1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/nmi.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 #include <linux/compiler.h> 32 #include <linux/ktime.h> 33 #include <linux/set_memory.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/mmu_context.h> 37 #include <asm/pgtable.h> 38 #include <asm/tlbflush.h> 39 #include <asm/io.h> 40 41 #include "power.h" 42 43 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 44 static bool hibernate_restore_protection; 45 static bool hibernate_restore_protection_active; 46 47 void enable_restore_image_protection(void) 48 { 49 hibernate_restore_protection = true; 50 } 51 52 static inline void hibernate_restore_protection_begin(void) 53 { 54 hibernate_restore_protection_active = hibernate_restore_protection; 55 } 56 57 static inline void hibernate_restore_protection_end(void) 58 { 59 hibernate_restore_protection_active = false; 60 } 61 62 static inline void hibernate_restore_protect_page(void *page_address) 63 { 64 if (hibernate_restore_protection_active) 65 set_memory_ro((unsigned long)page_address, 1); 66 } 67 68 static inline void hibernate_restore_unprotect_page(void *page_address) 69 { 70 if (hibernate_restore_protection_active) 71 set_memory_rw((unsigned long)page_address, 1); 72 } 73 #else 74 static inline void hibernate_restore_protection_begin(void) {} 75 static inline void hibernate_restore_protection_end(void) {} 76 static inline void hibernate_restore_protect_page(void *page_address) {} 77 static inline void hibernate_restore_unprotect_page(void *page_address) {} 78 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 79 80 static int swsusp_page_is_free(struct page *); 81 static void swsusp_set_page_forbidden(struct page *); 82 static void swsusp_unset_page_forbidden(struct page *); 83 84 /* 85 * Number of bytes to reserve for memory allocations made by device drivers 86 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 87 * cause image creation to fail (tunable via /sys/power/reserved_size). 88 */ 89 unsigned long reserved_size; 90 91 void __init hibernate_reserved_size_init(void) 92 { 93 reserved_size = SPARE_PAGES * PAGE_SIZE; 94 } 95 96 /* 97 * Preferred image size in bytes (tunable via /sys/power/image_size). 98 * When it is set to N, swsusp will do its best to ensure the image 99 * size will not exceed N bytes, but if that is impossible, it will 100 * try to create the smallest image possible. 101 */ 102 unsigned long image_size; 103 104 void __init hibernate_image_size_init(void) 105 { 106 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 107 } 108 109 /* 110 * List of PBEs needed for restoring the pages that were allocated before 111 * the suspend and included in the suspend image, but have also been 112 * allocated by the "resume" kernel, so their contents cannot be written 113 * directly to their "original" page frames. 114 */ 115 struct pbe *restore_pblist; 116 117 /* struct linked_page is used to build chains of pages */ 118 119 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 120 121 struct linked_page { 122 struct linked_page *next; 123 char data[LINKED_PAGE_DATA_SIZE]; 124 } __packed; 125 126 /* 127 * List of "safe" pages (ie. pages that were not used by the image kernel 128 * before hibernation) that may be used as temporary storage for image kernel 129 * memory contents. 130 */ 131 static struct linked_page *safe_pages_list; 132 133 /* Pointer to an auxiliary buffer (1 page) */ 134 static void *buffer; 135 136 #define PG_ANY 0 137 #define PG_SAFE 1 138 #define PG_UNSAFE_CLEAR 1 139 #define PG_UNSAFE_KEEP 0 140 141 static unsigned int allocated_unsafe_pages; 142 143 /** 144 * get_image_page - Allocate a page for a hibernation image. 145 * @gfp_mask: GFP mask for the allocation. 146 * @safe_needed: Get pages that were not used before hibernation (restore only) 147 * 148 * During image restoration, for storing the PBE list and the image data, we can 149 * only use memory pages that do not conflict with the pages used before 150 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 151 * using allocated_unsafe_pages. 152 * 153 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 154 * swsusp_free() can release it. 155 */ 156 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 157 { 158 void *res; 159 160 res = (void *)get_zeroed_page(gfp_mask); 161 if (safe_needed) 162 while (res && swsusp_page_is_free(virt_to_page(res))) { 163 /* The page is unsafe, mark it for swsusp_free() */ 164 swsusp_set_page_forbidden(virt_to_page(res)); 165 allocated_unsafe_pages++; 166 res = (void *)get_zeroed_page(gfp_mask); 167 } 168 if (res) { 169 swsusp_set_page_forbidden(virt_to_page(res)); 170 swsusp_set_page_free(virt_to_page(res)); 171 } 172 return res; 173 } 174 175 static void *__get_safe_page(gfp_t gfp_mask) 176 { 177 if (safe_pages_list) { 178 void *ret = safe_pages_list; 179 180 safe_pages_list = safe_pages_list->next; 181 memset(ret, 0, PAGE_SIZE); 182 return ret; 183 } 184 return get_image_page(gfp_mask, PG_SAFE); 185 } 186 187 unsigned long get_safe_page(gfp_t gfp_mask) 188 { 189 return (unsigned long)__get_safe_page(gfp_mask); 190 } 191 192 static struct page *alloc_image_page(gfp_t gfp_mask) 193 { 194 struct page *page; 195 196 page = alloc_page(gfp_mask); 197 if (page) { 198 swsusp_set_page_forbidden(page); 199 swsusp_set_page_free(page); 200 } 201 return page; 202 } 203 204 static void recycle_safe_page(void *page_address) 205 { 206 struct linked_page *lp = page_address; 207 208 lp->next = safe_pages_list; 209 safe_pages_list = lp; 210 } 211 212 /** 213 * free_image_page - Free a page allocated for hibernation image. 214 * @addr: Address of the page to free. 215 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 216 * 217 * The page to free should have been allocated by get_image_page() (page flags 218 * set by it are affected). 219 */ 220 static inline void free_image_page(void *addr, int clear_nosave_free) 221 { 222 struct page *page; 223 224 BUG_ON(!virt_addr_valid(addr)); 225 226 page = virt_to_page(addr); 227 228 swsusp_unset_page_forbidden(page); 229 if (clear_nosave_free) 230 swsusp_unset_page_free(page); 231 232 __free_page(page); 233 } 234 235 static inline void free_list_of_pages(struct linked_page *list, 236 int clear_page_nosave) 237 { 238 while (list) { 239 struct linked_page *lp = list->next; 240 241 free_image_page(list, clear_page_nosave); 242 list = lp; 243 } 244 } 245 246 /* 247 * struct chain_allocator is used for allocating small objects out of 248 * a linked list of pages called 'the chain'. 249 * 250 * The chain grows each time when there is no room for a new object in 251 * the current page. The allocated objects cannot be freed individually. 252 * It is only possible to free them all at once, by freeing the entire 253 * chain. 254 * 255 * NOTE: The chain allocator may be inefficient if the allocated objects 256 * are not much smaller than PAGE_SIZE. 257 */ 258 struct chain_allocator { 259 struct linked_page *chain; /* the chain */ 260 unsigned int used_space; /* total size of objects allocated out 261 of the current page */ 262 gfp_t gfp_mask; /* mask for allocating pages */ 263 int safe_needed; /* if set, only "safe" pages are allocated */ 264 }; 265 266 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 267 int safe_needed) 268 { 269 ca->chain = NULL; 270 ca->used_space = LINKED_PAGE_DATA_SIZE; 271 ca->gfp_mask = gfp_mask; 272 ca->safe_needed = safe_needed; 273 } 274 275 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 276 { 277 void *ret; 278 279 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 280 struct linked_page *lp; 281 282 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 283 get_image_page(ca->gfp_mask, PG_ANY); 284 if (!lp) 285 return NULL; 286 287 lp->next = ca->chain; 288 ca->chain = lp; 289 ca->used_space = 0; 290 } 291 ret = ca->chain->data + ca->used_space; 292 ca->used_space += size; 293 return ret; 294 } 295 296 /** 297 * Data types related to memory bitmaps. 298 * 299 * Memory bitmap is a structure consiting of many linked lists of 300 * objects. The main list's elements are of type struct zone_bitmap 301 * and each of them corresonds to one zone. For each zone bitmap 302 * object there is a list of objects of type struct bm_block that 303 * represent each blocks of bitmap in which information is stored. 304 * 305 * struct memory_bitmap contains a pointer to the main list of zone 306 * bitmap objects, a struct bm_position used for browsing the bitmap, 307 * and a pointer to the list of pages used for allocating all of the 308 * zone bitmap objects and bitmap block objects. 309 * 310 * NOTE: It has to be possible to lay out the bitmap in memory 311 * using only allocations of order 0. Additionally, the bitmap is 312 * designed to work with arbitrary number of zones (this is over the 313 * top for now, but let's avoid making unnecessary assumptions ;-). 314 * 315 * struct zone_bitmap contains a pointer to a list of bitmap block 316 * objects and a pointer to the bitmap block object that has been 317 * most recently used for setting bits. Additionally, it contains the 318 * PFNs that correspond to the start and end of the represented zone. 319 * 320 * struct bm_block contains a pointer to the memory page in which 321 * information is stored (in the form of a block of bitmap) 322 * It also contains the pfns that correspond to the start and end of 323 * the represented memory area. 324 * 325 * The memory bitmap is organized as a radix tree to guarantee fast random 326 * access to the bits. There is one radix tree for each zone (as returned 327 * from create_mem_extents). 328 * 329 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 330 * two linked lists for the nodes of the tree, one for the inner nodes and 331 * one for the leave nodes. The linked leave nodes are used for fast linear 332 * access of the memory bitmap. 