xref: /linux/kernel/power/snapshot.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 #include <linux/ktime.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <asm/io.h>
38 
39 #include "power.h"
40 
41 #ifdef CONFIG_DEBUG_RODATA
42 static bool hibernate_restore_protection;
43 static bool hibernate_restore_protection_active;
44 
45 void enable_restore_image_protection(void)
46 {
47 	hibernate_restore_protection = true;
48 }
49 
50 static inline void hibernate_restore_protection_begin(void)
51 {
52 	hibernate_restore_protection_active = hibernate_restore_protection;
53 }
54 
55 static inline void hibernate_restore_protection_end(void)
56 {
57 	hibernate_restore_protection_active = false;
58 }
59 
60 static inline void hibernate_restore_protect_page(void *page_address)
61 {
62 	if (hibernate_restore_protection_active)
63 		set_memory_ro((unsigned long)page_address, 1);
64 }
65 
66 static inline void hibernate_restore_unprotect_page(void *page_address)
67 {
68 	if (hibernate_restore_protection_active)
69 		set_memory_rw((unsigned long)page_address, 1);
70 }
71 #else
72 static inline void hibernate_restore_protection_begin(void) {}
73 static inline void hibernate_restore_protection_end(void) {}
74 static inline void hibernate_restore_protect_page(void *page_address) {}
75 static inline void hibernate_restore_unprotect_page(void *page_address) {}
76 #endif /* CONFIG_DEBUG_RODATA */
77 
78 static int swsusp_page_is_free(struct page *);
79 static void swsusp_set_page_forbidden(struct page *);
80 static void swsusp_unset_page_forbidden(struct page *);
81 
82 /*
83  * Number of bytes to reserve for memory allocations made by device drivers
84  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
85  * cause image creation to fail (tunable via /sys/power/reserved_size).
86  */
87 unsigned long reserved_size;
88 
89 void __init hibernate_reserved_size_init(void)
90 {
91 	reserved_size = SPARE_PAGES * PAGE_SIZE;
92 }
93 
94 /*
95  * Preferred image size in bytes (tunable via /sys/power/image_size).
96  * When it is set to N, swsusp will do its best to ensure the image
97  * size will not exceed N bytes, but if that is impossible, it will
98  * try to create the smallest image possible.
99  */
100 unsigned long image_size;
101 
102 void __init hibernate_image_size_init(void)
103 {
104 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
105 }
106 
107 /*
108  * List of PBEs needed for restoring the pages that were allocated before
109  * the suspend and included in the suspend image, but have also been
110  * allocated by the "resume" kernel, so their contents cannot be written
111  * directly to their "original" page frames.
112  */
113 struct pbe *restore_pblist;
114 
115 /* struct linked_page is used to build chains of pages */
116 
117 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
118 
119 struct linked_page {
120 	struct linked_page *next;
121 	char data[LINKED_PAGE_DATA_SIZE];
122 } __packed;
123 
124 /*
125  * List of "safe" pages (ie. pages that were not used by the image kernel
126  * before hibernation) that may be used as temporary storage for image kernel
127  * memory contents.
128  */
129 static struct linked_page *safe_pages_list;
130 
131 /* Pointer to an auxiliary buffer (1 page) */
132 static void *buffer;
133 
134 #define PG_ANY		0
135 #define PG_SAFE		1
136 #define PG_UNSAFE_CLEAR	1
137 #define PG_UNSAFE_KEEP	0
138 
139 static unsigned int allocated_unsafe_pages;
140 
141 /**
142  * get_image_page - Allocate a page for a hibernation image.
143  * @gfp_mask: GFP mask for the allocation.
144  * @safe_needed: Get pages that were not used before hibernation (restore only)
145  *
146  * During image restoration, for storing the PBE list and the image data, we can
147  * only use memory pages that do not conflict with the pages used before
148  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
149  * using allocated_unsafe_pages.
150  *
151  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
152  * swsusp_free() can release it.
153  */
154 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
155 {
156 	void *res;
157 
158 	res = (void *)get_zeroed_page(gfp_mask);
159 	if (safe_needed)
160 		while (res && swsusp_page_is_free(virt_to_page(res))) {
161 			/* The page is unsafe, mark it for swsusp_free() */
162 			swsusp_set_page_forbidden(virt_to_page(res));
163 			allocated_unsafe_pages++;
164 			res = (void *)get_zeroed_page(gfp_mask);
165 		}
166 	if (res) {
167 		swsusp_set_page_forbidden(virt_to_page(res));
168 		swsusp_set_page_free(virt_to_page(res));
169 	}
170 	return res;
171 }
172 
173 static void *__get_safe_page(gfp_t gfp_mask)
174 {
175 	if (safe_pages_list) {
176 		void *ret = safe_pages_list;
177 
178 		safe_pages_list = safe_pages_list->next;
179 		memset(ret, 0, PAGE_SIZE);
180 		return ret;
181 	}
182 	return get_image_page(gfp_mask, PG_SAFE);
183 }
184 
185 unsigned long get_safe_page(gfp_t gfp_mask)
186 {
187 	return (unsigned long)__get_safe_page(gfp_mask);
188 }
189 
190 static struct page *alloc_image_page(gfp_t gfp_mask)
191 {
192 	struct page *page;
193 
194 	page = alloc_page(gfp_mask);
195 	if (page) {
196 		swsusp_set_page_forbidden(page);
197 		swsusp_set_page_free(page);
198 	}
199 	return page;
200 }
201 
202 static void recycle_safe_page(void *page_address)
203 {
204 	struct linked_page *lp = page_address;
205 
206 	lp->next = safe_pages_list;
207 	safe_pages_list = lp;
208 }
209 
210 /**
211  * free_image_page - Free a page allocated for hibernation image.
212  * @addr: Address of the page to free.
213  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
214  *
215  * The page to free should have been allocated by get_image_page() (page flags
216  * set by it are affected).
217  */
218 static inline void free_image_page(void *addr, int clear_nosave_free)
219 {
220 	struct page *page;
221 
222 	BUG_ON(!virt_addr_valid(addr));
223 
224 	page = virt_to_page(addr);
225 
226 	swsusp_unset_page_forbidden(page);
227 	if (clear_nosave_free)
228 		swsusp_unset_page_free(page);
229 
230 	__free_page(page);
231 }
232 
233 static inline void free_list_of_pages(struct linked_page *list,
234 				      int clear_page_nosave)
235 {
236 	while (list) {
237 		struct linked_page *lp = list->next;
238 
239 		free_image_page(list, clear_page_nosave);
240 		list = lp;
241 	}
242 }
243 
244 /*
245  * struct chain_allocator is used for allocating small objects out of
246  * a linked list of pages called 'the chain'.
247  *
248  * The chain grows each time when there is no room for a new object in
249  * the current page.  The allocated objects cannot be freed individually.
250  * It is only possible to free them all at once, by freeing the entire
251  * chain.
252  *
253  * NOTE: The chain allocator may be inefficient if the allocated objects
254  * are not much smaller than PAGE_SIZE.
255  */
256 struct chain_allocator {
257 	struct linked_page *chain;	/* the chain */
258 	unsigned int used_space;	/* total size of objects allocated out
259 					   of the current page */
260 	gfp_t gfp_mask;		/* mask for allocating pages */
261 	int safe_needed;	/* if set, only "safe" pages are allocated */
262 };
263 
264 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
265 		       int safe_needed)
266 {
267 	ca->chain = NULL;
268 	ca->used_space = LINKED_PAGE_DATA_SIZE;
269 	ca->gfp_mask = gfp_mask;
270 	ca->safe_needed = safe_needed;
271 }
272 
273 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
274 {
275 	void *ret;
276 
277 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
278 		struct linked_page *lp;
279 
280 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
281 					get_image_page(ca->gfp_mask, PG_ANY);
282 		if (!lp)
283 			return NULL;
284 
285 		lp->next = ca->chain;
286 		ca->chain = lp;
287 		ca->used_space = 0;
288 	}
289 	ret = ca->chain->data + ca->used_space;
290 	ca->used_space += size;
291 	return ret;
292 }
293 
294 /**
295  * Data types related to memory bitmaps.
296  *
297  * Memory bitmap is a structure consiting of many linked lists of
298  * objects.  The main list's elements are of type struct zone_bitmap
299  * and each of them corresonds to one zone.  For each zone bitmap
300  * object there is a list of objects of type struct bm_block that
301  * represent each blocks of bitmap in which information is stored.
302  *
303  * struct memory_bitmap contains a pointer to the main list of zone
304  * bitmap objects, a struct bm_position used for browsing the bitmap,
305  * and a pointer to the list of pages used for allocating all of the
306  * zone bitmap objects and bitmap block objects.
307  *
308  * NOTE: It has to be possible to lay out the bitmap in memory
309  * using only allocations of order 0.  Additionally, the bitmap is
310  * designed to work with arbitrary number of zones (this is over the
311  * top for now, but let's avoid making unnecessary assumptions ;-).
312  *
313  * struct zone_bitmap contains a pointer to a list of bitmap block
314  * objects and a pointer to the bitmap block object that has been
315  * most recently used for setting bits.  Additionally, it contains the
316  * PFNs that correspond to the start and end of the represented zone.
317  *
318  * struct bm_block contains a pointer to the memory page in which
319  * information is stored (in the form of a block of bitmap)
320  * It also contains the pfns that correspond to the start and end of
321  * the represented memory area.
322  *
323  * The memory bitmap is organized as a radix tree to guarantee fast random
324  * access to the bits. There is one radix tree for each zone (as returned
325  * from create_mem_extents).
326  *
327  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
328  * two linked lists for the nodes of the tree, one for the inner nodes and
329  * one for the leave nodes. The linked leave nodes are used for fast linear
330  * access of the memory bitmap.
