > 1) {
1236 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1237 		rtree += nodes;
1238 	}
1239 
1240 	return 2 * rtree;
1241 }
1242 
1243 /*
1244  * Touch the watchdog for every WD_PAGE_COUNT pages.
1245  */
1246 #define WD_PAGE_COUNT	(128*1024)
1247 
1248 static void mark_free_pages(struct zone *zone)
1249 {
1250 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1251 	unsigned long flags;
1252 	unsigned int order, t;
1253 	struct page *page;
1254 
1255 	if (zone_is_empty(zone))
1256 		return;
1257 
1258 	spin_lock_irqsave(&zone->lock, flags);
1259 
1260 	max_zone_pfn = zone_end_pfn(zone);
1261 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1262 		if (pfn_valid(pfn)) {
1263 			page = pfn_to_page(pfn);
1264 
1265 			if (!--page_count) {
1266 				touch_nmi_watchdog();
1267 				page_count = WD_PAGE_COUNT;
1268 			}
1269 
1270 			if (page_zone(page) != zone)
1271 				continue;
1272 
1273 			if (!swsusp_page_is_forbidden(page))
1274 				swsusp_unset_page_free(page);
1275 		}
1276 
1277 	for_each_migratetype_order(order, t) {
1278 		list_for_each_entry(page,
1279 				&zone->free_area[order].free_list[t], buddy_list) {
1280 			unsigned long i;
1281 
1282 			pfn = page_to_pfn(page);
1283 			for (i = 0; i < (1UL << order); i++) {
1284 				if (!--page_count) {
1285 					touch_nmi_watchdog();
1286 					page_count = WD_PAGE_COUNT;
1287 				}
1288 				swsusp_set_page_free(pfn_to_page(pfn + i));
1289 			}
1290 		}
1291 	}
1292 	spin_unlock_irqrestore(&zone->lock, flags);
1293 }
1294 
1295 #ifdef CONFIG_HIGHMEM
1296 /**
1297  * count_free_highmem_pages - Compute the total number of free highmem pages.
1298  *
1299  * The returned number is system-wide.
1300  */
1301 static unsigned int count_free_highmem_pages(void)
1302 {
1303 	struct zone *zone;
1304 	unsigned int cnt = 0;
1305 
1306 	for_each_populated_zone(zone)
1307 		if (is_highmem(zone))
1308 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1309 
1310 	return cnt;
1311 }
1312 
1313 /**
1314  * saveable_highmem_page - Check if a highmem page is saveable.
1315  *
1316  * Determine whether a highmem page should be included in a hibernation image.
1317  *
1318  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1319  * and it isn't part of a free chunk of pages.
1320  */
1321 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1322 {
1323 	struct page *page;
1324 
1325 	if (!pfn_valid(pfn))
1326 		return NULL;
1327 
1328 	page = pfn_to_online_page(pfn);
1329 	if (!page || page_zone(page) != zone)
1330 		return NULL;
1331 
1332 	BUG_ON(!PageHighMem(page));
1333 
1334 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1335 		return NULL;
1336 
1337 	if (PageReserved(page) || PageOffline(page))
1338 		return NULL;
1339 
1340 	if (page_is_guard(page))
1341 		return NULL;
1342 
1343 	return page;
1344 }
1345 
1346 /**
1347  * count_highmem_pages - Compute the total number of saveable highmem pages.
1348  */
1349 static unsigned int count_highmem_pages(void)
1350 {
1351 	struct zone *zone;
1352 	unsigned int n = 0;
1353 
1354 	for_each_populated_zone(zone) {
1355 		unsigned long pfn, max_zone_pfn;
1356 
1357 		if (!is_highmem(zone))
1358 			continue;
1359 
1360 		mark_free_pages(zone);
1361 		max_zone_pfn = zone_end_pfn(zone);
1362 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1363 			if (saveable_highmem_page(zone, pfn))
1364 				n++;
1365 	}
1366 	return n;
1367 }
1368 #endif /* CONFIG_HIGHMEM */
1369 
1370 /**
1371  * saveable_page - Check if the given page is saveable.
1372  *
1373  * Determine whether a non-highmem page should be included in a hibernation
1374  * image.
1375  *
1376  * We should save the page if it isn't Nosave, and is not in the range
1377  * of pages statically defined as 'unsaveable', and it isn't part of
1378  * a free chunk of pages.
1379  */
1380 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1381 {
1382 	struct page *page;
1383 
1384 	if (!pfn_valid(pfn))
1385 		return NULL;
1386 
1387 	page = pfn_to_online_page(pfn);
1388 	if (!page || page_zone(page) != zone)
1389 		return NULL;
1390 
1391 	BUG_ON(PageHighMem(page));
1392 
1393 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1394 		return NULL;
1395 
1396 	if (PageOffline(page))
1397 		return NULL;
1398 
1399 	if (PageReserved(page)
1400 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1401 		return NULL;
1402 
1403 	if (page_is_guard(page))
1404 		return NULL;
1405 
1406 	return page;
1407 }
1408 
1409 /**
1410  * count_data_pages - Compute the total number of saveable non-highmem pages.
1411  */
1412 static unsigned int count_data_pages(void)
1413 {
1414 	struct zone *zone;
1415 	unsigned long pfn, max_zone_pfn;
1416 	unsigned int n = 0;
1417 
1418 	for_each_populated_zone(zone) {
1419 		if (is_highmem(zone))
1420 			continue;
1421 
1422 		mark_free_pages(zone);
1423 		max_zone_pfn = zone_end_pfn(zone);
1424 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1425 			if (saveable_page(zone, pfn))
1426 				n++;
1427 	}
1428 	return n;
1429 }
1430 
1431 /*
1432  * This is needed, because copy_page and memcpy are not usable for copying
1433  * task structs. Returns true if the page was filled with only zeros,
1434  * otherwise false.
1435  */
1436 static inline bool do_copy_page(long *dst, long *src)
1437 {
1438 	long z = 0;
1439 	int n;
1440 
1441 	for (n = PAGE_SIZE / sizeof(long); n; n--) {
1442 		z |= *src;
1443 		*dst++ = *src++;
1444 	}
1445 	return !z;
1446 }
1447 
1448 /**
1449  * safe_copy_page - Copy a page in a safe way.
1450  *
1451  * Check if the page we are going to copy is marked as present in the kernel
1452  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1453  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1454  * always returns 'true'. Returns true if the page was entirely composed of
1455  * zeros, otherwise it will return false.
1456  */
1457 static bool safe_copy_page(void *dst, struct page *s_page)
1458 {
1459 	bool zeros_only;
1460 
1461 	if (kernel_page_present(s_page)) {
1462 		zeros_only = do_copy_page(dst, page_address(s_page));
1463 	} else {
1464 		hibernate_map_page(s_page);
1465 		zeros_only = do_copy_page(dst, page_address(s_page));
1466 		hibernate_unmap_page(s_page);
1467 	}
1468 	return zeros_only;
1469 }
1470 
1471 #ifdef CONFIG_HIGHMEM
1472 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1473 {
1474 	return is_highmem(zone) ?