333 * 334 * The struct rtree_node represents one node of the radix tree. 335 */ 336 337 #define BM_END_OF_MAP (~0UL) 338 339 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 340 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 341 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 342 343 /* 344 * struct rtree_node is a wrapper struct to link the nodes 345 * of the rtree together for easy linear iteration over 346 * bits and easy freeing 347 */ 348 struct rtree_node { 349 struct list_head list; 350 unsigned long *data; 351 }; 352 353 /* 354 * struct mem_zone_bm_rtree represents a bitmap used for one 355 * populated memory zone. 356 */ 357 struct mem_zone_bm_rtree { 358 struct list_head list; /* Link Zones together */ 359 struct list_head nodes; /* Radix Tree inner nodes */ 360 struct list_head leaves; /* Radix Tree leaves */ 361 unsigned long start_pfn; /* Zone start page frame */ 362 unsigned long end_pfn; /* Zone end page frame + 1 */ 363 struct rtree_node *rtree; /* Radix Tree Root */ 364 int levels; /* Number of Radix Tree Levels */ 365 unsigned int blocks; /* Number of Bitmap Blocks */ 366 }; 367 368 /* strcut bm_position is used for browsing memory bitmaps */ 369 370 struct bm_position { 371 struct mem_zone_bm_rtree *zone; 372 struct rtree_node *node; 373 unsigned long node_pfn; 374 int node_bit; 375 }; 376 377 struct memory_bitmap { 378 struct list_head zones; 379 struct linked_page *p_list; /* list of pages used to store zone 380 bitmap objects and bitmap block 381 objects */ 382 struct bm_position cur; /* most recently used bit position */ 383 }; 384 385 /* Functions that operate on memory bitmaps */ 386 387 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 388 #if BITS_PER_LONG == 32 389 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 390 #else 391 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 392 #endif 393 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 394 395 /** 396 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 397 * 398 * This function is used to allocate inner nodes as well as the 399 * leave nodes of the radix tree. It also adds the node to the 400 * corresponding linked list passed in by the *list parameter. 401 */ 402 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 403 struct chain_allocator *ca, 404 struct list_head *list) 405 { 406 struct rtree_node *node; 407 408 node = chain_alloc(ca, sizeof(struct rtree_node)); 409 if (!node) 410 return NULL; 411 412 node->data = get_image_page(gfp_mask, safe_needed); 413 if (!node->data) 414 return NULL; 415 416 list_add_tail(&node->list, list); 417 418 return node; 419 } 420 421 /** 422 * add_rtree_block - Add a new leave node to the radix tree. 423 * 424 * The leave nodes need to be allocated in order to keep the leaves 425 * linked list in order. This is guaranteed by the zone->blocks 426 * counter. 427 */ 428 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 429 int safe_needed, struct chain_allocator *ca) 430 { 431 struct rtree_node *node, *block, **dst; 432 unsigned int levels_needed, block_nr; 433 int i; 434 435 block_nr = zone->blocks; 436 levels_needed = 0; 437 438 /* How many levels do we need for this block nr? */ 439 while (block_nr) { 440 levels_needed += 1; 441 block_nr >>= BM_RTREE_LEVEL_SHIFT; 442 } 443 444 /* Make sure the rtree has enough levels */ 445 for (i = zone->levels; i < levels_needed; i++) { 446 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 447 &zone->nodes); 448 if (!node) 449 return -ENOMEM; 450 451 node->data[0] = (unsigned long)zone->rtree; 452 zone->rtree = node; 453 zone->levels += 1; 454 } 455 456 /* Allocate new block */ 457 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 458 if (!block) 459 return -ENOMEM; 460 461 /* Now walk the rtree to insert the block */ 462 node = zone->rtree; 463 dst = &zone->rtree; 464 block_nr = zone->blocks; 465 for (i = zone->levels; i > 0; i--) { 466 int index; 467 468 if (!node) { 469 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 470 &zone->nodes); 471 if (!node) 472 return -ENOMEM; 473 *dst = node; 474 } 475 476 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 477 index &= BM_RTREE_LEVEL_MASK; 478 dst = (struct rtree_node **)&((*dst)->data[index]); 479 node = *dst; 480 } 481 482 zone->blocks += 1; 483 *dst = block; 484 485 return 0; 486 } 487 488 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 489 int clear_nosave_free); 490 491 /** 492 * create_zone_bm_rtree - Create a radix tree for one zone. 493 * 494 * Allocated the mem_zone_bm_rtree structure and initializes it. 495 * This function also allocated and builds the radix tree for the 496 * zone. 497 */ 498 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 499 int safe_needed, 500 struct chain_allocator *ca, 501 unsigned long start, 502 unsigned long end) 503 { 504 struct mem_zone_bm_rtree *zone; 505 unsigned int i, nr_blocks; 506 unsigned long pages; 507 508 pages = end - start; 509 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 510 if (!zone) 511 return NULL; 512 513 INIT_LIST_HEAD(&zone->nodes); 514 INIT_LIST_HEAD(&zone->leaves); 515 zone->start_pfn = start; 516 zone->end_pfn = end; 517 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 518 519 for (i = 0; i < nr_blocks; i++) { 520 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 521 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 522 return NULL; 523 } 524 } 525 526 return zone; 527 } 528 529 /** 530 * free_zone_bm_rtree - Free the memory of the radix tree. 531 * 532 * Free all node pages of the radix tree. The mem_zone_bm_rtree 533 * structure itself is not freed here nor are the rtree_node 534 * structs. 535 */ 536 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 537 int clear_nosave_free) 538 { 539 struct rtree_node *node; 540 541 list_for_each_entry(node, &zone->nodes, list) 542 free_image_page(node->data, clear_nosave_free); 543 544 list_for_each_entry(node, &zone->leaves, list) 545 free_image_page(node->data, clear_nosave_free); 546 } 547 548 static void memory_bm_position_reset(struct memory_bitmap *bm) 549 { 550 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 551 list); 552 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 553 struct rtree_node, list); 554 bm->cur.node_pfn = 0; 555 bm->cur.node_bit = 0; 556 } 557 558 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 559 560 struct mem_extent { 561 struct list_head hook; 562 unsigned long start; 563 unsigned long end; 564 }; 565 566 /** 567 * free_mem_extents - Free a list of memory extents. 568 * @list: List of extents to free. 569 */ 570 static void free_mem_extents(struct list_head *list) 571 { 572 struct mem_extent *ext, *aux; 573 574 list_for_each_entry_safe(ext, aux, list, hook) { 575 list_del(&ext->hook); 576 kfree(ext); 577 } 578 } 579 580 /** 581 * create_mem_extents - Create a list of memory extents. 582 * @list: List to put the extents into. 583 * @gfp_mask: Mask to use for memory allocations. 584 * 585 * The extents represent contiguous ranges of PFNs. 586 */ 587 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 588 { 589 struct zone *zone; 590 591 INIT_LIST_HEAD(list); 592 593 for_each_populated_zone(zone) { 594 unsigned long zone_start, zone_end; 595 struct mem_extent *ext, *cur, *aux; 596 597 zone_start = zone->zone_start_pfn; 598 zone_end = zone_end_pfn(zone); 599 600 list_for_each_entry(ext, list, hook) 601 if (zone_start <= ext->end) 602 break; 603 604 if (&ext->hook == list || zone_end < ext->start) { 605 /* New extent is necessary */ 606 struct mem_extent *new_ext; 607 608 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 609 if (!new_ext) { 610 free_mem_extents(list); 611 return -ENOMEM; 612 } 613 new_ext->start = zone_start; 614 new_ext->end = zone_end; 615 list_add_tail(&new_ext->hook, &ext->hook); 616 continue; 617 } 618 619 /* Merge this zone's range of PFNs with the existing one */ 620 if (zone_start < ext->start) 621 ext->start = zone_start; 622 if (zone_end > ext->end) 623 ext->end = zone_end; 624 625 /* More merging may be possible */ 626 cur = ext; 627 list_for_each_entry_safe_continue(cur, aux, list, hook) { 628 if (zone_end < cur->start) 629 break; 630 if (zone_end < cur->end) 631 ext->end = cur->end; 632 list_del(&cur->hook); 633 kfree(cur); 634 } 635 } 636 637 return 0; 638 } 639 640 /** 641 * memory_bm_create - Allocate memory for a memory bitmap. 642 */ 643 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 644 int safe_needed) 645 { 646 struct chain_allocator ca; 647 struct list_head mem_extents; 648 struct mem_extent *ext; 649 int error; 650 651 chain_init(&ca, gfp_mask, safe_needed); 652 INIT_LIST_HEAD(&bm->zones); 653 654 error = create_mem_extents(&mem_extents, gfp_mask); 655 if (error) 656 return error; 657 658 list_for_each_entry(ext, &mem_extents, hook) { 659 struct mem_zone_bm_rtree *zone; 660 661 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 662 ext->start, ext->end); 663 if (!zone) { 664 error = -ENOMEM; 665 goto Error; 666 } 667 list_add_tail(&zone->list, &bm->zones); 668 } 669 670 bm->p_list = ca.chain; 671 memory_bm_position_reset(bm); 672 Exit: 673 free_mem_extents(&mem_extents); 674 return error; 675 676 Error: 677 bm->p_list = ca.chain; 678 memory_bm_free(bm, PG_UNSAFE_CLEAR); 679 goto Exit; 680 } 681 682 /** 683 * memory_bm_free - Free memory occupied by the memory bitmap. 684 * @bm: Memory bitmap. 