331  *
332  * The struct rtree_node represents one node of the radix tree.
333  */
334 
335 #define BM_END_OF_MAP	(~0UL)
336 
337 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
338 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
339 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
340 
341 /*
342  * struct rtree_node is a wrapper struct to link the nodes
343  * of the rtree together for easy linear iteration over
344  * bits and easy freeing
345  */
346 struct rtree_node {
347 	struct list_head list;
348 	unsigned long *data;
349 };
350 
351 /*
352  * struct mem_zone_bm_rtree represents a bitmap used for one
353  * populated memory zone.
354  */
355 struct mem_zone_bm_rtree {
356 	struct list_head list;		/* Link Zones together         */
357 	struct list_head nodes;		/* Radix Tree inner nodes      */
358 	struct list_head leaves;	/* Radix Tree leaves           */
359 	unsigned long start_pfn;	/* Zone start page frame       */
360 	unsigned long end_pfn;		/* Zone end page frame + 1     */
361 	struct rtree_node *rtree;	/* Radix Tree Root             */
362 	int levels;			/* Number of Radix Tree Levels */
363 	unsigned int blocks;		/* Number of Bitmap Blocks     */
364 };
365 
366 /* strcut bm_position is used for browsing memory bitmaps */
367 
368 struct bm_position {
369 	struct mem_zone_bm_rtree *zone;
370 	struct rtree_node *node;
371 	unsigned long node_pfn;
372 	int node_bit;
373 };
374 
375 struct memory_bitmap {
376 	struct list_head zones;
377 	struct linked_page *p_list;	/* list of pages used to store zone
378 					   bitmap objects and bitmap block
379 					   objects */
380 	struct bm_position cur;	/* most recently used bit position */
381 };
382 
383 /* Functions that operate on memory bitmaps */
384 
385 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
386 #if BITS_PER_LONG == 32
387 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
388 #else
389 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
390 #endif
391 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
392 
393 /**
394  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
395  *
396  * This function is used to allocate inner nodes as well as the
397  * leave nodes of the radix tree. It also adds the node to the
398  * corresponding linked list passed in by the *list parameter.
399  */
400 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
401 					   struct chain_allocator *ca,
402 					   struct list_head *list)
403 {
404 	struct rtree_node *node;
405 
406 	node = chain_alloc(ca, sizeof(struct rtree_node));
407 	if (!node)
408 		return NULL;
409 
410 	node->data = get_image_page(gfp_mask, safe_needed);
411 	if (!node->data)
412 		return NULL;
413 
414 	list_add_tail(&node->list, list);
415 
416 	return node;
417 }
418 
419 /**
420  * add_rtree_block - Add a new leave node to the radix tree.
421  *
422  * The leave nodes need to be allocated in order to keep the leaves
423  * linked list in order. This is guaranteed by the zone->blocks
424  * counter.
425  */
426 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
427 			   int safe_needed, struct chain_allocator *ca)
428 {
429 	struct rtree_node *node, *block, **dst;
430 	unsigned int levels_needed, block_nr;
431 	int i;
432 
433 	block_nr = zone->blocks;
434 	levels_needed = 0;
435 
436 	/* How many levels do we need for this block nr? */
437 	while (block_nr) {
438 		levels_needed += 1;
439 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
440 	}
441 
442 	/* Make sure the rtree has enough levels */
443 	for (i = zone->levels; i < levels_needed; i++) {
444 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
445 					&zone->nodes);
446 		if (!node)
447 			return -ENOMEM;
448 
449 		node->data[0] = (unsigned long)zone->rtree;
450 		zone->rtree = node;
451 		zone->levels += 1;
452 	}
453 
454 	/* Allocate new block */
455 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
456 	if (!block)
457 		return -ENOMEM;
458 
459 	/* Now walk the rtree to insert the block */
460 	node = zone->rtree;
461 	dst = &zone->rtree;
462 	block_nr = zone->blocks;
463 	for (i = zone->levels; i > 0; i--) {
464 		int index;
465 
466 		if (!node) {
467 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
468 						&zone->nodes);
469 			if (!node)
470 				return -ENOMEM;
471 			*dst = node;
472 		}
473 
474 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
475 		index &= BM_RTREE_LEVEL_MASK;
476 		dst = (struct rtree_node **)&((*dst)->data[index]);
477 		node = *dst;
478 	}
479 
480 	zone->blocks += 1;
481 	*dst = block;
482 
483 	return 0;
484 }
485 
486 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
487 			       int clear_nosave_free);
488 
489 /**
490  * create_zone_bm_rtree - Create a radix tree for one zone.
491  *
492  * Allocated the mem_zone_bm_rtree structure and initializes it.
493  * This function also allocated and builds the radix tree for the
494  * zone.
495  */
496 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
497 						      int safe_needed,
498 						      struct chain_allocator *ca,
499 						      unsigned long start,
500 						      unsigned long end)
501 {
502 	struct mem_zone_bm_rtree *zone;
503 	unsigned int i, nr_blocks;
504 	unsigned long pages;
505 
506 	pages = end - start;
507 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
508 	if (!zone)
509 		return NULL;
510 
511 	INIT_LIST_HEAD(&zone->nodes);
512 	INIT_LIST_HEAD(&zone->leaves);
513 	zone->start_pfn = start;
514 	zone->end_pfn = end;
515 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
516 
517 	for (i = 0; i < nr_blocks; i++) {
518 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
519 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
520 			return NULL;
521 		}
522 	}
523 
524 	return zone;
525 }
526 
527 /**
528  * free_zone_bm_rtree - Free the memory of the radix tree.
529  *
530  * Free all node pages of the radix tree. The mem_zone_bm_rtree
531  * structure itself is not freed here nor are the rtree_node
532  * structs.
533  */
534 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
535 			       int clear_nosave_free)
536 {
537 	struct rtree_node *node;
538 
539 	list_for_each_entry(node, &zone->nodes, list)
540 		free_image_page(node->data, clear_nosave_free);
541 
542 	list_for_each_entry(node, &zone->leaves, list)
543 		free_image_page(node->data, clear_nosave_free);
544 }
545 
546 static void memory_bm_position_reset(struct memory_bitmap *bm)
547 {
548 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
549 				  list);
550 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
551 				  struct rtree_node, list);
552 	bm->cur.node_pfn = 0;
553 	bm->cur.node_bit = 0;
554 }
555 
556 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
557 
558 struct mem_extent {
559 	struct list_head hook;
560 	unsigned long start;
561 	unsigned long end;
562 };
563 
564 /**
565  * free_mem_extents - Free a list of memory extents.
566  * @list: List of extents to free.
567  */
568 static void free_mem_extents(struct list_head *list)
569 {
570 	struct mem_extent *ext, *aux;
571 
572 	list_for_each_entry_safe(ext, aux, list, hook) {
573 		list_del(&ext->hook);
574 		kfree(ext);
575 	}
576 }
577 
578 /**
579  * create_mem_extents - Create a list of memory extents.
580  * @list: List to put the extents into.
581  * @gfp_mask: Mask to use for memory allocations.
582  *
583  * The extents represent contiguous ranges of PFNs.
584  */
585 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
586 {
587 	struct zone *zone;
588 
589 	INIT_LIST_HEAD(list);
590 
591 	for_each_populated_zone(zone) {
592 		unsigned long zone_start, zone_end;
593 		struct mem_extent *ext, *cur, *aux;
594 
595 		zone_start = zone->zone_start_pfn;
596 		zone_end = zone_end_pfn(zone);
597 
598 		list_for_each_entry(ext, list, hook)
599 			if (zone_start <= ext->end)
600 				break;
601 
602 		if (&ext->hook == list || zone_end < ext->start) {
603 			/* New extent is necessary */
604 			struct mem_extent *new_ext;
605 
606 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
607 			if (!new_ext) {
608 				free_mem_extents(list);
609 				return -ENOMEM;
610 			}
611 			new_ext->start = zone_start;
612 			new_ext->end = zone_end;
613 			list_add_tail(&new_ext->hook, &ext->hook);
614 			continue;
615 		}
616 
617 		/* Merge this zone's range of PFNs with the existing one */
618 		if (zone_start < ext->start)
619 			ext->start = zone_start;
620 		if (zone_end > ext->end)
621 			ext->end = zone_end;
622 
623 		/* More merging may be possible */
624 		cur = ext;
625 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
626 			if (zone_end < cur->start)
627 				break;
628 			if (zone_end < cur->end)
629 				ext->end = cur->end;
630 			list_del(&cur->hook);
631 			kfree(cur);
632 		}
633 	}
634 
635 	return 0;
636 }
637 
638 /**
639  * memory_bm_create - Allocate memory for a memory bitmap.
640  */
641 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
642 			    int safe_needed)
643 {
644 	struct chain_allocator ca;
645 	struct list_head mem_extents;
646 	struct mem_extent *ext;
647 	int error;
648 
649 	chain_init(&ca, gfp_mask, safe_needed);
650 	INIT_LIST_HEAD(&bm->zones);
651 
652 	error = create_mem_extents(&mem_extents, gfp_mask);
653 	if (error)
654 		return error;
655 
656 	list_for_each_entry(ext, &mem_extents, hook) {
657 		struct mem_zone_bm_rtree *zone;
658 
659 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
660 					    ext->start, ext->end);
661 		if (!zone) {
662 			error = -ENOMEM;
663 			goto Error;
664 		}
665 		list_add_tail(&zone->list, &bm->zones);
666 	}
667 
668 	bm->p_list = ca.chain;
669 	memory_bm_position_reset(bm);
670  Exit:
671 	free_mem_extents(&mem_extents);
672 	return error;
673 
674  Error:
675 	bm->p_list = ca.chain;
676 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
677 	goto Exit;
678 }
679 
680 /**
681  * memory_bm_free - Free memory occupied by the memory bitmap.