1475 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1476 }
1477 
1478 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1479 {
1480 	struct page *s_page, *d_page;
1481 	void *src, *dst;
1482 	bool zeros_only;
1483 
1484 	s_page = pfn_to_page(src_pfn);
1485 	d_page = pfn_to_page(dst_pfn);
1486 	if (PageHighMem(s_page)) {
1487 		src = kmap_local_page(s_page);
1488 		dst = kmap_local_page(d_page);
1489 		zeros_only = do_copy_page(dst, src);
1490 		kunmap_local(dst);
1491 		kunmap_local(src);
1492 	} else {
1493 		if (PageHighMem(d_page)) {
1494 			/*
1495 			 * The page pointed to by src may contain some kernel
1496 			 * data modified by kmap_atomic()
1497 			 */
1498 			zeros_only = safe_copy_page(buffer, s_page);
1499 			dst = kmap_local_page(d_page);
1500 			copy_page(dst, buffer);
1501 			kunmap_local(dst);
1502 		} else {
1503 			zeros_only = safe_copy_page(page_address(d_page), s_page);
1504 		}
1505 	}
1506 	return zeros_only;
1507 }
1508 #else
1509 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1510 
1511 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1512 {
1513 	return safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1514 				pfn_to_page(src_pfn));
1515 }
1516 #endif /* CONFIG_HIGHMEM */
1517 
1518 /*
1519  * Copy data pages will copy all pages into pages pulled from the copy_bm.
1520  * If a page was entirely filled with zeros it will be marked in the zero_bm.
1521  *
1522  * Returns the number of pages copied.
1523  */
1524 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm,
1525 			    struct memory_bitmap *orig_bm,
1526 			    struct memory_bitmap *zero_bm)
1527 {
1528 	unsigned long copied_pages = 0;
1529 	struct zone *zone;
1530 	unsigned long pfn, copy_pfn;
1531 
1532 	for_each_populated_zone(zone) {
1533 		unsigned long max_zone_pfn;
1534 
1535 		mark_free_pages(zone);
1536 		max_zone_pfn = zone_end_pfn(zone);
1537 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1538 			if (page_is_saveable(zone, pfn))
1539 				memory_bm_set_bit(orig_bm, pfn);
1540 	}
1541 	memory_bm_position_reset(orig_bm);
1542 	memory_bm_position_reset(copy_bm);
1543 	copy_pfn = memory_bm_next_pfn(copy_bm);
1544 	for(;;) {
1545 		pfn = memory_bm_next_pfn(orig_bm);
1546 		if (unlikely(pfn == BM_END_OF_MAP))
1547 			break;
1548 		if (copy_data_page(copy_pfn, pfn)) {
1549 			memory_bm_set_bit(zero_bm, pfn);
1550 			/* Use this copy_pfn for a page that is not full of zeros */
1551 			continue;
1552 		}
1553 		copied_pages++;
1554 		copy_pfn = memory_bm_next_pfn(copy_bm);
1555 	}
1556 	return copied_pages;
1557 }
1558 
1559 /* Total number of image pages */
1560 static unsigned int nr_copy_pages;
1561 /* Number of pages needed for saving the original pfns of the image pages */
1562 static unsigned int nr_meta_pages;
1563 /* Number of zero pages */
1564 static unsigned int nr_zero_pages;
1565 
1566 /*
1567  * Numbers of normal and highmem page frames allocated for hibernation image
1568  * before suspending devices.
1569  */
1570 static unsigned int alloc_normal, alloc_highmem;
1571 /*
1572  * Memory bitmap used for marking saveable pages (during hibernation) or
1573  * hibernation image pages (during restore)
1574  */
1575 static struct memory_bitmap orig_bm;
1576 /*
1577  * Memory bitmap used during hibernation for marking allocated page frames that
1578  * will contain copies of saveable pages.  During restore it is initially used
1579  * for marking hibernation image pages, but then the set bits from it are
1580  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1581  * used for marking "safe" highmem pages, but it has to be reinitialized for
1582  * this purpose.
1583  */
1584 static struct memory_bitmap copy_bm;
1585 
1586 /* Memory bitmap which tracks which saveable pages were zero filled. */
1587 static struct memory_bitmap zero_bm;
1588 
1589 /**
1590  * swsusp_free - Free pages allocated for hibernation image.
1591  *
1592  * Image pages are allocated before snapshot creation, so they need to be
1593  * released after resume.
1594  */
1595 void swsusp_free(void)
1596 {
1597 	unsigned long fb_pfn, fr_pfn;
1598 
1599 	if (!forbidden_pages_map || !free_pages_map)
1600 		goto out;
1601 
1602 	memory_bm_position_reset(forbidden_pages_map);
1603 	memory_bm_position_reset(free_pages_map);
1604 
1605 loop:
1606 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1607 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1608 
1609 	/*
1610 	 * Find the next bit set in both bitmaps. This is guaranteed to
1611 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1612 	 */
1613 	do {
1614 		if (fb_pfn < fr_pfn)
1615 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1616 		if (fr_pfn < fb_pfn)
1617 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1618 	} while (fb_pfn != fr_pfn);
1619 
1620 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1621 		struct page *page = pfn_to_page(fr_pfn);
1622 
1623 		memory_bm_clear_current(forbidden_pages_map);
1624 		memory_bm_clear_current(free_pages_map);
1625 		hibernate_restore_unprotect_page(page_address(page));
1626 		__free_page(page);
1627 		goto loop;
1628 	}
1629 
1630 out:
1631 	nr_copy_pages = 0;
1632 	nr_meta_pages = 0;
1633 	nr_zero_pages = 0;
1634 	restore_pblist = NULL;
1635 	buffer = NULL;
1636 	alloc_normal = 0;
1637 	alloc_highmem = 0;
1638 	hibernate_restore_protection_end();
1639 }
1640 
1641 /* Helper functions used for the shrinking of memory. */
1642 
1643 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1644 
1645 /**
1646  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1647  * @nr_pages: Number of page frames to allocate.
1648  * @mask: GFP flags to use for the allocation.