685 */ 686 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 687 { 688 struct mem_zone_bm_rtree *zone; 689 690 list_for_each_entry(zone, &bm->zones, list) 691 free_zone_bm_rtree(zone, clear_nosave_free); 692 693 free_list_of_pages(bm->p_list, clear_nosave_free); 694 695 INIT_LIST_HEAD(&bm->zones); 696 } 697 698 /** 699 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 700 * 701 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 702 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 703 * 704 * Walk the radix tree to find the page containing the bit that represents @pfn 705 * and return the position of the bit in @addr and @bit_nr. 706 */ 707 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 708 void **addr, unsigned int *bit_nr) 709 { 710 struct mem_zone_bm_rtree *curr, *zone; 711 struct rtree_node *node; 712 int i, block_nr; 713 714 zone = bm->cur.zone; 715 716 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 717 goto zone_found; 718 719 zone = NULL; 720 721 /* Find the right zone */ 722 list_for_each_entry(curr, &bm->zones, list) { 723 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 724 zone = curr; 725 break; 726 } 727 } 728 729 if (!zone) 730 return -EFAULT; 731 732 zone_found: 733 /* 734 * We have found the zone. Now walk the radix tree to find the leaf node 735 * for our PFN. 736 */ 737 node = bm->cur.node; 738 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 739 goto node_found; 740 741 node = zone->rtree; 742 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 743 744 for (i = zone->levels; i > 0; i--) { 745 int index; 746 747 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 748 index &= BM_RTREE_LEVEL_MASK; 749 BUG_ON(node->data[index] == 0); 750 node = (struct rtree_node *)node->data[index]; 751 } 752 753 node_found: 754 /* Update last position */ 755 bm->cur.zone = zone; 756 bm->cur.node = node; 757 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 758 759 /* Set return values */ 760 *addr = node->data; 761 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 762 763 return 0; 764 } 765 766 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 767 { 768 void *addr; 769 unsigned int bit; 770 int error; 771 772 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 773 BUG_ON(error); 774 set_bit(bit, addr); 775 } 776 777 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 778 { 779 void *addr; 780 unsigned int bit; 781 int error; 782 783 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 784 if (!error) 785 set_bit(bit, addr); 786 787 return error; 788 } 789 790 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 791 { 792 void *addr; 793 unsigned int bit; 794 int error; 795 796 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 797 BUG_ON(error); 798 clear_bit(bit, addr); 799 } 800 801 static void memory_bm_clear_current(struct memory_bitmap *bm) 802 { 803 int bit; 804 805 bit = max(bm->cur.node_bit - 1, 0); 806 clear_bit(bit, bm->cur.node->data); 807 } 808 809 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 810 { 811 void *addr; 812 unsigned int bit; 813 int error; 814 815 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 816 BUG_ON(error); 817 return test_bit(bit, addr); 818 } 819 820 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 821 { 822 void *addr; 823 unsigned int bit; 824 825 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 826 } 827 828 /* 829 * rtree_next_node - Jump to the next leaf node. 830 * 831 * Set the position to the beginning of the next node in the 832 * memory bitmap. This is either the next node in the current 833 * zone's radix tree or the first node in the radix tree of the 834 * next zone. 835 * 836 * Return true if there is a next node, false otherwise. 837 */ 838 static bool rtree_next_node(struct memory_bitmap *bm) 839 { 840 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 841 bm->cur.node = list_entry(bm->cur.node->list.next, 842 struct rtree_node, list); 843 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 844 bm->cur.node_bit = 0; 845 touch_softlockup_watchdog(); 846 return true; 847 } 848 849 /* No more nodes, goto next zone */ 850 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 851 bm->cur.zone = list_entry(bm->cur.zone->list.next, 852 struct mem_zone_bm_rtree, list); 853 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 854 struct rtree_node, list); 855 bm->cur.node_pfn = 0; 856 bm->cur.node_bit = 0; 857 return true; 858 } 859 860 /* No more zones */ 861 return false; 862 } 863 864 /** 865 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap. 866 * @bm: Memory bitmap. 867 * 868 * Starting from the last returned position this function searches for the next 869 * set bit in @bm and returns the PFN represented by it. If no more bits are 870 * set, BM_END_OF_MAP is returned. 871 * 872 * It is required to run memory_bm_position_reset() before the first call to 873 * this function for the given memory bitmap. 874 */ 875 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 876 { 877 unsigned long bits, pfn, pages; 878 int bit; 879 880 do { 881 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 882 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 883 bit = find_next_bit(bm->cur.node->data, bits, 884 bm->cur.node_bit); 885 if (bit < bits) { 886 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 887 bm->cur.node_bit = bit + 1; 888 return pfn; 889 } 890 } while (rtree_next_node(bm)); 891 892 return BM_END_OF_MAP; 893 } 894 895 /* 896 * This structure represents a range of page frames the contents of which 897 * should not be saved during hibernation. 898 */ 899 struct nosave_region { 900 struct list_head list; 901 unsigned long start_pfn; 902 unsigned long end_pfn; 903 }; 904 905 static LIST_HEAD(nosave_regions); 906 907 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 908 { 909 struct rtree_node *node; 910 911 list_for_each_entry(node, &zone->nodes, list) 912 recycle_safe_page(node->data); 913 914 list_for_each_entry(node, &zone->leaves, list) 915 recycle_safe_page(node->data); 916 } 917 918 static void memory_bm_recycle(struct memory_bitmap *bm) 919 { 920 struct mem_zone_bm_rtree *zone; 921 struct linked_page *p_list; 922 923 list_for_each_entry(zone, &bm->zones, list) 924 recycle_zone_bm_rtree(zone); 925 926 p_list = bm->p_list; 927 while (p_list) { 928 struct linked_page *lp = p_list; 929 930 p_list = lp->next; 931 recycle_safe_page(lp); 932 } 933 } 934 935 /** 936 * register_nosave_region - Register a region of unsaveable memory. 937 * 938 * Register a range of page frames the contents of which should not be saved 939 * during hibernation (to be used in the early initialization code). 940 */ 941 void __init __register_nosave_region(unsigned long start_pfn, 942 unsigned long end_pfn, int use_kmalloc) 943 { 944 struct nosave_region *region; 945 946 if (start_pfn >= end_pfn) 947 return; 948 949 if (!list_empty(&nosave_regions)) { 950 /* Try to extend the previous region (they should be sorted) */ 951 region = list_entry(nosave_regions.prev, 952 struct nosave_region, list); 953 if (region->end_pfn == start_pfn) { 954 region->end_pfn = end_pfn; 955 goto Report; 956 } 957 } 958 if (use_kmalloc) { 959 /* During init, this shouldn't fail */ 960 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 961 BUG_ON(!region); 962 } else { 963 /* This allocation cannot fail */ 964 region = memblock_virt_alloc(sizeof(struct nosave_region), 0); 965 } 966 region->start_pfn = start_pfn; 967 region->end_pfn = end_pfn; 968 list_add_tail(®ion->list, &nosave_regions); 969 Report: 970 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n", 971 (unsigned long long) start_pfn << PAGE_SHIFT, 972 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 973 } 974 975 /* 976 * Set bits in this map correspond to the page frames the contents of which 977 * should not be saved during the suspend. 978 */ 979 static struct memory_bitmap *forbidden_pages_map; 980 981 /* Set bits in this map correspond to free page frames. */ 982 static struct memory_bitmap *free_pages_map; 983 984 /* 985 * Each page frame allocated for creating the image is marked by setting the 986 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 987 */ 988 989 void swsusp_set_page_free(struct page *page) 990 { 991 if (free_pages_map) 992 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 993 } 994 995 static int swsusp_page_is_free(struct page *page) 996 { 997 return free_pages_map ? 998 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 999 } 1000 1001 void swsusp_unset_page_free(struct page *page) 1002 { 1003 if (free_pages_map) 1004 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1005 } 1006 1007 static void swsusp_set_page_forbidden(struct page *page) 1008 { 1009 if (forbidden_pages_map) 1010 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1011 } 1012 1013 int swsusp_page_is_forbidden(struct page *page) 1014 { 1015 return forbidden_pages_map ? 1016 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1017 } 1018 1019 static void swsusp_unset_page_forbidden(struct page *page) 1020 { 1021 if (forbidden_pages_map) 1022 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1023 } 1024 1025 /** 1026 * mark_nosave_pages - Mark pages that should not be saved. 1027 * @bm: Memory bitmap. 1028 * 1029 * Set the bits in @bm that correspond to the page frames the contents of which 1030 * should not be saved. 1031 */ 1032 static void mark_nosave_pages(struct memory_bitmap *bm) 1033 { 1034 struct nosave_region *region; 1035 1036 if (list_empty(&nosave_regions)) 1037 return; 1038 1039 list_for_each_entry(region, &nosave_regions, list) { 1040 unsigned long pfn; 1041 1042 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n", 1043 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1044 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1045 - 1); 1046 1047 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1048 if (pfn_valid(pfn)) { 1049 /* 1050 * It is safe to ignore the result of 1051 * mem_bm_set_bit_check() here, since we won't 1052 * touch the PFNs for which the error is 1053 * returned anyway. 