682  * @bm: Memory bitmap.
683  */
684 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
685 {
686 	struct mem_zone_bm_rtree *zone;
687 
688 	list_for_each_entry(zone, &bm->zones, list)
689 		free_zone_bm_rtree(zone, clear_nosave_free);
690 
691 	free_list_of_pages(bm->p_list, clear_nosave_free);
692 
693 	INIT_LIST_HEAD(&bm->zones);
694 }
695 
696 /**
697  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
698  *
699  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
700  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
701  *
702  * Walk the radix tree to find the page containing the bit that represents @pfn
703  * and return the position of the bit in @addr and @bit_nr.
704  */
705 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
706 			      void **addr, unsigned int *bit_nr)
707 {
708 	struct mem_zone_bm_rtree *curr, *zone;
709 	struct rtree_node *node;
710 	int i, block_nr;
711 
712 	zone = bm->cur.zone;
713 
714 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
715 		goto zone_found;
716 
717 	zone = NULL;
718 
719 	/* Find the right zone */
720 	list_for_each_entry(curr, &bm->zones, list) {
721 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
722 			zone = curr;
723 			break;
724 		}
725 	}
726 
727 	if (!zone)
728 		return -EFAULT;
729 
730 zone_found:
731 	/*
732 	 * We have found the zone. Now walk the radix tree to find the leaf node
733 	 * for our PFN.
734 	 */
735 	node = bm->cur.node;
736 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
737 		goto node_found;
738 
739 	node      = zone->rtree;
740 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
741 
742 	for (i = zone->levels; i > 0; i--) {
743 		int index;
744 
745 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
746 		index &= BM_RTREE_LEVEL_MASK;
747 		BUG_ON(node->data[index] == 0);
748 		node = (struct rtree_node *)node->data[index];
749 	}
750 
751 node_found:
752 	/* Update last position */
753 	bm->cur.zone = zone;
754 	bm->cur.node = node;
755 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
756 
757 	/* Set return values */
758 	*addr = node->data;
759 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
760 
761 	return 0;
762 }
763 
764 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
765 {
766 	void *addr;
767 	unsigned int bit;
768 	int error;
769 
770 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
771 	BUG_ON(error);
772 	set_bit(bit, addr);
773 }
774 
775 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
776 {
777 	void *addr;
778 	unsigned int bit;
779 	int error;
780 
781 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
782 	if (!error)
783 		set_bit(bit, addr);
784 
785 	return error;
786 }
787 
788 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
789 {
790 	void *addr;
791 	unsigned int bit;
792 	int error;
793 
794 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
795 	BUG_ON(error);
796 	clear_bit(bit, addr);
797 }
798 
799 static void memory_bm_clear_current(struct memory_bitmap *bm)
800 {
801 	int bit;
802 
803 	bit = max(bm->cur.node_bit - 1, 0);
804 	clear_bit(bit, bm->cur.node->data);
805 }
806 
807 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
808 {
809 	void *addr;
810 	unsigned int bit;
811 	int error;
812 
813 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
814 	BUG_ON(error);
815 	return test_bit(bit, addr);
816 }
817 
818 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
819 {
820 	void *addr;
821 	unsigned int bit;
822 
823 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
824 }
825 
826 /*
827  * rtree_next_node - Jump to the next leaf node.
828  *
829  * Set the position to the beginning of the next node in the
830  * memory bitmap. This is either the next node in the current
831  * zone's radix tree or the first node in the radix tree of the
832  * next zone.
833  *
834  * Return true if there is a next node, false otherwise.
835  */
836 static bool rtree_next_node(struct memory_bitmap *bm)
837 {
838 	bm->cur.node = list_entry(bm->cur.node->list.next,
839 				  struct rtree_node, list);
840 	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
841 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
842 		bm->cur.node_bit  = 0;
843 		touch_softlockup_watchdog();
844 		return true;
845 	}
846 
847 	/* No more nodes, goto next zone */
848 	bm->cur.zone = list_entry(bm->cur.zone->list.next,
849 				  struct mem_zone_bm_rtree, list);
850 	if (&bm->cur.zone->list != &bm->zones) {
851 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
852 					  struct rtree_node, list);
853 		bm->cur.node_pfn = 0;
854 		bm->cur.node_bit = 0;
855 		return true;
856 	}
857 
858 	/* No more zones */
859 	return false;
860 }
861 
862 /**
863  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
864  * @bm: Memory bitmap.
865  *
866  * Starting from the last returned position this function searches for the next
867  * set bit in @bm and returns the PFN represented by it.  If no more bits are
868  * set, BM_END_OF_MAP is returned.
869  *
870  * It is required to run memory_bm_position_reset() before the first call to
871  * this function for the given memory bitmap.
872  */
873 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
874 {
875 	unsigned long bits, pfn, pages;
876 	int bit;
877 
878 	do {
879 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
880 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
881 		bit	  = find_next_bit(bm->cur.node->data, bits,
882 					  bm->cur.node_bit);
883 		if (bit < bits) {
884 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
885 			bm->cur.node_bit = bit + 1;
886 			return pfn;
887 		}
888 	} while (rtree_next_node(bm));
889 
890 	return BM_END_OF_MAP;
891 }
892 
893 /*
894  * This structure represents a range of page frames the contents of which
895  * should not be saved during hibernation.
896  */
897 struct nosave_region {
898 	struct list_head list;
899 	unsigned long start_pfn;
900 	unsigned long end_pfn;
901 };
902 
903 static LIST_HEAD(nosave_regions);
904 
905 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
906 {
907 	struct rtree_node *node;
908 
909 	list_for_each_entry(node, &zone->nodes, list)
910 		recycle_safe_page(node->data);
911 
912 	list_for_each_entry(node, &zone->leaves, list)
913 		recycle_safe_page(node->data);
914 }
915 
916 static void memory_bm_recycle(struct memory_bitmap *bm)
917 {
918 	struct mem_zone_bm_rtree *zone;
919 	struct linked_page *p_list;
920 
921 	list_for_each_entry(zone, &bm->zones, list)
922 		recycle_zone_bm_rtree(zone);
923 
924 	p_list = bm->p_list;
925 	while (p_list) {
926 		struct linked_page *lp = p_list;
927 
928 		p_list = lp->next;
929 		recycle_safe_page(lp);
930 	}
931 }
932 
933 /**
934  * register_nosave_region - Register a region of unsaveable memory.
935  *
936  * Register a range of page frames the contents of which should not be saved
937  * during hibernation (to be used in the early initialization code).
938  */
939 void __init __register_nosave_region(unsigned long start_pfn,
940 				     unsigned long end_pfn, int use_kmalloc)
941 {
942 	struct nosave_region *region;
943 
944 	if (start_pfn >= end_pfn)
945 		return;
946 
947 	if (!list_empty(&nosave_regions)) {
948 		/* Try to extend the previous region (they should be sorted) */
949 		region = list_entry(nosave_regions.prev,
950 					struct nosave_region, list);
951 		if (region->end_pfn == start_pfn) {
952 			region->end_pfn = end_pfn;
953 			goto Report;
954 		}
955 	}
956 	if (use_kmalloc) {
957 		/* During init, this shouldn't fail */
958 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
959 		BUG_ON(!region);
960 	} else {
961 		/* This allocation cannot fail */
962 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
963 	}
964 	region->start_pfn = start_pfn;
965 	region->end_pfn = end_pfn;
966 	list_add_tail(&region->list, &nosave_regions);
967  Report:
968 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
969 		(unsigned long long) start_pfn << PAGE_SHIFT,
970 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
971 }
972 
973 /*
974  * Set bits in this map correspond to the page frames the contents of which
975  * should not be saved during the suspend.
976  */
977 static struct memory_bitmap *forbidden_pages_map;
978 
979 /* Set bits in this map correspond to free page frames. */
980 static struct memory_bitmap *free_pages_map;
981 
982 /*
983  * Each page frame allocated for creating the image is marked by setting the
984  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
985  */
986 
987 void swsusp_set_page_free(struct page *page)
988 {
989 	if (free_pages_map)
990 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
991 }
992 
993 static int swsusp_page_is_free(struct page *page)
994 {
995 	return free_pages_map ?
996 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
997 }
998 
999 void swsusp_unset_page_free(struct page *page)
1000 {
1001 	if (free_pages_map)
1002 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1003 }
1004 
1005 static void swsusp_set_page_forbidden(struct page *page)
1006 {
1007 	if (forbidden_pages_map)
1008 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1009 }
1010 
1011 int swsusp_page_is_forbidden(struct page *page)
1012 {
1013 	return forbidden_pages_map ?
1014 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1015 }
1016 
1017 static void swsusp_unset_page_forbidden(struct page *page)
1018 {
1019 	if (forbidden_pages_map)
1020 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1021 }
1022 
1023 /**
1024  * mark_nosave_pages - Mark pages that should not be saved.
1025  * @bm: Memory bitmap.
1026  *
1027  * Set the bits in @bm that correspond to the page frames the contents of which
1028  * should not be saved.
1029  */
1030 static void mark_nosave_pages(struct memory_bitmap *bm)
1031 {
1032 	struct nosave_region *region;
1033 
1034 	if (list_empty(&nosave_regions))
1035 		return;
1036 
1037 	list_for_each_entry(region, &nosave_regions, list) {
1038 		unsigned long pfn;
1039 
1040 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1041 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1042 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1043 				- 1);
1044 
1045 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1046 			if (pfn_valid(pfn)) {
1047 				/*
1048 				 * It is safe to ignore the result of
1049 				 * mem_bm_set_bit_check() here, since we won't
1050 				 * touch the PFNs for which the error is
1051 				 * returned anyway.