1649  *
1650  * Return value: Number of page frames actually allocated
1651  */
1652 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1653 {
1654 	unsigned long nr_alloc = 0;
1655 
1656 	while (nr_pages > 0) {
1657 		struct page *page;
1658 
1659 		page = alloc_image_page(mask);
1660 		if (!page)
1661 			break;
1662 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1663 		if (PageHighMem(page))
1664 			alloc_highmem++;
1665 		else
1666 			alloc_normal++;
1667 		nr_pages--;
1668 		nr_alloc++;
1669 	}
1670 
1671 	return nr_alloc;
1672 }
1673 
1674 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1675 					      unsigned long avail_normal)
1676 {
1677 	unsigned long alloc;
1678 
1679 	if (avail_normal <= alloc_normal)
1680 		return 0;
1681 
1682 	alloc = avail_normal - alloc_normal;
1683 	if (nr_pages < alloc)
1684 		alloc = nr_pages;
1685 
1686 	return preallocate_image_pages(alloc, GFP_IMAGE);
1687 }
1688 
1689 #ifdef CONFIG_HIGHMEM
1690 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1691 {
1692 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1693 }
1694 
1695 /**
1696  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1697  */
1698 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1699 {
1700 	return div64_u64(x * multiplier, base);
1701 }
1702 
1703 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1704 						  unsigned long highmem,
1705 						  unsigned long total)
1706 {
1707 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1708 
1709 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1710 }
1711 #else /* CONFIG_HIGHMEM */
1712 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1713 {
1714 	return 0;
1715 }
1716 
1717 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1718 							 unsigned long highmem,
1719 							 unsigned long total)
1720 {
1721 	return 0;
1722 }
1723 #endif /* CONFIG_HIGHMEM */
1724 
1725 /**
1726  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1727  */
1728 static unsigned long free_unnecessary_pages(void)
1729 {
1730 	unsigned long save, to_free_normal, to_free_highmem, free;
1731 
1732 	save = count_data_pages();
1733 	if (alloc_normal >= save) {
1734 		to_free_normal = alloc_normal - save;
1735 		save = 0;
1736 	} else {
1737 		to_free_normal = 0;
1738 		save -= alloc_normal;
1739 	}
1740 	save += count_highmem_pages();
1741 	if (alloc_highmem >= save) {
1742 		to_free_highmem = alloc_highmem - save;
1743 	} else {
1744 		to_free_highmem = 0;
1745 		save -= alloc_highmem;
1746 		if (to_free_normal > save)
1747 			to_free_normal -= save;
1748 		else
1749 			to_free_normal = 0;
1750 	}
1751 	free = to_free_normal + to_free_highmem;
1752 
1753 	memory_bm_position_reset(&copy_bm);
1754 
1755 	while (to_free_normal > 0 || to_free_highmem > 0) {
1756 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1757 		struct page *page = pfn_to_page(pfn);
1758 
1759 		if (PageHighMem(page)) {
1760 			if (!to_free_highmem)
1761 				continue;
1762 			to_free_highmem--;
1763 			alloc_highmem--;
1764 		} else {
1765 			if (!to_free_normal)
1766 				continue;
1767 			to_free_normal--;
1768 			alloc_normal--;
1769 		}
1770 		memory_bm_clear_bit(&copy_bm, pfn);
1771 		swsusp_unset_page_forbidden(page);
1772 		swsusp_unset_page_free(page);
1773 		__free_page(page);
1774 	}
1775 
1776 	return free;
1777 }
1778 
1779 /**
1780  * minimum_image_size - Estimate the minimum acceptable size of an image.
1781  * @saveable: Number of saveable pages in the system.
1782  *
1783  * We want to avoid attempting to free too much memory too hard, so estimate the
1784  * minimum acceptable size of a hibernation image to use as the lower limit for
1785  * preallocating memory.
1786  *
1787  * We assume that the minimum image size should be proportional to
1788  *
1789  * [number of saveable pages] - [number of pages that can be freed in theory]
1790  *
1791  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1792  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1793  */
1794 static unsigned long minimum_image_size(unsigned long saveable)
1795 {
1796 	unsigned long size;
1797 
1798 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1799 		+ global_node_page_state(NR_ACTIVE_ANON)
1800 		+ global_node_page_state(NR_INACTIVE_ANON)
1801 		+ global_node_page_state(NR_ACTIVE_FILE)
1802 		+ global_node_page_state(NR_INACTIVE_FILE);
1803 
1804 	return saveable <= size ? 0 : saveable - size;
1805 }
1806 
1807 /**
1808  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1809  *
1810  * To create a hibernation image it is necessary to make a copy of every page
1811  * frame in use.  We also need a number of page frames to be free during
1812  * hibernation for allocations made while saving the image and for device
1813  * drivers, in case they need to allocate memory from their hibernation
1814  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1815  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1816  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1817  * total number of available page frames and allocate at least
1818  *
1819  * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1820  *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1821  *
1822  * of them, which corresponds to the maximum size of a hibernation image.
1823  *
1824  * If image_size is set below the number following from the above formula,
1825  * the preallocation of memory is continued until the total number of saveable
1826  * pages in the system is below the requested image size or the minimum
1827  * acceptable image size returned by minimum_image_size(), whichever is greater.
1828  */
1829 int hibernate_preallocate_memory(void)
1830 {
1831 	struct zone *zone;
1832 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1833 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1834 	ktime_t start, stop;
1835 	int error;
1836 
1837 	pr_info("Preallocating image memory\n");
1838 	start = ktime_get();
1839 
1840 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1841 	if (error) {
1842 		pr_err("Cannot allocate original bitmap\n");
1843 		goto err_out;
1844 	}
1845 
1846 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1847 	if (error) {
1848 		pr_err("Cannot allocate copy bitmap\n");
1849 		goto err_out;
1850 	}
1851 
1852 	error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY);
1853 	if (error) {
1854 		pr_err("Cannot allocate zero bitmap\n");
1855 		goto err_out;
1856 	}
1857 
1858 	alloc_normal = 0;
1859 	alloc_highmem = 0;
1860 	nr_zero_pages = 0;
1861 
1862 	/* Count the number of saveable data pages. */
1863 	save_highmem = count_highmem_pages();
1864 	saveable = count_data_pages();
1865 
1866 	/*
1867 	 * Compute the total number of page frames we can use (count) and the
1868 	 * number of pages needed for image metadata (size).
1869 	 */
1870 	count = saveable;
1871 	saveable += save_highmem;
1872 	highmem = save_highmem;
1873 	size = 0;
1874 	for_each_populated_zone(zone) {
1875 		size += snapshot_additional_pages(zone);
1876 		if (is_highmem(zone))
1877 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1878 		else
1879 			count += zone_page_state(zone, NR_FREE_PAGES);
1880 	}
1881 	avail_normal = count;
1882 	count += highmem;
1883 	count -= totalreserve_pages;
1884 
1885 	/* Compute the maximum number of saveable pages to leave in memory. */
1886 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1887 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1888 	/* Compute the desired number of image pages specified by image_size. */
1889 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1890 	if (size > max_size)
1891 		size = max_size;
1892 	/*
1893 	 * If the desired number of image pages is at least as large as the
1894 	 * current number of saveable pages in memory, allocate page frames for
1895 	 * the image and we're done.
1896 	 */
1897 	if (size >= saveable) {
1898 		pages = preallocate_image_highmem(save_highmem);
1899 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1900 		goto out;
1901 	}
1902 
1903 	/* Estimate the minimum size of the image. */
1904 	pages = minimum_image_size(saveable);
1905 	/*
1906 	 * To avoid excessive pressure on the normal zone, leave room in it to
1907 	 * accommodate an image of the minimum size (unless it's already too
1908 	 * small, in which case don't preallocate pages from it at all).