1054 */ 1055 mem_bm_set_bit_check(bm, pfn); 1056 } 1057 } 1058 } 1059 1060 /** 1061 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1062 * 1063 * Create bitmaps needed for marking page frames that should not be saved and 1064 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1065 * only modified if everything goes well, because we don't want the bits to be 1066 * touched before both bitmaps are set up. 1067 */ 1068 int create_basic_memory_bitmaps(void) 1069 { 1070 struct memory_bitmap *bm1, *bm2; 1071 int error = 0; 1072 1073 if (forbidden_pages_map && free_pages_map) 1074 return 0; 1075 else 1076 BUG_ON(forbidden_pages_map || free_pages_map); 1077 1078 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1079 if (!bm1) 1080 return -ENOMEM; 1081 1082 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1083 if (error) 1084 goto Free_first_object; 1085 1086 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1087 if (!bm2) 1088 goto Free_first_bitmap; 1089 1090 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1091 if (error) 1092 goto Free_second_object; 1093 1094 forbidden_pages_map = bm1; 1095 free_pages_map = bm2; 1096 mark_nosave_pages(forbidden_pages_map); 1097 1098 pr_debug("PM: Basic memory bitmaps created\n"); 1099 1100 return 0; 1101 1102 Free_second_object: 1103 kfree(bm2); 1104 Free_first_bitmap: 1105 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1106 Free_first_object: 1107 kfree(bm1); 1108 return -ENOMEM; 1109 } 1110 1111 /** 1112 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1113 * 1114 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1115 * auxiliary pointers are necessary so that the bitmaps themselves are not 1116 * referred to while they are being freed. 1117 */ 1118 void free_basic_memory_bitmaps(void) 1119 { 1120 struct memory_bitmap *bm1, *bm2; 1121 1122 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1123 return; 1124 1125 bm1 = forbidden_pages_map; 1126 bm2 = free_pages_map; 1127 forbidden_pages_map = NULL; 1128 free_pages_map = NULL; 1129 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1130 kfree(bm1); 1131 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1132 kfree(bm2); 1133 1134 pr_debug("PM: Basic memory bitmaps freed\n"); 1135 } 1136 1137 void clear_free_pages(void) 1138 { 1139 #ifdef CONFIG_PAGE_POISONING_ZERO 1140 struct memory_bitmap *bm = free_pages_map; 1141 unsigned long pfn; 1142 1143 if (WARN_ON(!(free_pages_map))) 1144 return; 1145 1146 memory_bm_position_reset(bm); 1147 pfn = memory_bm_next_pfn(bm); 1148 while (pfn != BM_END_OF_MAP) { 1149 if (pfn_valid(pfn)) 1150 clear_highpage(pfn_to_page(pfn)); 1151 1152 pfn = memory_bm_next_pfn(bm); 1153 } 1154 memory_bm_position_reset(bm); 1155 pr_info("PM: free pages cleared after restore\n"); 1156 #endif /* PAGE_POISONING_ZERO */ 1157 } 1158 1159 /** 1160 * snapshot_additional_pages - Estimate the number of extra pages needed. 1161 * @zone: Memory zone to carry out the computation for. 1162 * 1163 * Estimate the number of additional pages needed for setting up a hibernation 1164 * image data structures for @zone (usually, the returned value is greater than 1165 * the exact number). 1166 */ 1167 unsigned int snapshot_additional_pages(struct zone *zone) 1168 { 1169 unsigned int rtree, nodes; 1170 1171 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1172 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1173 LINKED_PAGE_DATA_SIZE); 1174 while (nodes > 1) { 1175 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1176 rtree += nodes; 1177 } 1178 1179 return 2 * rtree; 1180 } 1181 1182 #ifdef CONFIG_HIGHMEM 1183 /** 1184 * count_free_highmem_pages - Compute the total number of free highmem pages. 1185 * 1186 * The returned number is system-wide. 1187 */ 1188 static unsigned int count_free_highmem_pages(void) 1189 { 1190 struct zone *zone; 1191 unsigned int cnt = 0; 1192 1193 for_each_populated_zone(zone) 1194 if (is_highmem(zone)) 1195 cnt += zone_page_state(zone, NR_FREE_PAGES); 1196 1197 return cnt; 1198 } 1199 1200 /** 1201 * saveable_highmem_page - Check if a highmem page is saveable. 1202 * 1203 * Determine whether a highmem page should be included in a hibernation image. 1204 * 1205 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1206 * and it isn't part of a free chunk of pages. 1207 */ 1208 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1209 { 1210 struct page *page; 1211 1212 if (!pfn_valid(pfn)) 1213 return NULL; 1214 1215 page = pfn_to_page(pfn); 1216 if (page_zone(page) != zone) 1217 return NULL; 1218 1219 BUG_ON(!PageHighMem(page)); 1220 1221 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 1222 PageReserved(page)) 1223 return NULL; 1224 1225 if (page_is_guard(page)) 1226 return NULL; 1227 1228 return page; 1229 } 1230 1231 /** 1232 * count_highmem_pages - Compute the total number of saveable highmem pages. 1233 */ 1234 static unsigned int count_highmem_pages(void) 1235 { 1236 struct zone *zone; 1237 unsigned int n = 0; 1238 1239 for_each_populated_zone(zone) { 1240 unsigned long pfn, max_zone_pfn; 1241 1242 if (!is_highmem(zone)) 1243 continue; 1244 1245 mark_free_pages(zone); 1246 max_zone_pfn = zone_end_pfn(zone); 1247 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1248 if (saveable_highmem_page(zone, pfn)) 1249 n++; 1250 } 1251 return n; 1252 } 1253 #else 1254 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1255 { 1256 return NULL; 1257 } 1258 #endif /* CONFIG_HIGHMEM */ 1259 1260 /** 1261 * saveable_page - Check if the given page is saveable. 1262 * 1263 * Determine whether a non-highmem page should be included in a hibernation 1264 * image. 1265 * 1266 * We should save the page if it isn't Nosave, and is not in the range 1267 * of pages statically defined as 'unsaveable', and it isn't part of 1268 * a free chunk of pages. 1269 */ 1270 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1271 { 1272 struct page *page; 1273 1274 if (!pfn_valid(pfn)) 1275 return NULL; 1276 1277 page = pfn_to_page(pfn); 1278 if (page_zone(page) != zone) 1279 return NULL; 1280 1281 BUG_ON(PageHighMem(page)); 1282 1283 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1284 return NULL; 1285 1286 if (PageReserved(page) 1287 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1288 return NULL; 1289 1290 if (page_is_guard(page)) 1291 return NULL; 1292 1293 return page; 1294 } 1295 1296 /** 1297 * count_data_pages - Compute the total number of saveable non-highmem pages. 1298 */ 1299 static unsigned int count_data_pages(void) 1300 { 1301 struct zone *zone; 1302 unsigned long pfn, max_zone_pfn; 1303 unsigned int n = 0; 1304 1305 for_each_populated_zone(zone) { 1306 if (is_highmem(zone)) 1307 continue; 1308 1309 mark_free_pages(zone); 1310 max_zone_pfn = zone_end_pfn(zone); 1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1312 if (saveable_page(zone, pfn)) 1313 n++; 1314 } 1315 return n; 1316 } 1317 1318 /* 1319 * This is needed, because copy_page and memcpy are not usable for copying 1320 * task structs. 1321 */ 1322 static inline void do_copy_page(long *dst, long *src) 1323 { 1324 int n; 1325 1326 for (n = PAGE_SIZE / sizeof(long); n; n--) 1327 *dst++ = *src++; 1328 } 1329 1330 /** 1331 * safe_copy_page - Copy a page in a safe way. 1332 * 1333 * Check if the page we are going to copy is marked as present in the kernel 1334 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set 1335 * and in that case kernel_page_present() always returns 'true'). 1336 */ 1337 static void safe_copy_page(void *dst, struct page *s_page) 1338 { 1339 if (kernel_page_present(s_page)) { 1340 do_copy_page(dst, page_address(s_page)); 1341 } else { 1342 kernel_map_pages(s_page, 1, 1); 1343 do_copy_page(dst, page_address(s_page)); 1344 kernel_map_pages(s_page, 1, 0); 1345 } 1346 } 1347 1348 #ifdef CONFIG_HIGHMEM 1349 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1350 { 1351 return is_highmem(zone) ? 1352 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1353 } 1354 1355 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1356 { 1357 struct page *s_page, *d_page; 1358 void *src, *dst; 1359 1360 s_page = pfn_to_page(src_pfn); 1361 d_page = pfn_to_page(dst_pfn); 1362 if (PageHighMem(s_page)) { 1363 src = kmap_atomic(s_page); 1364 dst = kmap_atomic(d_page); 1365 do_copy_page(dst, src); 1366 kunmap_atomic(dst); 1367 kunmap_atomic(src); 1368 } else { 1369 if (PageHighMem(d_page)) { 1370 /* 1371 * The page pointed to by src may contain some kernel 1372 * data modified by kmap_atomic() 1373 */ 1374 safe_copy_page(buffer, s_page); 1375 dst = kmap_atomic(d_page); 1376 copy_page(dst, buffer); 1377 kunmap_atomic(dst); 1378 } else { 1379 safe_copy_page(page_address(d_page), s_page); 1380 } 1381 } 1382 } 1383 #else 1384 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1385 1386 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1387 { 1388 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1389 pfn_to_page(src_pfn)); 1390 } 1391 #endif /* CONFIG_HIGHMEM */ 1392 1393 static void copy_data_pages(struct memory_bitmap *copy_bm, 1394 struct memory_bitmap *orig_bm) 1395 { 1396 struct zone *zone; 1397 unsigned long pfn; 1398 1399 for_each_populated_zone(zone) { 1400 unsigned long max_zone_pfn; 1401 1402 mark_free_pages(zone); 1403 max_zone_pfn = zone_end_pfn(zone); 1404 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1405 if (page_is_saveable(zone, pfn)) 1406 memory_bm_set_bit(orig_bm, pfn); 1407 } 1408 memory_bm_position_reset(orig_bm); 1409 memory_bm_position_reset(copy_bm); 1410 for(;;) { 1411 pfn = memory_bm_next_pfn(orig_bm); 1412 if (unlikely(pfn == BM_END_OF_MAP)) 1413 break; 1414 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1415 } 1416 } 1417 1418 /* Total number of image pages */ 1419 static unsigned int nr_copy_pages; 1420 /* Number of pages needed for saving the original pfns of the image pages */ 1421 static unsigned int nr_meta_pages; 1422 /* 1423 * Numbers of normal and highmem page frames allocated for hibernation image 1424 * before suspending devices. 1425 */ 1426 static unsigned int alloc_normal, alloc_highmem; 1427 /* 1428 * Memory bitmap used for marking saveable pages (during hibernation) or 1429 * hibernation image pages (during restore) 1430 */ 1431 static struct memory_bitmap orig_bm; 1432 /* 1433 * Memory bitmap used during hibernation for marking allocated page frames that 1434 * will contain copies of saveable pages. During restore it is initially used 1435 * for marking hibernation image pages, but then the set bits from it are 1436 * duplicated in @orig_bm and it is released. On highmem systems it is next 1437 * used for marking "safe" highmem pages, but it has to be reinitialized for 1438 * this purpose. 