1052 				 */
1053 				mem_bm_set_bit_check(bm, pfn);
1054 			}
1055 	}
1056 }
1057 
1058 /**
1059  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1060  *
1061  * Create bitmaps needed for marking page frames that should not be saved and
1062  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1063  * only modified if everything goes well, because we don't want the bits to be
1064  * touched before both bitmaps are set up.
1065  */
1066 int create_basic_memory_bitmaps(void)
1067 {
1068 	struct memory_bitmap *bm1, *bm2;
1069 	int error = 0;
1070 
1071 	if (forbidden_pages_map && free_pages_map)
1072 		return 0;
1073 	else
1074 		BUG_ON(forbidden_pages_map || free_pages_map);
1075 
1076 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1077 	if (!bm1)
1078 		return -ENOMEM;
1079 
1080 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1081 	if (error)
1082 		goto Free_first_object;
1083 
1084 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1085 	if (!bm2)
1086 		goto Free_first_bitmap;
1087 
1088 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1089 	if (error)
1090 		goto Free_second_object;
1091 
1092 	forbidden_pages_map = bm1;
1093 	free_pages_map = bm2;
1094 	mark_nosave_pages(forbidden_pages_map);
1095 
1096 	pr_debug("PM: Basic memory bitmaps created\n");
1097 
1098 	return 0;
1099 
1100  Free_second_object:
1101 	kfree(bm2);
1102  Free_first_bitmap:
1103  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1104  Free_first_object:
1105 	kfree(bm1);
1106 	return -ENOMEM;
1107 }
1108 
1109 /**
1110  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1111  *
1112  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1113  * auxiliary pointers are necessary so that the bitmaps themselves are not
1114  * referred to while they are being freed.
1115  */
1116 void free_basic_memory_bitmaps(void)
1117 {
1118 	struct memory_bitmap *bm1, *bm2;
1119 
1120 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1121 		return;
1122 
1123 	bm1 = forbidden_pages_map;
1124 	bm2 = free_pages_map;
1125 	forbidden_pages_map = NULL;
1126 	free_pages_map = NULL;
1127 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1128 	kfree(bm1);
1129 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1130 	kfree(bm2);
1131 
1132 	pr_debug("PM: Basic memory bitmaps freed\n");
1133 }
1134 
1135 /**
1136  * snapshot_additional_pages - Estimate the number of extra pages needed.
1137  * @zone: Memory zone to carry out the computation for.
1138  *
1139  * Estimate the number of additional pages needed for setting up a hibernation
1140  * image data structures for @zone (usually, the returned value is greater than
1141  * the exact number).
1142  */
1143 unsigned int snapshot_additional_pages(struct zone *zone)
1144 {
1145 	unsigned int rtree, nodes;
1146 
1147 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1148 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1149 			      LINKED_PAGE_DATA_SIZE);
1150 	while (nodes > 1) {
1151 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1152 		rtree += nodes;
1153 	}
1154 
1155 	return 2 * rtree;
1156 }
1157 
1158 #ifdef CONFIG_HIGHMEM
1159 /**
1160  * count_free_highmem_pages - Compute the total number of free highmem pages.
1161  *
1162  * The returned number is system-wide.
1163  */
1164 static unsigned int count_free_highmem_pages(void)
1165 {
1166 	struct zone *zone;
1167 	unsigned int cnt = 0;
1168 
1169 	for_each_populated_zone(zone)
1170 		if (is_highmem(zone))
1171 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1172 
1173 	return cnt;
1174 }
1175 
1176 /**
1177  * saveable_highmem_page - Check if a highmem page is saveable.
1178  *
1179  * Determine whether a highmem page should be included in a hibernation image.
1180  *
1181  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1182  * and it isn't part of a free chunk of pages.
1183  */
1184 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1185 {
1186 	struct page *page;
1187 
1188 	if (!pfn_valid(pfn))
1189 		return NULL;
1190 
1191 	page = pfn_to_page(pfn);
1192 	if (page_zone(page) != zone)
1193 		return NULL;
1194 
1195 	BUG_ON(!PageHighMem(page));
1196 
1197 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1198 	    PageReserved(page))
1199 		return NULL;
1200 
1201 	if (page_is_guard(page))
1202 		return NULL;
1203 
1204 	return page;
1205 }
1206 
1207 /**
1208  * count_highmem_pages - Compute the total number of saveable highmem pages.
1209  */
1210 static unsigned int count_highmem_pages(void)
1211 {
1212 	struct zone *zone;
1213 	unsigned int n = 0;
1214 
1215 	for_each_populated_zone(zone) {
1216 		unsigned long pfn, max_zone_pfn;
1217 
1218 		if (!is_highmem(zone))
1219 			continue;
1220 
1221 		mark_free_pages(zone);
1222 		max_zone_pfn = zone_end_pfn(zone);
1223 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1224 			if (saveable_highmem_page(zone, pfn))
1225 				n++;
1226 	}
1227 	return n;
1228 }
1229 #else
1230 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1231 {
1232 	return NULL;
1233 }
1234 #endif /* CONFIG_HIGHMEM */
1235 
1236 /**
1237  * saveable_page - Check if the given page is saveable.
1238  *
1239  * Determine whether a non-highmem page should be included in a hibernation
1240  * image.
1241  *
1242  * We should save the page if it isn't Nosave, and is not in the range
1243  * of pages statically defined as 'unsaveable', and it isn't part of
1244  * a free chunk of pages.
1245  */
1246 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1247 {
1248 	struct page *page;
1249 
1250 	if (!pfn_valid(pfn))
1251 		return NULL;
1252 
1253 	page = pfn_to_page(pfn);
1254 	if (page_zone(page) != zone)
1255 		return NULL;
1256 
1257 	BUG_ON(PageHighMem(page));
1258 
1259 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1260 		return NULL;
1261 
1262 	if (PageReserved(page)
1263 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1264 		return NULL;
1265 
1266 	if (page_is_guard(page))
1267 		return NULL;
1268 
1269 	return page;
1270 }
1271 
1272 /**
1273  * count_data_pages - Compute the total number of saveable non-highmem pages.
1274  */
1275 static unsigned int count_data_pages(void)
1276 {
1277 	struct zone *zone;
1278 	unsigned long pfn, max_zone_pfn;
1279 	unsigned int n = 0;
1280 
1281 	for_each_populated_zone(zone) {
1282 		if (is_highmem(zone))
1283 			continue;
1284 
1285 		mark_free_pages(zone);
1286 		max_zone_pfn = zone_end_pfn(zone);
1287 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1288 			if (saveable_page(zone, pfn))
1289 				n++;
1290 	}
1291 	return n;
1292 }
1293 
1294 /*
1295  * This is needed, because copy_page and memcpy are not usable for copying
1296  * task structs.
1297  */
1298 static inline void do_copy_page(long *dst, long *src)
1299 {
1300 	int n;
1301 
1302 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1303 		*dst++ = *src++;
1304 }
1305 
1306 /**
1307  * safe_copy_page - Copy a page in a safe way.
1308  *
1309  * Check if the page we are going to copy is marked as present in the kernel
1310  * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1311  * and in that case kernel_page_present() always returns 'true').
1312  */
1313 static void safe_copy_page(void *dst, struct page *s_page)
1314 {
1315 	if (kernel_page_present(s_page)) {
1316 		do_copy_page(dst, page_address(s_page));
1317 	} else {
1318 		kernel_map_pages(s_page, 1, 1);
1319 		do_copy_page(dst, page_address(s_page));
1320 		kernel_map_pages(s_page, 1, 0);
1321 	}
1322 }
1323 
1324 #ifdef CONFIG_HIGHMEM
1325 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1326 {
1327 	return is_highmem(zone) ?
1328 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1329 }
1330 
1331 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1332 {
1333 	struct page *s_page, *d_page;
1334 	void *src, *dst;
1335 
1336 	s_page = pfn_to_page(src_pfn);
1337 	d_page = pfn_to_page(dst_pfn);
1338 	if (PageHighMem(s_page)) {
1339 		src = kmap_atomic(s_page);
1340 		dst = kmap_atomic(d_page);
1341 		do_copy_page(dst, src);
1342 		kunmap_atomic(dst);
1343 		kunmap_atomic(src);
1344 	} else {
1345 		if (PageHighMem(d_page)) {
1346 			/*
1347 			 * The page pointed to by src may contain some kernel
1348 			 * data modified by kmap_atomic()
1349 			 */
1350 			safe_copy_page(buffer, s_page);
1351 			dst = kmap_atomic(d_page);
1352 			copy_page(dst, buffer);
1353 			kunmap_atomic(dst);
1354 		} else {
1355 			safe_copy_page(page_address(d_page), s_page);
1356 		}
1357 	}
1358 }
1359 #else
1360 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1361 
1362 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1363 {
1364 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1365 				pfn_to_page(src_pfn));
1366 }
1367 #endif /* CONFIG_HIGHMEM */
1368 
1369 static void copy_data_pages(struct memory_bitmap *copy_bm,
1370 			    struct memory_bitmap *orig_bm)
1371 {
1372 	struct zone *zone;
1373 	unsigned long pfn;
1374 
1375 	for_each_populated_zone(zone) {
1376 		unsigned long max_zone_pfn;
1377 
1378 		mark_free_pages(zone);
1379 		max_zone_pfn = zone_end_pfn(zone);
1380 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1381 			if (page_is_saveable(zone, pfn))
1382 				memory_bm_set_bit(orig_bm, pfn);
1383 	}
1384 	memory_bm_position_reset(orig_bm);
1385 	memory_bm_position_reset(copy_bm);
1386 	for(;;) {
1387 		pfn = memory_bm_next_pfn(orig_bm);
1388 		if (unlikely(pfn == BM_END_OF_MAP))
1389 			break;
1390 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1391 	}
1392 }
1393 
1394 /* Total number of image pages */
1395 static unsigned int nr_copy_pages;
1396 /* Number of pages needed for saving the original pfns of the image pages */
1397 static unsigned int nr_meta_pages;
1398 /*
1399  * Numbers of normal and highmem page frames allocated for hibernation image
1400  * before suspending devices.