1909 	 */
1910 	if (avail_normal > pages)
1911 		avail_normal -= pages;
1912 	else
1913 		avail_normal = 0;
1914 	if (size < pages)
1915 		size = min_t(unsigned long, pages, max_size);
1916 
1917 	/*
1918 	 * Let the memory management subsystem know that we're going to need a
1919 	 * large number of page frames to allocate and make it free some memory.
1920 	 * NOTE: If this is not done, performance will be hurt badly in some
1921 	 * test cases.
1922 	 */
1923 	shrink_all_memory(saveable - size);
1924 
1925 	/*
1926 	 * The number of saveable pages in memory was too high, so apply some
1927 	 * pressure to decrease it.  First, make room for the largest possible
1928 	 * image and fail if that doesn't work.  Next, try to decrease the size
1929 	 * of the image as much as indicated by 'size' using allocations from
1930 	 * highmem and non-highmem zones separately.
1931 	 */
1932 	pages_highmem = preallocate_image_highmem(highmem / 2);
1933 	alloc = count - max_size;
1934 	if (alloc > pages_highmem)
1935 		alloc -= pages_highmem;
1936 	else
1937 		alloc = 0;
1938 	pages = preallocate_image_memory(alloc, avail_normal);
1939 	if (pages < alloc) {
1940 		/* We have exhausted non-highmem pages, try highmem. */
1941 		alloc -= pages;
1942 		pages += pages_highmem;
1943 		pages_highmem = preallocate_image_highmem(alloc);
1944 		if (pages_highmem < alloc) {
1945 			pr_err("Image allocation is %lu pages short\n",
1946 				alloc - pages_highmem);
1947 			goto err_out;
1948 		}
1949 		pages += pages_highmem;
1950 		/*
1951 		 * size is the desired number of saveable pages to leave in
1952 		 * memory, so try to preallocate (all memory - size) pages.
1953 		 */
1954 		alloc = (count - pages) - size;
1955 		pages += preallocate_image_highmem(alloc);
1956 	} else {
1957 		/*
1958 		 * There are approximately max_size saveable pages at this point
1959 		 * and we want to reduce this number down to size.
1960 		 */
1961 		alloc = max_size - size;
1962 		size = preallocate_highmem_fraction(alloc, highmem, count);
1963 		pages_highmem += size;
1964 		alloc -= size;
1965 		size = preallocate_image_memory(alloc, avail_normal);
1966 		pages_highmem += preallocate_image_highmem(alloc - size);
1967 		pages += pages_highmem + size;
1968 	}
1969 
1970 	/*
1971 	 * We only need as many page frames for the image as there are saveable
1972 	 * pages in memory, but we have allocated more.  Release the excessive
1973 	 * ones now.
1974 	 */
1975 	pages -= free_unnecessary_pages();
1976 
1977  out:
1978 	stop = ktime_get();
1979 	pr_info("Allocated %lu pages for snapshot\n", pages);
1980 	swsusp_show_speed(start, stop, pages, "Allocated");
1981 
1982 	return 0;
1983 
1984  err_out:
1985 	swsusp_free();
1986 	return -ENOMEM;
1987 }
1988 
1989 #ifdef CONFIG_HIGHMEM
1990 /**
1991  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1992  *
1993  * Compute the number of non-highmem pages that will be necessary for creating
1994  * copies of highmem pages.
1995  */
1996 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1997 {
1998 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1999 
2000 	if (free_highmem >= nr_highmem)
2001 		nr_highmem = 0;
2002 	else
2003 		nr_highmem -= free_highmem;
2004 
2005 	return nr_highmem;
2006 }
2007 #else
2008 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
2009 #endif /* CONFIG_HIGHMEM */
2010 
2011 /**
2012  * enough_free_mem - Check if there is enough free memory for the image.
2013  */
2014 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
2015 {
2016 	struct zone *zone;
2017 	unsigned int free = alloc_normal;
2018 
2019 	for_each_populated_zone(zone)
2020 		if (!is_highmem(zone))
2021 			free += zone_page_state(zone, NR_FREE_PAGES);
2022 
2023 	nr_pages += count_pages_for_highmem(nr_highmem);
2024 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2025 		 nr_pages, PAGES_FOR_IO, free);
2026 
2027 	return free > nr_pages + PAGES_FOR_IO;
2028 }
2029 
2030 #ifdef CONFIG_HIGHMEM
2031 /**
2032  * get_highmem_buffer - Allocate a buffer for highmem pages.
2033  *
2034  * If there are some highmem pages in the hibernation image, we may need a
2035  * buffer to copy them and/or load their data.
2036  */
2037 static inline int get_highmem_buffer(int safe_needed)
2038 {
2039 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
2040 	return buffer ? 0 : -ENOMEM;
2041 }
2042 
2043 /**
2044  * alloc_highmem_pages - Allocate some highmem pages for the image.
2045  *
2046  * Try to allocate as many pages as needed, but if the number of free highmem
2047  * pages is less than that, allocate them all.
2048  */
2049 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2050 					       unsigned int nr_highmem)
2051 {
2052 	unsigned int to_alloc = count_free_highmem_pages();
2053 
2054 	if (to_alloc > nr_highmem)
2055 		to_alloc = nr_highmem;
2056 
2057 	nr_highmem -= to_alloc;
2058 	while (to_alloc-- > 0) {
2059 		struct page *page;
2060 
2061 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2062 		memory_bm_set_bit(bm, page_to_pfn(page));
2063 	}
2064 	return nr_highmem;
2065 }
2066 #else
2067 static inline int get_highmem_buffer(int safe_needed) { return 0; }
2068 
2069 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2070 					       unsigned int n) { return 0; }
2071 #endif /* CONFIG_HIGHMEM */
2072 
2073 /**
2074  * swsusp_alloc - Allocate memory for hibernation image.
2075  *
2076  * We first try to allocate as many highmem pages as there are
2077  * saveable highmem pages in the system.  If that fails, we allocate
2078  * non-highmem pages for the copies of the remaining highmem ones.
2079  *
2080  * In this approach it is likely that the copies of highmem pages will
2081  * also be located in the high memory, because of the way in which
2082  * copy_data_pages() works.
2083  */
2084 static int swsusp_alloc(struct memory_bitmap *copy_bm,
2085 			unsigned int nr_pages, unsigned int nr_highmem)
2086 {
2087 	if (nr_highmem > 0) {
2088 		if (get_highmem_buffer(PG_ANY))
2089 			goto err_out;
2090 		if (nr_highmem > alloc_highmem) {
2091 			nr_highmem -= alloc_highmem;
2092 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2093 		}
2094 	}
2095 	if (nr_pages > alloc_normal) {
2096 		nr_pages -= alloc_normal;
2097 		while (nr_pages-- > 0) {
2098 			struct page *page;
2099 
2100 			page = alloc_image_page(GFP_ATOMIC);
2101 			if (!page)
2102 				goto err_out;
2103 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2104 		}
2105 	}
2106 
2107 	return 0;
2108 
2109  err_out:
2110 	swsusp_free();
2111 	return -ENOMEM;
2112 }
2113 
2114 asmlinkage __visible int swsusp_save(void)
2115 {
2116 	unsigned int nr_pages, nr_highmem;
2117 
2118 	pr_info("Creating image:\n");
2119 
2120 	drain_local_pages(NULL);
2121 	nr_pages = count_data_pages();
2122 	nr_highmem = count_highmem_pages();
2123 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2124 
2125 	if (!enough_free_mem(nr_pages, nr_highmem)) {
2126 		pr_err("Not enough free memory\n");
2127 		return -ENOMEM;
2128 	}
2129 
2130 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2131 		pr_err("Memory allocation failed\n");
2132 		return -ENOMEM;
2133 	}
2134 
2135 	/*
2136 	 * During allocating of suspend pagedir, new cold pages may appear.