1439 */ 1440 static struct memory_bitmap copy_bm; 1441 1442 /** 1443 * swsusp_free - Free pages allocated for hibernation image. 1444 * 1445 * Image pages are alocated before snapshot creation, so they need to be 1446 * released after resume. 1447 */ 1448 void swsusp_free(void) 1449 { 1450 unsigned long fb_pfn, fr_pfn; 1451 1452 if (!forbidden_pages_map || !free_pages_map) 1453 goto out; 1454 1455 memory_bm_position_reset(forbidden_pages_map); 1456 memory_bm_position_reset(free_pages_map); 1457 1458 loop: 1459 fr_pfn = memory_bm_next_pfn(free_pages_map); 1460 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1461 1462 /* 1463 * Find the next bit set in both bitmaps. This is guaranteed to 1464 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1465 */ 1466 do { 1467 if (fb_pfn < fr_pfn) 1468 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1469 if (fr_pfn < fb_pfn) 1470 fr_pfn = memory_bm_next_pfn(free_pages_map); 1471 } while (fb_pfn != fr_pfn); 1472 1473 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1474 struct page *page = pfn_to_page(fr_pfn); 1475 1476 memory_bm_clear_current(forbidden_pages_map); 1477 memory_bm_clear_current(free_pages_map); 1478 hibernate_restore_unprotect_page(page_address(page)); 1479 __free_page(page); 1480 goto loop; 1481 } 1482 1483 out: 1484 nr_copy_pages = 0; 1485 nr_meta_pages = 0; 1486 restore_pblist = NULL; 1487 buffer = NULL; 1488 alloc_normal = 0; 1489 alloc_highmem = 0; 1490 hibernate_restore_protection_end(); 1491 } 1492 1493 /* Helper functions used for the shrinking of memory. */ 1494 1495 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1496 1497 /** 1498 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1499 * @nr_pages: Number of page frames to allocate. 1500 * @mask: GFP flags to use for the allocation. 1501 * 1502 * Return value: Number of page frames actually allocated 1503 */ 1504 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1505 { 1506 unsigned long nr_alloc = 0; 1507 1508 while (nr_pages > 0) { 1509 struct page *page; 1510 1511 page = alloc_image_page(mask); 1512 if (!page) 1513 break; 1514 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1515 if (PageHighMem(page)) 1516 alloc_highmem++; 1517 else 1518 alloc_normal++; 1519 nr_pages--; 1520 nr_alloc++; 1521 } 1522 1523 return nr_alloc; 1524 } 1525 1526 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1527 unsigned long avail_normal) 1528 { 1529 unsigned long alloc; 1530 1531 if (avail_normal <= alloc_normal) 1532 return 0; 1533 1534 alloc = avail_normal - alloc_normal; 1535 if (nr_pages < alloc) 1536 alloc = nr_pages; 1537 1538 return preallocate_image_pages(alloc, GFP_IMAGE); 1539 } 1540 1541 #ifdef CONFIG_HIGHMEM 1542 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1543 { 1544 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1545 } 1546 1547 /** 1548 * __fraction - Compute (an approximation of) x * (multiplier / base). 1549 */ 1550 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1551 { 1552 x *= multiplier; 1553 do_div(x, base); 1554 return (unsigned long)x; 1555 } 1556 1557 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1558 unsigned long highmem, 1559 unsigned long total) 1560 { 1561 unsigned long alloc = __fraction(nr_pages, highmem, total); 1562 1563 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1564 } 1565 #else /* CONFIG_HIGHMEM */ 1566 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1567 { 1568 return 0; 1569 } 1570 1571 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1572 unsigned long highmem, 1573 unsigned long total) 1574 { 1575 return 0; 1576 } 1577 #endif /* CONFIG_HIGHMEM */ 1578 1579 /** 1580 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1581 */ 1582 static unsigned long free_unnecessary_pages(void) 1583 { 1584 unsigned long save, to_free_normal, to_free_highmem, free; 1585 1586 save = count_data_pages(); 1587 if (alloc_normal >= save) { 1588 to_free_normal = alloc_normal - save; 1589 save = 0; 1590 } else { 1591 to_free_normal = 0; 1592 save -= alloc_normal; 1593 } 1594 save += count_highmem_pages(); 1595 if (alloc_highmem >= save) { 1596 to_free_highmem = alloc_highmem - save; 1597 } else { 1598 to_free_highmem = 0; 1599 save -= alloc_highmem; 1600 if (to_free_normal > save) 1601 to_free_normal -= save; 1602 else 1603 to_free_normal = 0; 1604 } 1605 free = to_free_normal + to_free_highmem; 1606 1607 memory_bm_position_reset(©_bm); 1608 1609 while (to_free_normal > 0 || to_free_highmem > 0) { 1610 unsigned long pfn = memory_bm_next_pfn(©_bm); 1611 struct page *page = pfn_to_page(pfn); 1612 1613 if (PageHighMem(page)) { 1614 if (!to_free_highmem) 1615 continue; 1616 to_free_highmem--; 1617 alloc_highmem--; 1618 } else { 1619 if (!to_free_normal) 1620 continue; 1621 to_free_normal--; 1622 alloc_normal--; 1623 } 1624 memory_bm_clear_bit(©_bm, pfn); 1625 swsusp_unset_page_forbidden(page); 1626 swsusp_unset_page_free(page); 1627 __free_page(page); 1628 } 1629 1630 return free; 1631 } 1632 1633 /** 1634 * minimum_image_size - Estimate the minimum acceptable size of an image. 1635 * @saveable: Number of saveable pages in the system. 1636 * 1637 * We want to avoid attempting to free too much memory too hard, so estimate the 1638 * minimum acceptable size of a hibernation image to use as the lower limit for 1639 * preallocating memory. 1640 * 1641 * We assume that the minimum image size should be proportional to 1642 * 1643 * [number of saveable pages] - [number of pages that can be freed in theory] 1644 * 1645 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1646 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages, 1647 * minus mapped file pages. 1648 */ 1649 static unsigned long minimum_image_size(unsigned long saveable) 1650 { 1651 unsigned long size; 1652 1653 size = global_page_state(NR_SLAB_RECLAIMABLE) 1654 + global_node_page_state(NR_ACTIVE_ANON) 1655 + global_node_page_state(NR_INACTIVE_ANON) 1656 + global_node_page_state(NR_ACTIVE_FILE) 1657 + global_node_page_state(NR_INACTIVE_FILE) 1658 - global_node_page_state(NR_FILE_MAPPED); 1659 1660 return saveable <= size ? 0 : saveable - size; 1661 } 1662 1663 /** 1664 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1665 * 1666 * To create a hibernation image it is necessary to make a copy of every page 1667 * frame in use. We also need a number of page frames to be free during 1668 * hibernation for allocations made while saving the image and for device 1669 * drivers, in case they need to allocate memory from their hibernation 1670 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1671 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1672 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1673 * total number of available page frames and allocate at least 1674 * 1675 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1676 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1677 * 1678 * of them, which corresponds to the maximum size of a hibernation image. 1679 * 1680 * If image_size is set below the number following from the above formula, 1681 * the preallocation of memory is continued until the total number of saveable 1682 * pages in the system is below the requested image size or the minimum 1683 * acceptable image size returned by minimum_image_size(), whichever is greater. 1684 */ 1685 int hibernate_preallocate_memory(void) 1686 { 1687 struct zone *zone; 1688 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1689 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1690 ktime_t start, stop; 1691 int error; 1692 1693 printk(KERN_INFO "PM: Preallocating image memory... "); 1694 start = ktime_get(); 1695 1696 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1697 if (error) 1698 goto err_out; 1699 1700 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1701 if (error) 1702 goto err_out; 1703 1704 alloc_normal = 0; 1705 alloc_highmem = 0; 1706 1707 /* Count the number of saveable data pages. */ 1708 save_highmem = count_highmem_pages(); 1709 saveable = count_data_pages(); 1710 1711 /* 1712 * Compute the total number of page frames we can use (count) and the 1713 * number of pages needed for image metadata (size). 1714 */ 1715 count = saveable; 1716 saveable += save_highmem; 1717 highmem = save_highmem; 1718 size = 0; 1719 for_each_populated_zone(zone) { 1720 size += snapshot_additional_pages(zone); 1721 if (is_highmem(zone)) 1722 highmem += zone_page_state(zone, NR_FREE_PAGES); 1723 else 1724 count += zone_page_state(zone, NR_FREE_PAGES); 1725 } 1726 avail_normal = count; 1727 count += highmem; 1728 count -= totalreserve_pages; 1729 1730 /* Add number of pages required for page keys (s390 only). */ 1731 size += page_key_additional_pages(saveable); 1732 1733 /* Compute the maximum number of saveable pages to leave in memory. */ 1734 max_size = (count - (size + PAGES_FOR_IO)) / 2 1735 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1736 /* Compute the desired number of image pages specified by image_size. */ 1737 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1738 if (size > max_size) 1739 size = max_size; 1740 /* 1741 * If the desired number of image pages is at least as large as the 1742 * current number of saveable pages in memory, allocate page frames for 1743 * the image and we're done. 1744 */ 1745 if (size >= saveable) { 1746 pages = preallocate_image_highmem(save_highmem); 1747 pages += preallocate_image_memory(saveable - pages, avail_normal); 1748 goto out; 1749 } 1750 1751 /* Estimate the minimum size of the image. */ 1752 pages = minimum_image_size(saveable); 1753 /* 1754 * To avoid excessive pressure on the normal zone, leave room in it to 1755 * accommodate an image of the minimum size (unless it's already too 1756 * small, in which case don't preallocate pages from it at all). 