1401  */
1402 unsigned int alloc_normal, alloc_highmem;
1403 /*
1404  * Memory bitmap used for marking saveable pages (during hibernation) or
1405  * hibernation image pages (during restore)
1406  */
1407 static struct memory_bitmap orig_bm;
1408 /*
1409  * Memory bitmap used during hibernation for marking allocated page frames that
1410  * will contain copies of saveable pages.  During restore it is initially used
1411  * for marking hibernation image pages, but then the set bits from it are
1412  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1413  * used for marking "safe" highmem pages, but it has to be reinitialized for
1414  * this purpose.
1415  */
1416 static struct memory_bitmap copy_bm;
1417 
1418 /**
1419  * swsusp_free - Free pages allocated for hibernation image.
1420  *
1421  * Image pages are alocated before snapshot creation, so they need to be
1422  * released after resume.
1423  */
1424 void swsusp_free(void)
1425 {
1426 	unsigned long fb_pfn, fr_pfn;
1427 
1428 	if (!forbidden_pages_map || !free_pages_map)
1429 		goto out;
1430 
1431 	memory_bm_position_reset(forbidden_pages_map);
1432 	memory_bm_position_reset(free_pages_map);
1433 
1434 loop:
1435 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1436 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1437 
1438 	/*
1439 	 * Find the next bit set in both bitmaps. This is guaranteed to
1440 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1441 	 */
1442 	do {
1443 		if (fb_pfn < fr_pfn)
1444 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1445 		if (fr_pfn < fb_pfn)
1446 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1447 	} while (fb_pfn != fr_pfn);
1448 
1449 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1450 		struct page *page = pfn_to_page(fr_pfn);
1451 
1452 		memory_bm_clear_current(forbidden_pages_map);
1453 		memory_bm_clear_current(free_pages_map);
1454 		hibernate_restore_unprotect_page(page_address(page));
1455 		__free_page(page);
1456 		goto loop;
1457 	}
1458 
1459 out:
1460 	nr_copy_pages = 0;
1461 	nr_meta_pages = 0;
1462 	restore_pblist = NULL;
1463 	buffer = NULL;
1464 	alloc_normal = 0;
1465 	alloc_highmem = 0;
1466 	hibernate_restore_protection_end();
1467 }
1468 
1469 /* Helper functions used for the shrinking of memory. */
1470 
1471 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1472 
1473 /**
1474  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1475  * @nr_pages: Number of page frames to allocate.
1476  * @mask: GFP flags to use for the allocation.
1477  *
1478  * Return value: Number of page frames actually allocated
1479  */
1480 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1481 {
1482 	unsigned long nr_alloc = 0;
1483 
1484 	while (nr_pages > 0) {
1485 		struct page *page;
1486 
1487 		page = alloc_image_page(mask);
1488 		if (!page)
1489 			break;
1490 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1491 		if (PageHighMem(page))
1492 			alloc_highmem++;
1493 		else
1494 			alloc_normal++;
1495 		nr_pages--;
1496 		nr_alloc++;
1497 	}
1498 
1499 	return nr_alloc;
1500 }
1501 
1502 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1503 					      unsigned long avail_normal)
1504 {
1505 	unsigned long alloc;
1506 
1507 	if (avail_normal <= alloc_normal)
1508 		return 0;
1509 
1510 	alloc = avail_normal - alloc_normal;
1511 	if (nr_pages < alloc)
1512 		alloc = nr_pages;
1513 
1514 	return preallocate_image_pages(alloc, GFP_IMAGE);
1515 }
1516 
1517 #ifdef CONFIG_HIGHMEM
1518 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1519 {
1520 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1521 }
1522 
1523 /**
1524  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1525  */
1526 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1527 {
1528 	x *= multiplier;
1529 	do_div(x, base);
1530 	return (unsigned long)x;
1531 }
1532 
1533 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1534 						  unsigned long highmem,
1535 						  unsigned long total)
1536 {
1537 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1538 
1539 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1540 }
1541 #else /* CONFIG_HIGHMEM */
1542 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1543 {
1544 	return 0;
1545 }
1546 
1547 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1548 							 unsigned long highmem,
1549 							 unsigned long total)
1550 {
1551 	return 0;
1552 }
1553 #endif /* CONFIG_HIGHMEM */
1554 
1555 /**
1556  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1557  */
1558 static unsigned long free_unnecessary_pages(void)
1559 {
1560 	unsigned long save, to_free_normal, to_free_highmem, free;
1561 
1562 	save = count_data_pages();
1563 	if (alloc_normal >= save) {
1564 		to_free_normal = alloc_normal - save;
1565 		save = 0;
1566 	} else {
1567 		to_free_normal = 0;
1568 		save -= alloc_normal;
1569 	}
1570 	save += count_highmem_pages();
1571 	if (alloc_highmem >= save) {
1572 		to_free_highmem = alloc_highmem - save;
1573 	} else {
1574 		to_free_highmem = 0;
1575 		save -= alloc_highmem;
1576 		if (to_free_normal > save)
1577 			to_free_normal -= save;
1578 		else
1579 			to_free_normal = 0;
1580 	}
1581 	free = to_free_normal + to_free_highmem;
1582 
1583 	memory_bm_position_reset(&copy_bm);
1584 
1585 	while (to_free_normal > 0 || to_free_highmem > 0) {
1586 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1587 		struct page *page = pfn_to_page(pfn);
1588 
1589 		if (PageHighMem(page)) {
1590 			if (!to_free_highmem)
1591 				continue;
1592 			to_free_highmem--;
1593 			alloc_highmem--;
1594 		} else {
1595 			if (!to_free_normal)
1596 				continue;
1597 			to_free_normal--;
1598 			alloc_normal--;
1599 		}
1600 		memory_bm_clear_bit(&copy_bm, pfn);
1601 		swsusp_unset_page_forbidden(page);
1602 		swsusp_unset_page_free(page);
1603 		__free_page(page);
1604 	}
1605 
1606 	return free;
1607 }
1608 
1609 /**
1610  * minimum_image_size - Estimate the minimum acceptable size of an image.
1611  * @saveable: Number of saveable pages in the system.
1612  *
1613  * We want to avoid attempting to free too much memory too hard, so estimate the
1614  * minimum acceptable size of a hibernation image to use as the lower limit for
1615  * preallocating memory.
1616  *
1617  * We assume that the minimum image size should be proportional to
1618  *
1619  * [number of saveable pages] - [number of pages that can be freed in theory]
1620  *
1621  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1622  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1623  * minus mapped file pages.
1624  */
1625 static unsigned long minimum_image_size(unsigned long saveable)
1626 {
1627 	unsigned long size;
1628 
1629 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1630 		+ global_node_page_state(NR_ACTIVE_ANON)
1631 		+ global_node_page_state(NR_INACTIVE_ANON)
1632 		+ global_node_page_state(NR_ACTIVE_FILE)
1633 		+ global_node_page_state(NR_INACTIVE_FILE)
1634 		- global_node_page_state(NR_FILE_MAPPED);
1635 
1636 	return saveable <= size ? 0 : saveable - size;
1637 }
1638 
1639 /**
1640  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1641  *
1642  * To create a hibernation image it is necessary to make a copy of every page
1643  * frame in use.  We also need a number of page frames to be free during
1644  * hibernation for allocations made while saving the image and for device
1645  * drivers, in case they need to allocate memory from their hibernation
1646  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1647  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1648  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1649  * total number of available page frames and allocate at least
1650  *
1651  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1652  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1653  *
1654  * of them, which corresponds to the maximum size of a hibernation image.
1655  *
1656  * If image_size is set below the number following from the above formula,
1657  * the preallocation of memory is continued until the total number of saveable
1658  * pages in the system is below the requested image size or the minimum
1659  * acceptable image size returned by minimum_image_size(), whichever is greater.
1660  */
1661 int hibernate_preallocate_memory(void)
1662 {
1663 	struct zone *zone;
1664 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1665 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1666 	ktime_t start, stop;
1667 	int error;
1668 
1669 	printk(KERN_INFO "PM: Preallocating image memory... ");
1670 	start = ktime_get();
1671 
1672 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1673 	if (error)
1674 		goto err_out;
1675 
1676 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1677 	if (error)
1678 		goto err_out;
1679 
1680 	alloc_normal = 0;
1681 	alloc_highmem = 0;
1682 
1683 	/* Count the number of saveable data pages. */
1684 	save_highmem = count_highmem_pages();
1685 	saveable = count_data_pages();
1686 
1687 	/*
1688 	 * Compute the total number of page frames we can use (count) and the
1689 	 * number of pages needed for image metadata (size).
1690 	 */
1691 	count = saveable;
1692 	saveable += save_highmem;
1693 	highmem = save_highmem;
1694 	size = 0;
1695 	for_each_populated_zone(zone) {
1696 		size += snapshot_additional_pages(zone);
1697 		if (is_highmem(zone))
1698 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1699 		else
1700 			count += zone_page_state(zone, NR_FREE_PAGES);
1701 	}
1702 	avail_normal = count;
1703 	count += highmem;
1704 	count -= totalreserve_pages;
1705 
1706 	/* Add number of pages required for page keys (s390 only). */
1707 	size += page_key_additional_pages(saveable);
1708 
1709 	/* Compute the maximum number of saveable pages to leave in memory. */
1710 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1711 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1712 	/* Compute the desired number of image pages specified by image_size. */
1713 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1714 	if (size > max_size)
1715 		size = max_size;
1716 	/*
1717 	 * If the desired number of image pages is at least as large as the
1718 	 * current number of saveable pages in memory, allocate page frames for
1719 	 * the image and we're done.