2137 	 * Kill them.
2138 	 */
2139 	drain_local_pages(NULL);
2140 	nr_copy_pages = copy_data_pages(&copy_bm, &orig_bm, &zero_bm);
2141 
2142 	/*
2143 	 * End of critical section. From now on, we can write to memory,
2144 	 * but we should not touch disk. This specially means we must _not_
2145 	 * touch swap space! Except we must write out our image of course.
2146 	 */
2147 	nr_pages += nr_highmem;
2148 	/* We don't actually copy the zero pages */
2149 	nr_zero_pages = nr_pages - nr_copy_pages;
2150 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2151 
2152 	pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages);
2153 
2154 	return 0;
2155 }
2156 
2157 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2158 static int init_header_complete(struct swsusp_info *info)
2159 {
2160 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2161 	info->version_code = LINUX_VERSION_CODE;
2162 	return 0;
2163 }
2164 
2165 static const char *check_image_kernel(struct swsusp_info *info)
2166 {
2167 	if (info->version_code != LINUX_VERSION_CODE)
2168 		return "kernel version";
2169 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2170 		return "system type";
2171 	if (strcmp(info->uts.release,init_utsname()->release))
2172 		return "kernel release";
2173 	if (strcmp(info->uts.version,init_utsname()->version))
2174 		return "version";
2175 	if (strcmp(info->uts.machine,init_utsname()->machine))
2176 		return "machine";
2177 	return NULL;
2178 }
2179 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2180 
2181 unsigned long snapshot_get_image_size(void)
2182 {
2183 	return nr_copy_pages + nr_meta_pages + 1;
2184 }
2185 
2186 static int init_header(struct swsusp_info *info)
2187 {
2188 	memset(info, 0, sizeof(struct swsusp_info));
2189 	info->num_physpages = get_num_physpages();
2190 	info->image_pages = nr_copy_pages;
2191 	info->pages = snapshot_get_image_size();
2192 	info->size = info->pages;
2193 	info->size <<= PAGE_SHIFT;
2194 	return init_header_complete(info);
2195 }
2196 
2197 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2198 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2199 
2200 /**
2201  * pack_pfns - Prepare PFNs for saving.
2202  * @bm: Memory bitmap.
2203  * @buf: Memory buffer to store the PFNs in.
2204  * @zero_bm: Memory bitmap containing PFNs of zero pages.
2205  *
2206  * PFNs corresponding to set bits in @bm are stored in the area of memory
2207  * pointed to by @buf (1 page at a time). Pages which were filled with only
2208  * zeros will have the highest bit set in the packed format to distinguish
2209  * them from PFNs which will be contained in the image file.
2210  */
2211 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm,
2212 		struct memory_bitmap *zero_bm)
2213 {
2214 	int j;
2215 
2216 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2217 		buf[j] = memory_bm_next_pfn(bm);
2218 		if (unlikely(buf[j] == BM_END_OF_MAP))
2219 			break;
2220 		if (memory_bm_test_bit(zero_bm, buf[j]))
2221 			buf[j] |= ENCODED_PFN_ZERO_FLAG;
2222 	}
2223 }
2224 
2225 /**
2226  * snapshot_read_next - Get the address to read the next image page from.
2227  * @handle: Snapshot handle to be used for the reading.
2228  *
2229  * On the first call, @handle should point to a zeroed snapshot_handle
2230  * structure.  The structure gets populated then and a pointer to it should be
2231  * passed to this function every next time.
2232  *
2233  * On success, the function returns a positive number.  Then, the caller
2234  * is allowed to read up to the returned number of bytes from the memory
2235  * location computed by the data_of() macro.
2236  *
2237  * The function returns 0 to indicate the end of the data stream condition,
2238  * and negative numbers are returned on errors.  If that happens, the structure
2239  * pointed to by @handle is not updated and should not be used any more.
2240  */
2241 int snapshot_read_next(struct snapshot_handle *handle)
2242 {
2243 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2244 		return 0;
2245 
2246 	if (!buffer) {
2247 		/* This makes the buffer be freed by swsusp_free() */
2248 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2249 		if (!buffer)
2250 			return -ENOMEM;
2251 	}
2252 	if (!handle->cur) {
2253 		int error;
2254 
2255 		error = init_header((struct swsusp_info *)buffer);
2256 		if (error)
2257 			return error;
2258 		handle->buffer = buffer;
2259 		memory_bm_position_reset(&orig_bm);
2260 		memory_bm_position_reset(&copy_bm);
2261 	} else if (handle->cur <= nr_meta_pages) {
2262 		clear_page(buffer);
2263 		pack_pfns(buffer, &orig_bm, &zero_bm);
2264 	} else {
2265 		struct page *page;
2266 
2267 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2268 		if (PageHighMem(page)) {
2269 			/*
2270 			 * Highmem pages are copied to the buffer,
2271 			 * because we can't return with a kmapped
2272 			 * highmem page (we may not be called again).
2273 			 */
2274 			void *kaddr;
2275 
2276 			kaddr = kmap_atomic(page);
2277 			copy_page(buffer, kaddr);
2278 			kunmap_atomic(kaddr);
2279 			handle->buffer = buffer;
2280 		} else {
2281 			handle->buffer = page_address(page);
2282 		}
2283 	}
2284 	handle->cur++;
2285 	return PAGE_SIZE;
2286 }
2287 
2288 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2289 				    struct memory_bitmap *src)
2290 {
2291 	unsigned long pfn;
2292 
2293 	memory_bm_position_reset(src);
2294 	pfn = memory_bm_next_pfn(src);
2295 	while (pfn != BM_END_OF_MAP) {
2296 		memory_bm_set_bit(dst, pfn);
2297 		pfn = memory_bm_next_pfn(src);
2298 	}
2299 }
2300 
2301 /**
2302  * mark_unsafe_pages - Mark pages that were used before hibernation.
2303  *
2304  * Mark the pages that cannot be used for storing the image during restoration,
2305  * because they conflict with the pages that had been used before hibernation.