1757 */ 1758 if (avail_normal > pages) 1759 avail_normal -= pages; 1760 else 1761 avail_normal = 0; 1762 if (size < pages) 1763 size = min_t(unsigned long, pages, max_size); 1764 1765 /* 1766 * Let the memory management subsystem know that we're going to need a 1767 * large number of page frames to allocate and make it free some memory. 1768 * NOTE: If this is not done, performance will be hurt badly in some 1769 * test cases. 1770 */ 1771 shrink_all_memory(saveable - size); 1772 1773 /* 1774 * The number of saveable pages in memory was too high, so apply some 1775 * pressure to decrease it. First, make room for the largest possible 1776 * image and fail if that doesn't work. Next, try to decrease the size 1777 * of the image as much as indicated by 'size' using allocations from 1778 * highmem and non-highmem zones separately. 1779 */ 1780 pages_highmem = preallocate_image_highmem(highmem / 2); 1781 alloc = count - max_size; 1782 if (alloc > pages_highmem) 1783 alloc -= pages_highmem; 1784 else 1785 alloc = 0; 1786 pages = preallocate_image_memory(alloc, avail_normal); 1787 if (pages < alloc) { 1788 /* We have exhausted non-highmem pages, try highmem. */ 1789 alloc -= pages; 1790 pages += pages_highmem; 1791 pages_highmem = preallocate_image_highmem(alloc); 1792 if (pages_highmem < alloc) 1793 goto err_out; 1794 pages += pages_highmem; 1795 /* 1796 * size is the desired number of saveable pages to leave in 1797 * memory, so try to preallocate (all memory - size) pages. 1798 */ 1799 alloc = (count - pages) - size; 1800 pages += preallocate_image_highmem(alloc); 1801 } else { 1802 /* 1803 * There are approximately max_size saveable pages at this point 1804 * and we want to reduce this number down to size. 1805 */ 1806 alloc = max_size - size; 1807 size = preallocate_highmem_fraction(alloc, highmem, count); 1808 pages_highmem += size; 1809 alloc -= size; 1810 size = preallocate_image_memory(alloc, avail_normal); 1811 pages_highmem += preallocate_image_highmem(alloc - size); 1812 pages += pages_highmem + size; 1813 } 1814 1815 /* 1816 * We only need as many page frames for the image as there are saveable 1817 * pages in memory, but we have allocated more. Release the excessive 1818 * ones now. 1819 */ 1820 pages -= free_unnecessary_pages(); 1821 1822 out: 1823 stop = ktime_get(); 1824 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1825 swsusp_show_speed(start, stop, pages, "Allocated"); 1826 1827 return 0; 1828 1829 err_out: 1830 printk(KERN_CONT "\n"); 1831 swsusp_free(); 1832 return -ENOMEM; 1833 } 1834 1835 #ifdef CONFIG_HIGHMEM 1836 /** 1837 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1838 * 1839 * Compute the number of non-highmem pages that will be necessary for creating 1840 * copies of highmem pages. 1841 */ 1842 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1843 { 1844 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1845 1846 if (free_highmem >= nr_highmem) 1847 nr_highmem = 0; 1848 else 1849 nr_highmem -= free_highmem; 1850 1851 return nr_highmem; 1852 } 1853 #else 1854 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1855 #endif /* CONFIG_HIGHMEM */ 1856 1857 /** 1858 * enough_free_mem - Check if there is enough free memory for the image. 1859 */ 1860 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1861 { 1862 struct zone *zone; 1863 unsigned int free = alloc_normal; 1864 1865 for_each_populated_zone(zone) 1866 if (!is_highmem(zone)) 1867 free += zone_page_state(zone, NR_FREE_PAGES); 1868 1869 nr_pages += count_pages_for_highmem(nr_highmem); 1870 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1871 nr_pages, PAGES_FOR_IO, free); 1872 1873 return free > nr_pages + PAGES_FOR_IO; 1874 } 1875 1876 #ifdef CONFIG_HIGHMEM 1877 /** 1878 * get_highmem_buffer - Allocate a buffer for highmem pages. 1879 * 1880 * If there are some highmem pages in the hibernation image, we may need a 1881 * buffer to copy them and/or load their data. 1882 */ 1883 static inline int get_highmem_buffer(int safe_needed) 1884 { 1885 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1886 return buffer ? 0 : -ENOMEM; 1887 } 1888 1889 /** 1890 * alloc_highmem_image_pages - Allocate some highmem pages for the image. 1891 * 1892 * Try to allocate as many pages as needed, but if the number of free highmem 1893 * pages is less than that, allocate them all. 1894 */ 1895 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1896 unsigned int nr_highmem) 1897 { 1898 unsigned int to_alloc = count_free_highmem_pages(); 1899 1900 if (to_alloc > nr_highmem) 1901 to_alloc = nr_highmem; 1902 1903 nr_highmem -= to_alloc; 1904 while (to_alloc-- > 0) { 1905 struct page *page; 1906 1907 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 1908 memory_bm_set_bit(bm, page_to_pfn(page)); 1909 } 1910 return nr_highmem; 1911 } 1912 #else 1913 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1914 1915 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1916 unsigned int n) { return 0; } 1917 #endif /* CONFIG_HIGHMEM */ 1918 1919 /** 1920 * swsusp_alloc - Allocate memory for hibernation image. 1921 * 1922 * We first try to allocate as many highmem pages as there are 1923 * saveable highmem pages in the system. If that fails, we allocate 1924 * non-highmem pages for the copies of the remaining highmem ones. 1925 * 1926 * In this approach it is likely that the copies of highmem pages will 1927 * also be located in the high memory, because of the way in which 1928 * copy_data_pages() works. 1929 */ 1930 static int swsusp_alloc(struct memory_bitmap *copy_bm, 1931 unsigned int nr_pages, unsigned int nr_highmem) 1932 { 1933 if (nr_highmem > 0) { 1934 if (get_highmem_buffer(PG_ANY)) 1935 goto err_out; 1936 if (nr_highmem > alloc_highmem) { 1937 nr_highmem -= alloc_highmem; 1938 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1939 } 1940 } 1941 if (nr_pages > alloc_normal) { 1942 nr_pages -= alloc_normal; 1943 while (nr_pages-- > 0) { 1944 struct page *page; 1945 1946 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1947 if (!page) 1948 goto err_out; 1949 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1950 } 1951 } 1952 1953 return 0; 1954 1955 err_out: 1956 swsusp_free(); 1957 return -ENOMEM; 1958 } 1959 1960 asmlinkage __visible int swsusp_save(void) 1961 { 1962 unsigned int nr_pages, nr_highmem; 1963 1964 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1965 1966 drain_local_pages(NULL); 1967 nr_pages = count_data_pages(); 1968 nr_highmem = count_highmem_pages(); 1969 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1970 1971 if (!enough_free_mem(nr_pages, nr_highmem)) { 1972 printk(KERN_ERR "PM: Not enough free memory\n"); 1973 return -ENOMEM; 1974 } 1975 1976 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 1977 printk(KERN_ERR "PM: Memory allocation failed\n"); 1978 return -ENOMEM; 1979 } 1980 1981 /* 1982 * During allocating of suspend pagedir, new cold pages may appear. 1983 * Kill them. 1984 */ 1985 drain_local_pages(NULL); 1986 copy_data_pages(©_bm, &orig_bm); 1987 1988 /* 1989 * End of critical section. From now on, we can write to memory, 1990 * but we should not touch disk. This specially means we must _not_ 1991 * touch swap space! Except we must write out our image of course. 1992 */ 1993 1994 nr_pages += nr_highmem; 1995 nr_copy_pages = nr_pages; 1996 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1997 1998 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1999 nr_pages); 2000 2001 return 0; 2002 } 2003 2004 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2005 static int init_header_complete(struct swsusp_info *info) 2006 { 2007 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2008 info->version_code = LINUX_VERSION_CODE; 2009 return 0; 2010 } 2011 2012 static char *check_image_kernel(struct swsusp_info *info) 2013 { 2014 if (info->version_code != LINUX_VERSION_CODE) 2015 return "kernel version"; 2016 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2017 return "system type"; 2018 if (strcmp(info->uts.release,init_utsname()->release)) 2019 return "kernel release"; 2020 if (strcmp(info->uts.version,init_utsname()->version)) 2021 return "version"; 2022 if (strcmp(info->uts.machine,init_utsname()->machine)) 2023 return "machine"; 2024 return NULL; 2025 } 2026 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2027 2028 unsigned long snapshot_get_image_size(void) 2029 { 2030 return nr_copy_pages + nr_meta_pages + 1; 2031 } 2032 2033 static int init_header(struct swsusp_info *info) 2034 { 2035 memset(info, 0, sizeof(struct swsusp_info)); 2036 info->num_physpages = get_num_physpages(); 2037 info->image_pages = nr_copy_pages; 2038 info->pages = snapshot_get_image_size(); 2039 info->size = info->pages; 2040 info->size <<= PAGE_SHIFT; 2041 return init_header_complete(info); 2042 } 2043 2044 /** 2045 * pack_pfns - Prepare PFNs for saving. 2046 * @bm: Memory bitmap. 2047 * @buf: Memory buffer to store the PFNs in. 2048 * 2049 * PFNs corresponding to set bits in @bm are stored in the area of memory 2050 * pointed to by @buf (1 page at a time). 2051 */ 2052 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2053 { 2054 int j; 2055 2056 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2057 buf[j] = memory_bm_next_pfn(bm); 2058 if (unlikely(buf[j] == BM_END_OF_MAP)) 2059 break; 2060 /* Save page key for data page (s390 only). */ 2061 page_key_read(buf + j); 2062 } 2063 } 2064 2065 /** 2066 * snapshot_read_next - Get the address to read the next image page from. 2067 * @handle: Snapshot handle to be used for the reading. 2068 * 2069 * On the first call, @handle should point to a zeroed snapshot_handle 2070 * structure. The structure gets populated then and a pointer to it should be 2071 * passed to this function every next time. 2072 * 2073 * On success, the function returns a positive number. Then, the caller 2074 * is allowed to read up to the returned number of bytes from the memory 2075 * location computed by the data_of() macro. 