1720 	 */
1721 	if (size >= saveable) {
1722 		pages = preallocate_image_highmem(save_highmem);
1723 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1724 		goto out;
1725 	}
1726 
1727 	/* Estimate the minimum size of the image. */
1728 	pages = minimum_image_size(saveable);
1729 	/*
1730 	 * To avoid excessive pressure on the normal zone, leave room in it to
1731 	 * accommodate an image of the minimum size (unless it's already too
1732 	 * small, in which case don't preallocate pages from it at all).
1733 	 */
1734 	if (avail_normal > pages)
1735 		avail_normal -= pages;
1736 	else
1737 		avail_normal = 0;
1738 	if (size < pages)
1739 		size = min_t(unsigned long, pages, max_size);
1740 
1741 	/*
1742 	 * Let the memory management subsystem know that we're going to need a
1743 	 * large number of page frames to allocate and make it free some memory.
1744 	 * NOTE: If this is not done, performance will be hurt badly in some
1745 	 * test cases.
1746 	 */
1747 	shrink_all_memory(saveable - size);
1748 
1749 	/*
1750 	 * The number of saveable pages in memory was too high, so apply some
1751 	 * pressure to decrease it.  First, make room for the largest possible
1752 	 * image and fail if that doesn't work.  Next, try to decrease the size
1753 	 * of the image as much as indicated by 'size' using allocations from
1754 	 * highmem and non-highmem zones separately.
1755 	 */
1756 	pages_highmem = preallocate_image_highmem(highmem / 2);
1757 	alloc = count - max_size;
1758 	if (alloc > pages_highmem)
1759 		alloc -= pages_highmem;
1760 	else
1761 		alloc = 0;
1762 	pages = preallocate_image_memory(alloc, avail_normal);
1763 	if (pages < alloc) {
1764 		/* We have exhausted non-highmem pages, try highmem. */
1765 		alloc -= pages;
1766 		pages += pages_highmem;
1767 		pages_highmem = preallocate_image_highmem(alloc);
1768 		if (pages_highmem < alloc)
1769 			goto err_out;
1770 		pages += pages_highmem;
1771 		/*
1772 		 * size is the desired number of saveable pages to leave in
1773 		 * memory, so try to preallocate (all memory - size) pages.
1774 		 */
1775 		alloc = (count - pages) - size;
1776 		pages += preallocate_image_highmem(alloc);
1777 	} else {
1778 		/*
1779 		 * There are approximately max_size saveable pages at this point
1780 		 * and we want to reduce this number down to size.
1781 		 */
1782 		alloc = max_size - size;
1783 		size = preallocate_highmem_fraction(alloc, highmem, count);
1784 		pages_highmem += size;
1785 		alloc -= size;
1786 		size = preallocate_image_memory(alloc, avail_normal);
1787 		pages_highmem += preallocate_image_highmem(alloc - size);
1788 		pages += pages_highmem + size;
1789 	}
1790 
1791 	/*
1792 	 * We only need as many page frames for the image as there are saveable
1793 	 * pages in memory, but we have allocated more.  Release the excessive
1794 	 * ones now.
1795 	 */
1796 	pages -= free_unnecessary_pages();
1797 
1798  out:
1799 	stop = ktime_get();
1800 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1801 	swsusp_show_speed(start, stop, pages, "Allocated");
1802 
1803 	return 0;
1804 
1805  err_out:
1806 	printk(KERN_CONT "\n");
1807 	swsusp_free();
1808 	return -ENOMEM;
1809 }
1810 
1811 #ifdef CONFIG_HIGHMEM
1812 /**
1813  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1814  *
1815  * Compute the number of non-highmem pages that will be necessary for creating
1816  * copies of highmem pages.
1817  */
1818 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1819 {
1820 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1821 
1822 	if (free_highmem >= nr_highmem)
1823 		nr_highmem = 0;
1824 	else
1825 		nr_highmem -= free_highmem;
1826 
1827 	return nr_highmem;
1828 }
1829 #else
1830 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1831 #endif /* CONFIG_HIGHMEM */
1832 
1833 /**
1834  * enough_free_mem - Check if there is enough free memory for the image.
1835  */
1836 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1837 {
1838 	struct zone *zone;
1839 	unsigned int free = alloc_normal;
1840 
1841 	for_each_populated_zone(zone)
1842 		if (!is_highmem(zone))
1843 			free += zone_page_state(zone, NR_FREE_PAGES);
1844 
1845 	nr_pages += count_pages_for_highmem(nr_highmem);
1846 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1847 		nr_pages, PAGES_FOR_IO, free);
1848 
1849 	return free > nr_pages + PAGES_FOR_IO;
1850 }
1851 
1852 #ifdef CONFIG_HIGHMEM
1853 /**
1854  * get_highmem_buffer - Allocate a buffer for highmem pages.
1855  *
1856  * If there are some highmem pages in the hibernation image, we may need a
1857  * buffer to copy them and/or load their data.
1858  */
1859 static inline int get_highmem_buffer(int safe_needed)
1860 {
1861 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1862 	return buffer ? 0 : -ENOMEM;
1863 }
1864 
1865 /**
1866  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1867  *
1868  * Try to allocate as many pages as needed, but if the number of free highmem
1869  * pages is less than that, allocate them all.
1870  */
1871 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1872 					       unsigned int nr_highmem)
1873 {
1874 	unsigned int to_alloc = count_free_highmem_pages();
1875 
1876 	if (to_alloc > nr_highmem)
1877 		to_alloc = nr_highmem;
1878 
1879 	nr_highmem -= to_alloc;
1880 	while (to_alloc-- > 0) {
1881 		struct page *page;
1882 
1883 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1884 		memory_bm_set_bit(bm, page_to_pfn(page));
1885 	}
1886 	return nr_highmem;
1887 }
1888 #else
1889 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1890 
1891 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1892 					       unsigned int n) { return 0; }
1893 #endif /* CONFIG_HIGHMEM */
1894 
1895 /**
1896  * swsusp_alloc - Allocate memory for hibernation image.
1897  *
1898  * We first try to allocate as many highmem pages as there are
1899  * saveable highmem pages in the system.  If that fails, we allocate
1900  * non-highmem pages for the copies of the remaining highmem ones.
1901  *
1902  * In this approach it is likely that the copies of highmem pages will
1903  * also be located in the high memory, because of the way in which
1904  * copy_data_pages() works.
1905  */
1906 static int swsusp_alloc(struct memory_bitmap *orig_bm,
1907 			struct memory_bitmap *copy_bm,
1908 			unsigned int nr_pages, unsigned int nr_highmem)
1909 {
1910 	if (nr_highmem > 0) {
1911 		if (get_highmem_buffer(PG_ANY))
1912 			goto err_out;
1913 		if (nr_highmem > alloc_highmem) {
1914 			nr_highmem -= alloc_highmem;
1915 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1916 		}
1917 	}
1918 	if (nr_pages > alloc_normal) {
1919 		nr_pages -= alloc_normal;
1920 		while (nr_pages-- > 0) {
1921 			struct page *page;
1922 
1923 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1924 			if (!page)
1925 				goto err_out;
1926 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1927 		}
1928 	}
1929 
1930 	return 0;
1931 
1932  err_out:
1933 	swsusp_free();
1934 	return -ENOMEM;
1935 }
1936 
1937 asmlinkage __visible int swsusp_save(void)
1938 {
1939 	unsigned int nr_pages, nr_highmem;
1940 
1941 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1942 
1943 	drain_local_pages(NULL);
1944 	nr_pages = count_data_pages();
1945 	nr_highmem = count_highmem_pages();
1946 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1947 
1948 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1949 		printk(KERN_ERR "PM: Not enough free memory\n");
1950 		return -ENOMEM;
1951 	}
1952 
1953 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1954 		printk(KERN_ERR "PM: Memory allocation failed\n");
1955 		return -ENOMEM;
1956 	}
1957 
1958 	/*
1959 	 * During allocating of suspend pagedir, new cold pages may appear.
1960 	 * Kill them.
1961 	 */
1962 	drain_local_pages(NULL);
1963 	copy_data_pages(&copy_bm, &orig_bm);
1964 
1965 	/*
1966 	 * End of critical section. From now on, we can write to memory,
1967 	 * but we should not touch disk. This specially means we must _not_
1968 	 * touch swap space! Except we must write out our image of course.
1969 	 */
1970 
1971 	nr_pages += nr_highmem;
1972 	nr_copy_pages = nr_pages;
1973 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1974 
1975 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1976 		nr_pages);
1977 
1978 	return 0;
1979 }
1980 
1981 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1982 static int init_header_complete(struct swsusp_info *info)
1983 {
1984 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1985 	info->version_code = LINUX_VERSION_CODE;
1986 	return 0;
1987 }
1988 
1989 static char *check_image_kernel(struct swsusp_info *info)
1990 {
1991 	if (info->version_code != LINUX_VERSION_CODE)
1992 		return "kernel version";
1993 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1994 		return "system type";
1995 	if (strcmp(info->uts.release,init_utsname()->release))
1996 		return "kernel release";
1997 	if (strcmp(info->uts.version,init_utsname()->version))
1998 		return "version";
1999 	if (strcmp(info->uts.machine,init_utsname()->machine))
2000 		return "machine";
2001 	return NULL;
2002 }
2003 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2004 
2005 unsigned long snapshot_get_image_size(void)
2006 {
2007 	return nr_copy_pages + nr_meta_pages + 1;
2008 }
2009 
2010 static int init_header(struct swsusp_info *info)
2011 {
2012 	memset(info, 0, sizeof(struct swsusp_info));
2013 	info->num_physpages = get_num_physpages();
2014 	info->image_pages = nr_copy_pages;
2015 	info->pages = snapshot_get_image_size();
2016 	info->size = info->pages;
2017 	info->size <<= PAGE_SHIFT;
2018 	return init_header_complete(info);
2019 }
2020 
2021 /**
2022  * pack_pfns - Prepare PFNs for saving.