2306  */
2307 static void mark_unsafe_pages(struct memory_bitmap *bm)
2308 {
2309 	unsigned long pfn;
2310 
2311 	/* Clear the "free"/"unsafe" bit for all PFNs */
2312 	memory_bm_position_reset(free_pages_map);
2313 	pfn = memory_bm_next_pfn(free_pages_map);
2314 	while (pfn != BM_END_OF_MAP) {
2315 		memory_bm_clear_current(free_pages_map);
2316 		pfn = memory_bm_next_pfn(free_pages_map);
2317 	}
2318 
2319 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2320 	duplicate_memory_bitmap(free_pages_map, bm);
2321 
2322 	allocated_unsafe_pages = 0;
2323 }
2324 
2325 static int check_header(struct swsusp_info *info)
2326 {
2327 	const char *reason;
2328 
2329 	reason = check_image_kernel(info);
2330 	if (!reason && info->num_physpages != get_num_physpages())
2331 		reason = "memory size";
2332 	if (reason) {
2333 		pr_err("Image mismatch: %s\n", reason);
2334 		return -EPERM;
2335 	}
2336 	return 0;
2337 }
2338 
2339 /**
2340  * load_header - Check the image header and copy the data from it.
2341  */
2342 static int load_header(struct swsusp_info *info)
2343 {
2344 	int error;
2345 
2346 	restore_pblist = NULL;
2347 	error = check_header(info);
2348 	if (!error) {
2349 		nr_copy_pages = info->image_pages;
2350 		nr_meta_pages = info->pages - info->image_pages - 1;
2351 	}
2352 	return error;
2353 }
2354 
2355 /**
2356  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2357  * @bm: Memory bitmap.
2358  * @buf: Area of memory containing the PFNs.
2359  * @zero_bm: Memory bitmap with the zero PFNs marked.
2360  *
2361  * For each element of the array pointed to by @buf (1 page at a time), set the
2362  * corresponding bit in @bm. If the page was originally populated with only
2363  * zeros then a corresponding bit will also be set in @zero_bm.
2364  */
2365 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm,
2366 		struct memory_bitmap *zero_bm)
2367 {
2368 	unsigned long decoded_pfn;
2369         bool zero;
2370 	int j;
2371 
2372 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2373 		if (unlikely(buf[j] == BM_END_OF_MAP))
2374 			break;
2375 
2376 		zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG);
2377 		decoded_pfn = buf[j] & ENCODED_PFN_MASK;
2378 		if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) {
2379 			memory_bm_set_bit(bm, decoded_pfn);
2380 			if (zero) {
2381 				memory_bm_set_bit(zero_bm, decoded_pfn);
2382 				nr_zero_pages++;
2383 			}
2384 		} else {
2385 			if (!pfn_valid(decoded_pfn))
2386 				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2387 				       (unsigned long long)PFN_PHYS(decoded_pfn));
2388 			return -EFAULT;
2389 		}
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 #ifdef CONFIG_HIGHMEM
2396 /*
2397  * struct highmem_pbe is used for creating the list of highmem pages that
2398  * should be restored atomically during the resume from disk, because the page
2399  * frames they have occupied before the suspend are in use.
2400  */
2401 struct highmem_pbe {
2402 	struct page *copy_page;	/* data is here now */
2403 	struct page *orig_page;	/* data was here before the suspend */
2404 	struct highmem_pbe *next;
2405 };
2406 
2407 /*
2408  * List of highmem PBEs needed for restoring the highmem pages that were
2409  * allocated before the suspend and included in the suspend image, but have
2410  * also been allocated by the "resume" kernel, so their contents cannot be
2411  * written directly to their "original" page frames.
2412  */
2413 static struct highmem_pbe *highmem_pblist;
2414 
2415 /**
2416  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2417  * @bm: Memory bitmap.
2418  *
2419  * The bits in @bm that correspond to image pages are assumed to be set.
2420  */
2421 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2422 {
2423 	unsigned long pfn;
2424 	unsigned int cnt = 0;
2425 
2426 	memory_bm_position_reset(bm);
2427 	pfn = memory_bm_next_pfn(bm);
2428 	while (pfn != BM_END_OF_MAP) {
2429 		if (PageHighMem(pfn_to_page(pfn)))
2430 			cnt++;
2431 
2432 		pfn = memory_bm_next_pfn(bm);
2433 	}
2434 	return cnt;
2435 }
2436 
2437 static unsigned int safe_highmem_pages;
2438 
2439 static struct memory_bitmap *safe_highmem_bm;
2440 
2441 /**
2442  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2443  * @bm: Pointer to an uninitialized memory bitmap structure.
2444  * @nr_highmem_p: Pointer to the number of highmem image pages.
2445  *
2446  * Try to allocate as many highmem pages as there are highmem image pages
2447  * (@nr_highmem_p points to the variable containing the number of highmem image
2448  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2449  * hibernation image is restored entirely) have the corresponding bits set in
2450  * @bm (it must be uninitialized).
2451  *
2452  * NOTE: This function should not be called if there are no highmem image pages.
2453  */
2454 static int prepare_highmem_image(struct memory_bitmap *bm,
2455 				 unsigned int *nr_highmem_p)
2456 {
2457 	unsigned int to_alloc;
2458 
2459 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2460 		return -ENOMEM;
2461 
2462 	if (get_highmem_buffer(PG_SAFE))
2463 		return -ENOMEM;
2464 
2465 	to_alloc = count_free_highmem_pages();
2466 	if (to_alloc > *nr_highmem_p)
2467 		to_alloc = *nr_highmem_p;
2468 	else
2469 		*nr_highmem_p = to_alloc;
2470 
2471 	safe_highmem_pages = 0;
2472 	while (to_alloc-- > 0) {
2473 		struct page *page;
2474 
2475 		page = alloc_page(__GFP_HIGHMEM);
2476 		if (!swsusp_page_is_free(page)) {
2477 			/* The page is "safe", set its bit the bitmap */
2478 			memory_bm_set_bit(bm, page_to_pfn(page));
2479 			safe_highmem_pages++;
2480 		}
2481 		/* Mark the page as allocated */
2482 		swsusp_set_page_forbidden(page);
2483 		swsusp_set_page_free(page);
2484 	}
2485 	memory_bm_position_reset(bm);
2486 	safe_highmem_bm = bm;
2487 	return 0;
2488 }
2489 
2490 static struct page *last_highmem_page;
2491 
2492 /**
2493  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2494  *
2495  * For a given highmem image page get a buffer that suspend_write_next() should
2496  * return to its caller to write to.
2497  *
2498  * If the page is to be saved to its "original" page frame or a copy of
2499  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2500  * the copy of the page is to be made in normal memory, so the address of
2501  * the copy is returned.
2502  *
2503  * If @buffer is returned, the caller of suspend_write_next() will write
2504  * the page's contents to @buffer, so they will have to be copied to the
2505  * right location on the next call to suspend_write_next() and it is done
2506  * with the help of copy_last_highmem_page().  For this purpose, if
2507  * @buffer is returned, @last_highmem_page is set to the page to which
2508  * the data will have to be copied from @buffer.