2076 * 2077 * The function returns 0 to indicate the end of the data stream condition, 2078 * and negative numbers are returned on errors. If that happens, the structure 2079 * pointed to by @handle is not updated and should not be used any more. 2080 */ 2081 int snapshot_read_next(struct snapshot_handle *handle) 2082 { 2083 if (handle->cur > nr_meta_pages + nr_copy_pages) 2084 return 0; 2085 2086 if (!buffer) { 2087 /* This makes the buffer be freed by swsusp_free() */ 2088 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2089 if (!buffer) 2090 return -ENOMEM; 2091 } 2092 if (!handle->cur) { 2093 int error; 2094 2095 error = init_header((struct swsusp_info *)buffer); 2096 if (error) 2097 return error; 2098 handle->buffer = buffer; 2099 memory_bm_position_reset(&orig_bm); 2100 memory_bm_position_reset(©_bm); 2101 } else if (handle->cur <= nr_meta_pages) { 2102 clear_page(buffer); 2103 pack_pfns(buffer, &orig_bm); 2104 } else { 2105 struct page *page; 2106 2107 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2108 if (PageHighMem(page)) { 2109 /* 2110 * Highmem pages are copied to the buffer, 2111 * because we can't return with a kmapped 2112 * highmem page (we may not be called again). 2113 */ 2114 void *kaddr; 2115 2116 kaddr = kmap_atomic(page); 2117 copy_page(buffer, kaddr); 2118 kunmap_atomic(kaddr); 2119 handle->buffer = buffer; 2120 } else { 2121 handle->buffer = page_address(page); 2122 } 2123 } 2124 handle->cur++; 2125 return PAGE_SIZE; 2126 } 2127 2128 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2129 struct memory_bitmap *src) 2130 { 2131 unsigned long pfn; 2132 2133 memory_bm_position_reset(src); 2134 pfn = memory_bm_next_pfn(src); 2135 while (pfn != BM_END_OF_MAP) { 2136 memory_bm_set_bit(dst, pfn); 2137 pfn = memory_bm_next_pfn(src); 2138 } 2139 } 2140 2141 /** 2142 * mark_unsafe_pages - Mark pages that were used before hibernation. 2143 * 2144 * Mark the pages that cannot be used for storing the image during restoration, 2145 * because they conflict with the pages that had been used before hibernation. 2146 */ 2147 static void mark_unsafe_pages(struct memory_bitmap *bm) 2148 { 2149 unsigned long pfn; 2150 2151 /* Clear the "free"/"unsafe" bit for all PFNs */ 2152 memory_bm_position_reset(free_pages_map); 2153 pfn = memory_bm_next_pfn(free_pages_map); 2154 while (pfn != BM_END_OF_MAP) { 2155 memory_bm_clear_current(free_pages_map); 2156 pfn = memory_bm_next_pfn(free_pages_map); 2157 } 2158 2159 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2160 duplicate_memory_bitmap(free_pages_map, bm); 2161 2162 allocated_unsafe_pages = 0; 2163 } 2164 2165 static int check_header(struct swsusp_info *info) 2166 { 2167 char *reason; 2168 2169 reason = check_image_kernel(info); 2170 if (!reason && info->num_physpages != get_num_physpages()) 2171 reason = "memory size"; 2172 if (reason) { 2173 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 2174 return -EPERM; 2175 } 2176 return 0; 2177 } 2178 2179 /** 2180 * load header - Check the image header and copy the data from it. 2181 */ 2182 static int load_header(struct swsusp_info *info) 2183 { 2184 int error; 2185 2186 restore_pblist = NULL; 2187 error = check_header(info); 2188 if (!error) { 2189 nr_copy_pages = info->image_pages; 2190 nr_meta_pages = info->pages - info->image_pages - 1; 2191 } 2192 return error; 2193 } 2194 2195 /** 2196 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2197 * @bm: Memory bitmap. 2198 * @buf: Area of memory containing the PFNs. 2199 * 2200 * For each element of the array pointed to by @buf (1 page at a time), set the 2201 * corresponding bit in @bm. 2202 */ 2203 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2204 { 2205 int j; 2206 2207 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2208 if (unlikely(buf[j] == BM_END_OF_MAP)) 2209 break; 2210 2211 /* Extract and buffer page key for data page (s390 only). */ 2212 page_key_memorize(buf + j); 2213 2214 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) 2215 memory_bm_set_bit(bm, buf[j]); 2216 else 2217 return -EFAULT; 2218 } 2219 2220 return 0; 2221 } 2222 2223 #ifdef CONFIG_HIGHMEM 2224 /* 2225 * struct highmem_pbe is used for creating the list of highmem pages that 2226 * should be restored atomically during the resume from disk, because the page 2227 * frames they have occupied before the suspend are in use. 2228 */ 2229 struct highmem_pbe { 2230 struct page *copy_page; /* data is here now */ 2231 struct page *orig_page; /* data was here before the suspend */ 2232 struct highmem_pbe *next; 2233 }; 2234 2235 /* 2236 * List of highmem PBEs needed for restoring the highmem pages that were 2237 * allocated before the suspend and included in the suspend image, but have 2238 * also been allocated by the "resume" kernel, so their contents cannot be 2239 * written directly to their "original" page frames. 2240 */ 2241 static struct highmem_pbe *highmem_pblist; 2242 2243 /** 2244 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2245 * @bm: Memory bitmap. 2246 * 2247 * The bits in @bm that correspond to image pages are assumed to be set. 2248 */ 2249 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2250 { 2251 unsigned long pfn; 2252 unsigned int cnt = 0; 2253 2254 memory_bm_position_reset(bm); 2255 pfn = memory_bm_next_pfn(bm); 2256 while (pfn != BM_END_OF_MAP) { 2257 if (PageHighMem(pfn_to_page(pfn))) 2258 cnt++; 2259 2260 pfn = memory_bm_next_pfn(bm); 2261 } 2262 return cnt; 2263 } 2264 2265 static unsigned int safe_highmem_pages; 2266 2267 static struct memory_bitmap *safe_highmem_bm; 2268 2269 /** 2270 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2271 * @bm: Pointer to an uninitialized memory bitmap structure. 2272 * @nr_highmem_p: Pointer to the number of highmem image pages. 2273 * 2274 * Try to allocate as many highmem pages as there are highmem image pages 2275 * (@nr_highmem_p points to the variable containing the number of highmem image 2276 * pages). The pages that are "safe" (ie. will not be overwritten when the 2277 * hibernation image is restored entirely) have the corresponding bits set in 2278 * @bm (it must be unitialized). 2279 * 2280 * NOTE: This function should not be called if there are no highmem image pages. 2281 */ 2282 static int prepare_highmem_image(struct memory_bitmap *bm, 2283 unsigned int *nr_highmem_p) 2284 { 2285 unsigned int to_alloc; 2286 2287 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2288 return -ENOMEM; 2289 2290 if (get_highmem_buffer(PG_SAFE)) 2291 return -ENOMEM; 2292 2293 to_alloc = count_free_highmem_pages(); 2294 if (to_alloc > *nr_highmem_p) 2295 to_alloc = *nr_highmem_p; 2296 else 2297 *nr_highmem_p = to_alloc; 2298 2299 safe_highmem_pages = 0; 2300 while (to_alloc-- > 0) { 2301 struct page *page; 2302 2303 page = alloc_page(__GFP_HIGHMEM); 2304 if (!swsusp_page_is_free(page)) { 2305 /* The page is "safe", set its bit the bitmap */ 2306 memory_bm_set_bit(bm, page_to_pfn(page)); 2307 safe_highmem_pages++; 2308 } 2309 /* Mark the page as allocated */ 2310 swsusp_set_page_forbidden(page); 2311 swsusp_set_page_free(page); 2312 } 2313 memory_bm_position_reset(bm); 2314 safe_highmem_bm = bm; 2315 return 0; 2316 } 2317 2318 static struct page *last_highmem_page; 2319 2320 /** 2321 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2322 * 2323 * For a given highmem image page get a buffer that suspend_write_next() should 2324 * return to its caller to write to. 2325 * 2326 * If the page is to be saved to its "original" page frame or a copy of 2327 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2328 * the copy of the page is to be made in normal memory, so the address of 2329 * the copy is returned. 2330 * 2331 * If @buffer is returned, the caller of suspend_write_next() will write 2332 * the page's contents to @buffer, so they will have to be copied to the 2333 * right location on the next call to suspend_write_next() and it is done 2334 * with the help of copy_last_highmem_page(). For this purpose, if 2335 * @buffer is returned, @last_highmem_page is set to the page to which 2336 * the data will have to be copied from @buffer. 2337 */ 2338 static void *get_highmem_page_buffer(struct page *page, 2339 struct chain_allocator *ca) 2340 { 2341 struct highmem_pbe *pbe; 2342 void *kaddr; 2343 2344 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2345 /* 2346 * We have allocated the "original" page frame and we can 2347 * use it directly to store the loaded page. 2348 */ 2349 last_highmem_page = page; 2350 return buffer; 2351 } 2352 /* 2353 * The "original" page frame has not been allocated and we have to 2354 * use a "safe" page frame to store the loaded page. 2355 */ 2356 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2357 if (!pbe) { 2358 swsusp_free(); 2359 return ERR_PTR(-ENOMEM); 2360 } 2361 pbe->orig_page = page; 2362 if (safe_highmem_pages > 0) { 2363 struct page *tmp; 2364 2365 /* Copy of the page will be stored in high memory */ 2366 kaddr = buffer; 2367 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2368 safe_highmem_pages--; 2369 last_highmem_page = tmp; 2370 pbe->copy_page = tmp; 2371 } else { 2372 /* Copy of the page will be stored in normal memory */ 2373 kaddr = safe_pages_list; 2374 safe_pages_list = safe_pages_list->next; 2375 pbe->copy_page = virt_to_page(kaddr); 2376 } 2377 pbe->next = highmem_pblist; 2378 highmem_pblist = pbe; 2379 return kaddr; 2380 } 2381 2382 /** 2383 * copy_last_highmem_page - Copy most the most recent highmem image page. 2384 * 2385 * Copy the contents of a highmem image from @buffer, where the caller of 2386 * snapshot_write_next() has stored them, to the right location represented by 2387 * @last_highmem_page . 