2023  * @bm: Memory bitmap.
2024  * @buf: Memory buffer to store the PFNs in.
2025  *
2026  * PFNs corresponding to set bits in @bm are stored in the area of memory
2027  * pointed to by @buf (1 page at a time).
2028  */
2029 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2030 {
2031 	int j;
2032 
2033 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2034 		buf[j] = memory_bm_next_pfn(bm);
2035 		if (unlikely(buf[j] == BM_END_OF_MAP))
2036 			break;
2037 		/* Save page key for data page (s390 only). */
2038 		page_key_read(buf + j);
2039 	}
2040 }
2041 
2042 /**
2043  * snapshot_read_next - Get the address to read the next image page from.
2044  * @handle: Snapshot handle to be used for the reading.
2045  *
2046  * On the first call, @handle should point to a zeroed snapshot_handle
2047  * structure.  The structure gets populated then and a pointer to it should be
2048  * passed to this function every next time.
2049  *
2050  * On success, the function returns a positive number.  Then, the caller
2051  * is allowed to read up to the returned number of bytes from the memory
2052  * location computed by the data_of() macro.
2053  *
2054  * The function returns 0 to indicate the end of the data stream condition,
2055  * and negative numbers are returned on errors.  If that happens, the structure
2056  * pointed to by @handle is not updated and should not be used any more.
2057  */
2058 int snapshot_read_next(struct snapshot_handle *handle)
2059 {
2060 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2061 		return 0;
2062 
2063 	if (!buffer) {
2064 		/* This makes the buffer be freed by swsusp_free() */
2065 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2066 		if (!buffer)
2067 			return -ENOMEM;
2068 	}
2069 	if (!handle->cur) {
2070 		int error;
2071 
2072 		error = init_header((struct swsusp_info *)buffer);
2073 		if (error)
2074 			return error;
2075 		handle->buffer = buffer;
2076 		memory_bm_position_reset(&orig_bm);
2077 		memory_bm_position_reset(&copy_bm);
2078 	} else if (handle->cur <= nr_meta_pages) {
2079 		clear_page(buffer);
2080 		pack_pfns(buffer, &orig_bm);
2081 	} else {
2082 		struct page *page;
2083 
2084 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2085 		if (PageHighMem(page)) {
2086 			/*
2087 			 * Highmem pages are copied to the buffer,
2088 			 * because we can't return with a kmapped
2089 			 * highmem page (we may not be called again).
2090 			 */
2091 			void *kaddr;
2092 
2093 			kaddr = kmap_atomic(page);
2094 			copy_page(buffer, kaddr);
2095 			kunmap_atomic(kaddr);
2096 			handle->buffer = buffer;
2097 		} else {
2098 			handle->buffer = page_address(page);
2099 		}
2100 	}
2101 	handle->cur++;
2102 	return PAGE_SIZE;
2103 }
2104 
2105 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2106 				    struct memory_bitmap *src)
2107 {
2108 	unsigned long pfn;
2109 
2110 	memory_bm_position_reset(src);
2111 	pfn = memory_bm_next_pfn(src);
2112 	while (pfn != BM_END_OF_MAP) {
2113 		memory_bm_set_bit(dst, pfn);
2114 		pfn = memory_bm_next_pfn(src);
2115 	}
2116 }
2117 
2118 /**
2119  * mark_unsafe_pages - Mark pages that were used before hibernation.
2120  *
2121  * Mark the pages that cannot be used for storing the image during restoration,
2122  * because they conflict with the pages that had been used before hibernation.
2123  */
2124 static void mark_unsafe_pages(struct memory_bitmap *bm)
2125 {
2126 	unsigned long pfn;
2127 
2128 	/* Clear the "free"/"unsafe" bit for all PFNs */
2129 	memory_bm_position_reset(free_pages_map);
2130 	pfn = memory_bm_next_pfn(free_pages_map);
2131 	while (pfn != BM_END_OF_MAP) {
2132 		memory_bm_clear_current(free_pages_map);
2133 		pfn = memory_bm_next_pfn(free_pages_map);
2134 	}
2135 
2136 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2137 	duplicate_memory_bitmap(free_pages_map, bm);
2138 
2139 	allocated_unsafe_pages = 0;
2140 }
2141 
2142 static int check_header(struct swsusp_info *info)
2143 {
2144 	char *reason;
2145 
2146 	reason = check_image_kernel(info);
2147 	if (!reason && info->num_physpages != get_num_physpages())
2148 		reason = "memory size";
2149 	if (reason) {
2150 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2151 		return -EPERM;
2152 	}
2153 	return 0;
2154 }
2155 
2156 /**
2157  * load header - Check the image header and copy the data from it.
2158  */
2159 static int load_header(struct swsusp_info *info)
2160 {
2161 	int error;
2162 
2163 	restore_pblist = NULL;
2164 	error = check_header(info);
2165 	if (!error) {
2166 		nr_copy_pages = info->image_pages;
2167 		nr_meta_pages = info->pages - info->image_pages - 1;
2168 	}
2169 	return error;
2170 }
2171 
2172 /**
2173  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2174  * @bm: Memory bitmap.
2175  * @buf: Area of memory containing the PFNs.
2176  *
2177  * For each element of the array pointed to by @buf (1 page at a time), set the
2178  * corresponding bit in @bm.
2179  */
2180 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2181 {
2182 	int j;
2183 
2184 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2185 		if (unlikely(buf[j] == BM_END_OF_MAP))
2186 			break;
2187 
2188 		/* Extract and buffer page key for data page (s390 only). */
2189 		page_key_memorize(buf + j);
2190 
2191 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2192 			memory_bm_set_bit(bm, buf[j]);
2193 		else
2194 			return -EFAULT;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 #ifdef CONFIG_HIGHMEM
2201 /*
2202  * struct highmem_pbe is used for creating the list of highmem pages that
2203  * should be restored atomically during the resume from disk, because the page
2204  * frames they have occupied before the suspend are in use.
2205  */
2206 struct highmem_pbe {
2207 	struct page *copy_page;	/* data is here now */
2208 	struct page *orig_page;	/* data was here before the suspend */
2209 	struct highmem_pbe *next;
2210 };
2211 
2212 /*
2213  * List of highmem PBEs needed for restoring the highmem pages that were
2214  * allocated before the suspend and included in the suspend image, but have
2215  * also been allocated by the "resume" kernel, so their contents cannot be
2216  * written directly to their "original" page frames.
2217  */
2218 static struct highmem_pbe *highmem_pblist;
2219 
2220 /**
2221  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2222  * @bm: Memory bitmap.
2223  *
2224  * The bits in @bm that correspond to image pages are assumed to be set.
2225  */
2226 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2227 {
2228 	unsigned long pfn;
2229 	unsigned int cnt = 0;
2230 
2231 	memory_bm_position_reset(bm);
2232 	pfn = memory_bm_next_pfn(bm);
2233 	while (pfn != BM_END_OF_MAP) {
2234 		if (PageHighMem(pfn_to_page(pfn)))
2235 			cnt++;
2236 
2237 		pfn = memory_bm_next_pfn(bm);
2238 	}
2239 	return cnt;
2240 }
2241 
2242 static unsigned int safe_highmem_pages;
2243 
2244 static struct memory_bitmap *safe_highmem_bm;
2245 
2246 /**
2247  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2248  * @bm: Pointer to an uninitialized memory bitmap structure.
2249  * @nr_highmem_p: Pointer to the number of highmem image pages.
2250  *
2251  * Try to allocate as many highmem pages as there are highmem image pages
2252  * (@nr_highmem_p points to the variable containing the number of highmem image
2253  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2254  * hibernation image is restored entirely) have the corresponding bits set in
2255  * @bm (it must be unitialized).
2256  *
2257  * NOTE: This function should not be called if there are no highmem image pages.
2258  */
2259 static int prepare_highmem_image(struct memory_bitmap *bm,
2260 				 unsigned int *nr_highmem_p)
2261 {
2262 	unsigned int to_alloc;
2263 
2264 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2265 		return -ENOMEM;
2266 
2267 	if (get_highmem_buffer(PG_SAFE))
2268 		return -ENOMEM;
2269 
2270 	to_alloc = count_free_highmem_pages();
2271 	if (to_alloc > *nr_highmem_p)
2272 		to_alloc = *nr_highmem_p;
2273 	else
2274 		*nr_highmem_p = to_alloc;
2275 
2276 	safe_highmem_pages = 0;
2277 	while (to_alloc-- > 0) {
2278 		struct page *page;
2279 
2280 		page = alloc_page(__GFP_HIGHMEM);
2281 		if (!swsusp_page_is_free(page)) {
2282 			/* The page is "safe", set its bit the bitmap */
2283 			memory_bm_set_bit(bm, page_to_pfn(page));
2284 			safe_highmem_pages++;
2285 		}
2286 		/* Mark the page as allocated */
2287 		swsusp_set_page_forbidden(page);
2288 		swsusp_set_page_free(page);
2289 	}
2290 	memory_bm_position_reset(bm);
2291 	safe_highmem_bm = bm;
2292 	return 0;
2293 }
2294 
2295 static struct page *last_highmem_page;
2296 
2297 /**
2298  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2299  *
2300  * For a given highmem image page get a buffer that suspend_write_next() should
2301  * return to its caller to write to.