2509  */
2510 static void *get_highmem_page_buffer(struct page *page,
2511 				     struct chain_allocator *ca)
2512 {
2513 	struct highmem_pbe *pbe;
2514 	void *kaddr;
2515 
2516 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2517 		/*
2518 		 * We have allocated the "original" page frame and we can
2519 		 * use it directly to store the loaded page.
2520 		 */
2521 		last_highmem_page = page;
2522 		return buffer;
2523 	}
2524 	/*
2525 	 * The "original" page frame has not been allocated and we have to
2526 	 * use a "safe" page frame to store the loaded page.
2527 	 */
2528 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2529 	if (!pbe) {
2530 		swsusp_free();
2531 		return ERR_PTR(-ENOMEM);
2532 	}
2533 	pbe->orig_page = page;
2534 	if (safe_highmem_pages > 0) {
2535 		struct page *tmp;
2536 
2537 		/* Copy of the page will be stored in high memory */
2538 		kaddr = buffer;
2539 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2540 		safe_highmem_pages--;
2541 		last_highmem_page = tmp;
2542 		pbe->copy_page = tmp;
2543 	} else {
2544 		/* Copy of the page will be stored in normal memory */
2545 		kaddr = __get_safe_page(ca->gfp_mask);
2546 		if (!kaddr)
2547 			return ERR_PTR(-ENOMEM);
2548 		pbe->copy_page = virt_to_page(kaddr);
2549 	}
2550 	pbe->next = highmem_pblist;
2551 	highmem_pblist = pbe;
2552 	return kaddr;
2553 }
2554 
2555 /**
2556  * copy_last_highmem_page - Copy most the most recent highmem image page.
2557  *
2558  * Copy the contents of a highmem image from @buffer, where the caller of
2559  * snapshot_write_next() has stored them, to the right location represented by
2560  * @last_highmem_page .
2561  */
2562 static void copy_last_highmem_page(void)
2563 {
2564 	if (last_highmem_page) {
2565 		void *dst;
2566 
2567 		dst = kmap_atomic(last_highmem_page);
2568 		copy_page(dst, buffer);
2569 		kunmap_atomic(dst);
2570 		last_highmem_page = NULL;
2571 	}
2572 }
2573 
2574 static inline int last_highmem_page_copied(void)
2575 {
2576 	return !last_highmem_page;
2577 }
2578 
2579 static inline void free_highmem_data(void)
2580 {
2581 	if (safe_highmem_bm)
2582 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2583 
2584 	if (buffer)
2585 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2586 }
2587 #else
2588 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2589 
2590 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2591 					unsigned int *nr_highmem_p) { return 0; }
2592 
2593 static inline void *get_highmem_page_buffer(struct page *page,
2594 					    struct chain_allocator *ca)
2595 {
2596 	return ERR_PTR(-EINVAL);
2597 }
2598 
2599 static inline void copy_last_highmem_page(void) {}
2600 static inline int last_highmem_page_copied(void) { return 1; }
2601 static inline void free_highmem_data(void) {}
2602 #endif /* CONFIG_HIGHMEM */
2603 
2604 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2605 
2606 /**
2607  * prepare_image - Make room for loading hibernation image.
2608  * @new_bm: Uninitialized memory bitmap structure.
2609  * @bm: Memory bitmap with unsafe pages marked.
2610  * @zero_bm: Memory bitmap containing the zero pages.
2611  *
2612  * Use @bm to mark the pages that will be overwritten in the process of
2613  * restoring the system memory state from the suspend image ("unsafe" pages)
2614  * and allocate memory for the image.
2615  *
2616  * The idea is to allocate a new memory bitmap first and then allocate
2617  * as many pages as needed for image data, but without specifying what those
2618  * pages will be used for just yet.  Instead, we mark them all as allocated and
2619  * create a lists of "safe" pages to be used later.  On systems with high
2620  * memory a list of "safe" highmem pages is created too.
2621  *
2622  * Because it was not known which pages were unsafe when @zero_bm was created,
2623  * make a copy of it and recreate it within safe pages.
2624  */
2625 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm,
2626 		struct memory_bitmap *zero_bm)
2627 {
2628 	unsigned int nr_pages, nr_highmem;
2629 	struct memory_bitmap tmp;
2630 	struct linked_page *lp;
2631 	int error;
2632 
2633 	/* If there is no highmem, the buffer will not be necessary */
2634 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2635 	buffer = NULL;
2636 
2637 	nr_highmem = count_highmem_image_pages(bm);
2638 	mark_unsafe_pages(bm);
2639 
2640 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2641 	if (error)
2642 		goto Free;
2643 
2644 	duplicate_memory_bitmap(new_bm, bm);
2645 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2646 
2647 	/* Make a copy of zero_bm so it can be created in safe pages */
2648 	error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE);
2649 	if (error)
2650 		goto Free;
2651 
2652 	duplicate_memory_bitmap(&tmp, zero_bm);
2653 	memory_bm_free(zero_bm, PG_UNSAFE_KEEP);
2654 
2655 	/* Recreate zero_bm in safe pages */
2656 	error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE);
2657 	if (error)
2658 		goto Free;
2659 
2660 	duplicate_memory_bitmap(zero_bm, &tmp);
2661 	memory_bm_free(&tmp, PG_UNSAFE_CLEAR);
2662 	/* At this point zero_bm is in safe pages and it can be used for restoring. */
2663 
2664 	if (nr_highmem > 0) {
2665 		error = prepare_highmem_image(bm, &nr_highmem);
2666 		if (error)
2667 			goto Free;
2668 	}
2669 	/*
2670 	 * Reserve some safe pages for potential later use.
2671 	 *
2672 	 * NOTE: This way we make sure there will be enough safe pages for the
2673 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2674 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2675 	 *
2676 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2677 	 */
2678 	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2679 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2680 	while (nr_pages > 0) {
2681 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2682 		if (!lp) {
2683 			error = -ENOMEM;
2684 			goto Free;
2685 		}
2686 		lp->next = safe_pages_list;
2687 		safe_pages_list = lp;
2688 		nr_pages--;
2689 	}
2690 	/* Preallocate memory for the image */
2691 	nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages;
2692 	while (nr_pages > 0) {
2693 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2694 		if (!lp) {
2695 			error = -ENOMEM;
2696 			goto Free;
2697 		}
2698 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2699 			/* The page is "safe", add it to the list */
2700 			lp->next = safe_pages_list;
2701 			safe_pages_list = lp;
2702 		}
2703 		/* Mark the page as allocated */
2704 		swsusp_set_page_forbidden(virt_to_page(lp));
2705 		swsusp_set_page_free(virt_to_page(lp));
2706 		nr_pages--;
2707 	}
2708 	return 0;
2709 
2710  Free:
2711 	swsusp_free();
2712 	return error;
2713 }
2714 
2715 /**
2716  * get_buffer - Get the address to store the next image data page.
2717  *
2718  * Get the address that snapshot_write_next() should return to its caller to
2719  * write to.