2388 */ 2389 static void copy_last_highmem_page(void) 2390 { 2391 if (last_highmem_page) { 2392 void *dst; 2393 2394 dst = kmap_atomic(last_highmem_page); 2395 copy_page(dst, buffer); 2396 kunmap_atomic(dst); 2397 last_highmem_page = NULL; 2398 } 2399 } 2400 2401 static inline int last_highmem_page_copied(void) 2402 { 2403 return !last_highmem_page; 2404 } 2405 2406 static inline void free_highmem_data(void) 2407 { 2408 if (safe_highmem_bm) 2409 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2410 2411 if (buffer) 2412 free_image_page(buffer, PG_UNSAFE_CLEAR); 2413 } 2414 #else 2415 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2416 2417 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2418 unsigned int *nr_highmem_p) { return 0; } 2419 2420 static inline void *get_highmem_page_buffer(struct page *page, 2421 struct chain_allocator *ca) 2422 { 2423 return ERR_PTR(-EINVAL); 2424 } 2425 2426 static inline void copy_last_highmem_page(void) {} 2427 static inline int last_highmem_page_copied(void) { return 1; } 2428 static inline void free_highmem_data(void) {} 2429 #endif /* CONFIG_HIGHMEM */ 2430 2431 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2432 2433 /** 2434 * prepare_image - Make room for loading hibernation image. 2435 * @new_bm: Unitialized memory bitmap structure. 2436 * @bm: Memory bitmap with unsafe pages marked. 2437 * 2438 * Use @bm to mark the pages that will be overwritten in the process of 2439 * restoring the system memory state from the suspend image ("unsafe" pages) 2440 * and allocate memory for the image. 2441 * 2442 * The idea is to allocate a new memory bitmap first and then allocate 2443 * as many pages as needed for image data, but without specifying what those 2444 * pages will be used for just yet. Instead, we mark them all as allocated and 2445 * create a lists of "safe" pages to be used later. On systems with high 2446 * memory a list of "safe" highmem pages is created too. 2447 */ 2448 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2449 { 2450 unsigned int nr_pages, nr_highmem; 2451 struct linked_page *lp; 2452 int error; 2453 2454 /* If there is no highmem, the buffer will not be necessary */ 2455 free_image_page(buffer, PG_UNSAFE_CLEAR); 2456 buffer = NULL; 2457 2458 nr_highmem = count_highmem_image_pages(bm); 2459 mark_unsafe_pages(bm); 2460 2461 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2462 if (error) 2463 goto Free; 2464 2465 duplicate_memory_bitmap(new_bm, bm); 2466 memory_bm_free(bm, PG_UNSAFE_KEEP); 2467 if (nr_highmem > 0) { 2468 error = prepare_highmem_image(bm, &nr_highmem); 2469 if (error) 2470 goto Free; 2471 } 2472 /* 2473 * Reserve some safe pages for potential later use. 2474 * 2475 * NOTE: This way we make sure there will be enough safe pages for the 2476 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2477 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2478 * 2479 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2480 */ 2481 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2482 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2483 while (nr_pages > 0) { 2484 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2485 if (!lp) { 2486 error = -ENOMEM; 2487 goto Free; 2488 } 2489 lp->next = safe_pages_list; 2490 safe_pages_list = lp; 2491 nr_pages--; 2492 } 2493 /* Preallocate memory for the image */ 2494 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2495 while (nr_pages > 0) { 2496 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2497 if (!lp) { 2498 error = -ENOMEM; 2499 goto Free; 2500 } 2501 if (!swsusp_page_is_free(virt_to_page(lp))) { 2502 /* The page is "safe", add it to the list */ 2503 lp->next = safe_pages_list; 2504 safe_pages_list = lp; 2505 } 2506 /* Mark the page as allocated */ 2507 swsusp_set_page_forbidden(virt_to_page(lp)); 2508 swsusp_set_page_free(virt_to_page(lp)); 2509 nr_pages--; 2510 } 2511 return 0; 2512 2513 Free: 2514 swsusp_free(); 2515 return error; 2516 } 2517 2518 /** 2519 * get_buffer - Get the address to store the next image data page. 2520 * 2521 * Get the address that snapshot_write_next() should return to its caller to 2522 * write to. 2523 */ 2524 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2525 { 2526 struct pbe *pbe; 2527 struct page *page; 2528 unsigned long pfn = memory_bm_next_pfn(bm); 2529 2530 if (pfn == BM_END_OF_MAP) 2531 return ERR_PTR(-EFAULT); 2532 2533 page = pfn_to_page(pfn); 2534 if (PageHighMem(page)) 2535 return get_highmem_page_buffer(page, ca); 2536 2537 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2538 /* 2539 * We have allocated the "original" page frame and we can 2540 * use it directly to store the loaded page. 2541 */ 2542 return page_address(page); 2543 2544 /* 2545 * The "original" page frame has not been allocated and we have to 2546 * use a "safe" page frame to store the loaded page. 2547 */ 2548 pbe = chain_alloc(ca, sizeof(struct pbe)); 2549 if (!pbe) { 2550 swsusp_free(); 2551 return ERR_PTR(-ENOMEM); 2552 } 2553 pbe->orig_address = page_address(page); 2554 pbe->address = safe_pages_list; 2555 safe_pages_list = safe_pages_list->next; 2556 pbe->next = restore_pblist; 2557 restore_pblist = pbe; 2558 return pbe->address; 2559 } 2560 2561 /** 2562 * snapshot_write_next - Get the address to store the next image page. 2563 * @handle: Snapshot handle structure to guide the writing. 2564 * 2565 * On the first call, @handle should point to a zeroed snapshot_handle 2566 * structure. The structure gets populated then and a pointer to it should be 2567 * passed to this function every next time. 2568 * 2569 * On success, the function returns a positive number. Then, the caller 2570 * is allowed to write up to the returned number of bytes to the memory 2571 * location computed by the data_of() macro. 2572 * 2573 * The function returns 0 to indicate the "end of file" condition. Negative 2574 * numbers are returned on errors, in which cases the structure pointed to by 2575 * @handle is not updated and should not be used any more. 2576 */ 2577 int snapshot_write_next(struct snapshot_handle *handle) 2578 { 2579 static struct chain_allocator ca; 2580 int error = 0; 2581 2582 /* Check if we have already loaded the entire image */ 2583 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2584 return 0; 2585 2586 handle->sync_read = 1; 2587 2588 if (!handle->cur) { 2589 if (!buffer) 2590 /* This makes the buffer be freed by swsusp_free() */ 2591 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2592 2593 if (!buffer) 2594 return -ENOMEM; 2595 2596 handle->buffer = buffer; 2597 } else if (handle->cur == 1) { 2598 error = load_header(buffer); 2599 if (error) 2600 return error; 2601 2602 safe_pages_list = NULL; 2603 2604 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2605 if (error) 2606 return error; 2607 2608 /* Allocate buffer for page keys. */ 2609 error = page_key_alloc(nr_copy_pages); 2610 if (error) 2611 return error; 2612 2613 hibernate_restore_protection_begin(); 2614 } else if (handle->cur <= nr_meta_pages + 1) { 2615 error = unpack_orig_pfns(buffer, ©_bm); 2616 if (error) 2617 return error; 2618 2619 if (handle->cur == nr_meta_pages + 1) { 2620 error = prepare_image(&orig_bm, ©_bm); 2621 if (error) 2622 return error; 2623 2624 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2625 memory_bm_position_reset(&orig_bm); 2626 restore_pblist = NULL; 2627 handle->buffer = get_buffer(&orig_bm, &ca); 2628 handle->sync_read = 0; 2629 if (IS_ERR(handle->buffer)) 2630 return PTR_ERR(handle->buffer); 2631 } 2632 } else { 2633 copy_last_highmem_page(); 2634 /* Restore page key for data page (s390 only). */ 2635 page_key_write(handle->buffer); 2636 hibernate_restore_protect_page(handle->buffer); 2637 handle->buffer = get_buffer(&orig_bm, &ca); 2638 if (IS_ERR(handle->buffer)) 2639 return PTR_ERR(handle->buffer); 2640 if (handle->buffer != buffer) 2641 handle->sync_read = 0; 2642 } 2643 handle->cur++; 2644 return PAGE_SIZE; 2645 } 2646 2647 /** 2648 * snapshot_write_finalize - Complete the loading of a hibernation image. 2649 * 2650 * Must be called after the last call to snapshot_write_next() in case the last 2651 * page in the image happens to be a highmem page and its contents should be 2652 * stored in highmem. Additionally, it recycles bitmap memory that's not 2653 * necessary any more. 2654 */ 2655 void snapshot_write_finalize(struct snapshot_handle *handle) 2656 { 2657 copy_last_highmem_page(); 2658 /* Restore page key for data page (s390 only). */ 2659 page_key_write(handle->buffer); 2660 page_key_free(); 2661 hibernate_restore_protect_page(handle->buffer); 2662 /* Do that only if we have loaded the image entirely */ 2663 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2664 memory_bm_recycle(&orig_bm); 2665 free_highmem_data(); 2666 } 2667 } 2668 2669 int snapshot_image_loaded(struct snapshot_handle *handle) 2670 { 2671 return !(!nr_copy_pages || !last_highmem_page_copied() || 2672 handle->cur <= nr_meta_pages + nr_copy_pages); 2673 } 2674 2675 #ifdef CONFIG_HIGHMEM 2676 /* Assumes that @buf is ready and points to a "safe" page */ 2677 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2678 void *buf) 2679 { 2680 void *kaddr1, *kaddr2; 2681 2682 kaddr1 = kmap_atomic(p1); 2683 kaddr2 = kmap_atomic(p2); 2684 copy_page(buf, kaddr1); 2685 copy_page(kaddr1, kaddr2); 2686 copy_page(kaddr2, buf); 2687 kunmap_atomic(kaddr2); 2688 kunmap_atomic(kaddr1); 2689 } 2690 2691 /** 2692 * restore_highmem - Put highmem image pages into their original locations. 2693 * 2694 * For each highmem page that was in use before hibernation and is included in 2695 * the image, and also has been allocated by the "restore" kernel, swap its 2696 * current contents with the previous (ie. "before hibernation") ones. 2697 * 2698 * If the restore eventually fails, we can call this function once again and 2699 * restore the highmem state as seen by the restore kernel. 2700 */ 2701 int restore_highmem(void) 2702 { 2703 struct highmem_pbe *pbe = highmem_pblist; 2704 void *buf; 2705 2706 if (!pbe) 2707 return 0; 2708 2709 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2710 if (!buf) 2711 return -ENOMEM; 2712 2713 while (pbe) { 2714 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2715 pbe = pbe->next; 2716 } 2717 free_image_page(buf, PG_UNSAFE_CLEAR); 2718 return 0; 2719 } 2720 #endif /* CONFIG_HIGHMEM */ 2721