2720  */
2721 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2722 {
2723 	struct pbe *pbe;
2724 	struct page *page;
2725 	unsigned long pfn = memory_bm_next_pfn(bm);
2726 
2727 	if (pfn == BM_END_OF_MAP)
2728 		return ERR_PTR(-EFAULT);
2729 
2730 	page = pfn_to_page(pfn);
2731 	if (PageHighMem(page))
2732 		return get_highmem_page_buffer(page, ca);
2733 
2734 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2735 		/*
2736 		 * We have allocated the "original" page frame and we can
2737 		 * use it directly to store the loaded page.
2738 		 */
2739 		return page_address(page);
2740 
2741 	/*
2742 	 * The "original" page frame has not been allocated and we have to
2743 	 * use a "safe" page frame to store the loaded page.
2744 	 */
2745 	pbe = chain_alloc(ca, sizeof(struct pbe));
2746 	if (!pbe) {
2747 		swsusp_free();
2748 		return ERR_PTR(-ENOMEM);
2749 	}
2750 	pbe->orig_address = page_address(page);
2751 	pbe->address = __get_safe_page(ca->gfp_mask);
2752 	if (!pbe->address)
2753 		return ERR_PTR(-ENOMEM);
2754 	pbe->next = restore_pblist;
2755 	restore_pblist = pbe;
2756 	return pbe->address;
2757 }
2758 
2759 /**
2760  * snapshot_write_next - Get the address to store the next image page.
2761  * @handle: Snapshot handle structure to guide the writing.
2762  *
2763  * On the first call, @handle should point to a zeroed snapshot_handle
2764  * structure.  The structure gets populated then and a pointer to it should be
2765  * passed to this function every next time.
2766  *
2767  * On success, the function returns a positive number.  Then, the caller
2768  * is allowed to write up to the returned number of bytes to the memory
2769  * location computed by the data_of() macro.
2770  *
2771  * The function returns 0 to indicate the "end of file" condition.  Negative
2772  * numbers are returned on errors, in which cases the structure pointed to by
2773  * @handle is not updated and should not be used any more.
2774  */
2775 int snapshot_write_next(struct snapshot_handle *handle)
2776 {
2777 	static struct chain_allocator ca;
2778 	int error;
2779 
2780 next:
2781 	/* Check if we have already loaded the entire image */
2782 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages)
2783 		return 0;
2784 
2785 	if (!handle->cur) {
2786 		if (!buffer)
2787 			/* This makes the buffer be freed by swsusp_free() */
2788 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2789 
2790 		if (!buffer)
2791 			return -ENOMEM;
2792 
2793 		handle->buffer = buffer;
2794 	} else if (handle->cur == 1) {
2795 		error = load_header(buffer);
2796 		if (error)
2797 			return error;
2798 
2799 		safe_pages_list = NULL;
2800 
2801 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2802 		if (error)
2803 			return error;
2804 
2805 		error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY);
2806 		if (error)
2807 			return error;
2808 
2809 		nr_zero_pages = 0;
2810 
2811 		hibernate_restore_protection_begin();
2812 	} else if (handle->cur <= nr_meta_pages + 1) {
2813 		error = unpack_orig_pfns(buffer, &copy_bm, &zero_bm);
2814 		if (error)
2815 			return error;
2816 
2817 		if (handle->cur == nr_meta_pages + 1) {
2818 			error = prepare_image(&orig_bm, &copy_bm, &zero_bm);
2819 			if (error)
2820 				return error;
2821 
2822 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2823 			memory_bm_position_reset(&orig_bm);
2824 			memory_bm_position_reset(&zero_bm);
2825 			restore_pblist = NULL;
2826 			handle->buffer = get_buffer(&orig_bm, &ca);
2827 			if (IS_ERR(handle->buffer))
2828 				return PTR_ERR(handle->buffer);
2829 		}
2830 	} else {
2831 		copy_last_highmem_page();
2832 		error = hibernate_restore_protect_page(handle->buffer);
2833 		if (error)
2834 			return error;
2835 		handle->buffer = get_buffer(&orig_bm, &ca);
2836 		if (IS_ERR(handle->buffer))
2837 			return PTR_ERR(handle->buffer);
2838 	}
2839 	handle->sync_read = (handle->buffer == buffer);
2840 	handle->cur++;
2841 
2842 	/* Zero pages were not included in the image, memset it and move on. */
2843 	if (handle->cur > nr_meta_pages + 1 &&
2844 	    memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) {
2845 		memset(handle->buffer, 0, PAGE_SIZE);
2846 		goto next;
2847 	}
2848 
2849 	return PAGE_SIZE;
2850 }
2851 
2852 /**
2853  * snapshot_write_finalize - Complete the loading of a hibernation image.
2854  *
2855  * Must be called after the last call to snapshot_write_next() in case the last
2856  * page in the image happens to be a highmem page and its contents should be
2857  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2858  * necessary any more.
2859  */
2860 int snapshot_write_finalize(struct snapshot_handle *handle)
2861 {
2862 	int error;
2863 
2864 	copy_last_highmem_page();
2865 	error = hibernate_restore_protect_page(handle->buffer);
2866 	/* Do that only if we have loaded the image entirely */
2867 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) {
2868 		memory_bm_recycle(&orig_bm);
2869 		free_highmem_data();
2870 	}
2871 	return error;
2872 }
2873 
2874 int snapshot_image_loaded(struct snapshot_handle *handle)
2875 {
2876 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2877 			handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages);
2878 }
2879 
2880 #ifdef CONFIG_HIGHMEM
2881 /* Assumes that @buf is ready and points to a "safe" page */
2882 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2883 				       void *buf)
2884 {
2885 	void *kaddr1, *kaddr2;
2886 
2887 	kaddr1 = kmap_atomic(p1);
2888 	kaddr2 = kmap_atomic(p2);
2889 	copy_page(buf, kaddr1);
2890 	copy_page(kaddr1, kaddr2);
2891 	copy_page(kaddr2, buf);
2892 	kunmap_atomic(kaddr2);
2893 	kunmap_atomic(kaddr1);
2894 }
2895 
2896 /**
2897  * restore_highmem - Put highmem image pages into their original locations.
2898  *
2899  * For each highmem page that was in use before hibernation and is included in
2900  * the image, and also has been allocated by the "restore" kernel, swap its
2901  * current contents with the previous (ie. "before hibernation") ones.
2902  *
2903  * If the restore eventually fails, we can call this function once again and
2904  * restore the highmem state as seen by the restore kernel.
2905  */
2906 int restore_highmem(void)
2907 {
2908 	struct highmem_pbe *pbe = highmem_pblist;
2909 	void *buf;
2910 
2911 	if (!pbe)
2912 		return 0;
2913 
2914 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2915 	if (!buf)
2916 		return -ENOMEM;
2917 
2918 	while (pbe) {
2919 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2920 		pbe = pbe->next;
2921 	}
2922 	free_image_page(buf, PG_UNSAFE_CLEAR);
2923 	return 0;
2924 }
2925 #endif /* CONFIG_HIGHMEM */
2926