2302  *
2303  * If the page is to be saved to its "original" page frame or a copy of
2304  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2305  * the copy of the page is to be made in normal memory, so the address of
2306  * the copy is returned.
2307  *
2308  * If @buffer is returned, the caller of suspend_write_next() will write
2309  * the page's contents to @buffer, so they will have to be copied to the
2310  * right location on the next call to suspend_write_next() and it is done
2311  * with the help of copy_last_highmem_page().  For this purpose, if
2312  * @buffer is returned, @last_highmem_page is set to the page to which
2313  * the data will have to be copied from @buffer.
2314  */
2315 static void *get_highmem_page_buffer(struct page *page,
2316 				     struct chain_allocator *ca)
2317 {
2318 	struct highmem_pbe *pbe;
2319 	void *kaddr;
2320 
2321 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2322 		/*
2323 		 * We have allocated the "original" page frame and we can
2324 		 * use it directly to store the loaded page.
2325 		 */
2326 		last_highmem_page = page;
2327 		return buffer;
2328 	}
2329 	/*
2330 	 * The "original" page frame has not been allocated and we have to
2331 	 * use a "safe" page frame to store the loaded page.
2332 	 */
2333 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2334 	if (!pbe) {
2335 		swsusp_free();
2336 		return ERR_PTR(-ENOMEM);
2337 	}
2338 	pbe->orig_page = page;
2339 	if (safe_highmem_pages > 0) {
2340 		struct page *tmp;
2341 
2342 		/* Copy of the page will be stored in high memory */
2343 		kaddr = buffer;
2344 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2345 		safe_highmem_pages--;
2346 		last_highmem_page = tmp;
2347 		pbe->copy_page = tmp;
2348 	} else {
2349 		/* Copy of the page will be stored in normal memory */
2350 		kaddr = safe_pages_list;
2351 		safe_pages_list = safe_pages_list->next;
2352 		pbe->copy_page = virt_to_page(kaddr);
2353 	}
2354 	pbe->next = highmem_pblist;
2355 	highmem_pblist = pbe;
2356 	return kaddr;
2357 }
2358 
2359 /**
2360  * copy_last_highmem_page - Copy most the most recent highmem image page.
2361  *
2362  * Copy the contents of a highmem image from @buffer, where the caller of
2363  * snapshot_write_next() has stored them, to the right location represented by
2364  * @last_highmem_page .
2365  */
2366 static void copy_last_highmem_page(void)
2367 {
2368 	if (last_highmem_page) {
2369 		void *dst;
2370 
2371 		dst = kmap_atomic(last_highmem_page);
2372 		copy_page(dst, buffer);
2373 		kunmap_atomic(dst);
2374 		last_highmem_page = NULL;
2375 	}
2376 }
2377 
2378 static inline int last_highmem_page_copied(void)
2379 {
2380 	return !last_highmem_page;
2381 }
2382 
2383 static inline void free_highmem_data(void)
2384 {
2385 	if (safe_highmem_bm)
2386 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2387 
2388 	if (buffer)
2389 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2390 }
2391 #else
2392 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2393 
2394 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2395 					unsigned int *nr_highmem_p) { return 0; }
2396 
2397 static inline void *get_highmem_page_buffer(struct page *page,
2398 					    struct chain_allocator *ca)
2399 {
2400 	return ERR_PTR(-EINVAL);
2401 }
2402 
2403 static inline void copy_last_highmem_page(void) {}
2404 static inline int last_highmem_page_copied(void) { return 1; }
2405 static inline void free_highmem_data(void) {}
2406 #endif /* CONFIG_HIGHMEM */
2407 
2408 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2409 
2410 /**
2411  * prepare_image - Make room for loading hibernation image.
2412  * @new_bm: Unitialized memory bitmap structure.
2413  * @bm: Memory bitmap with unsafe pages marked.
2414  *
2415  * Use @bm to mark the pages that will be overwritten in the process of
2416  * restoring the system memory state from the suspend image ("unsafe" pages)
2417  * and allocate memory for the image.
2418  *
2419  * The idea is to allocate a new memory bitmap first and then allocate
2420  * as many pages as needed for image data, but without specifying what those
2421  * pages will be used for just yet.  Instead, we mark them all as allocated and
2422  * create a lists of "safe" pages to be used later.  On systems with high
2423  * memory a list of "safe" highmem pages is created too.
2424  */
2425 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2426 {
2427 	unsigned int nr_pages, nr_highmem;
2428 	struct linked_page *lp;
2429 	int error;
2430 
2431 	/* If there is no highmem, the buffer will not be necessary */
2432 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2433 	buffer = NULL;
2434 
2435 	nr_highmem = count_highmem_image_pages(bm);
2436 	mark_unsafe_pages(bm);
2437 
2438 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2439 	if (error)
2440 		goto Free;
2441 
2442 	duplicate_memory_bitmap(new_bm, bm);
2443 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2444 	if (nr_highmem > 0) {
2445 		error = prepare_highmem_image(bm, &nr_highmem);
2446 		if (error)
2447 			goto Free;
2448 	}
2449 	/*
2450 	 * Reserve some safe pages for potential later use.
2451 	 *
2452 	 * NOTE: This way we make sure there will be enough safe pages for the
2453 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2454 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2455 	 *
2456 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2457 	 */
2458 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2459 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2460 	while (nr_pages > 0) {
2461 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2462 		if (!lp) {
2463 			error = -ENOMEM;
2464 			goto Free;
2465 		}
2466 		lp->next = safe_pages_list;
2467 		safe_pages_list = lp;
2468 		nr_pages--;
2469 	}
2470 	/* Preallocate memory for the image */
2471 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2472 	while (nr_pages > 0) {
2473 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2474 		if (!lp) {
2475 			error = -ENOMEM;
2476 			goto Free;
2477 		}
2478 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2479 			/* The page is "safe", add it to the list */
2480 			lp->next = safe_pages_list;
2481 			safe_pages_list = lp;
2482 		}
2483 		/* Mark the page as allocated */
2484 		swsusp_set_page_forbidden(virt_to_page(lp));
2485 		swsusp_set_page_free(virt_to_page(lp));
2486 		nr_pages--;
2487 	}
2488 	return 0;
2489 
2490  Free:
2491 	swsusp_free();
2492 	return error;
2493 }
2494 
2495 /**
2496  * get_buffer - Get the address to store the next image data page.
2497  *
2498  * Get the address that snapshot_write_next() should return to its caller to
2499  * write to.
2500  */
2501 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2502 {
2503 	struct pbe *pbe;
2504 	struct page *page;
2505 	unsigned long pfn = memory_bm_next_pfn(bm);
2506 
2507 	if (pfn == BM_END_OF_MAP)
2508 		return ERR_PTR(-EFAULT);
2509 
2510 	page = pfn_to_page(pfn);
2511 	if (PageHighMem(page))
2512 		return get_highmem_page_buffer(page, ca);
2513 
2514 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2515 		/*
2516 		 * We have allocated the "original" page frame and we can
2517 		 * use it directly to store the loaded page.
2518 		 */
2519 		return page_address(page);
2520 
2521 	/*
2522 	 * The "original" page frame has not been allocated and we have to
2523 	 * use a "safe" page frame to store the loaded page.
2524 	 */
2525 	pbe = chain_alloc(ca, sizeof(struct pbe));
2526 	if (!pbe) {
2527 		swsusp_free();
2528 		return ERR_PTR(-ENOMEM);
2529 	}
2530 	pbe->orig_address = page_address(page);
2531 	pbe->address = safe_pages_list;
2532 	safe_pages_list = safe_pages_list->next;
2533 	pbe->next = restore_pblist;
2534 	restore_pblist = pbe;
2535 	return pbe->address;
2536 }
2537 
2538 /**
2539  * snapshot_write_next - Get the address to store the next image page.
2540  * @handle: Snapshot handle structure to guide the writing.
2541  *
2542  * On the first call, @handle should point to a zeroed snapshot_handle
2543  * structure.  The structure gets populated then and a pointer to it should be
2544  * passed to this function every next time.
2545  *
2546  * On success, the function returns a positive number.  Then, the caller
2547  * is allowed to write up to the returned number of bytes to the memory
2548  * location computed by the data_of() macro.
2549  *
2550  * The function returns 0 to indicate the "end of file" condition.  Negative
2551  * numbers are returned on errors, in which cases the structure pointed to by
2552  * @handle is not updated and should not be used any more.
2553  */
2554 int snapshot_write_next(struct snapshot_handle *handle)
2555 {
2556 	static struct chain_allocator ca;
2557 	int error = 0;
2558 
2559 	/* Check if we have already loaded the entire image */
2560 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2561 		return 0;
2562 
2563 	handle->sync_read = 1;
2564 
2565 	if (!handle->cur) {
2566 		if (!buffer)
2567 			/* This makes the buffer be freed by swsusp_free() */
2568 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2569 
2570 		if (!buffer)
2571 			return -ENOMEM;
2572 
2573 		handle->buffer = buffer;
2574 	} else if (handle->cur == 1) {
2575 		error = load_header(buffer);
2576 		if (error)
2577 			return error;
2578 
2579 		safe_pages_list = NULL;
2580 
2581 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2582 		if (error)
2583 			return error;
2584 
2585 		/* Allocate buffer for page keys. */
2586 		error = page_key_alloc(nr_copy_pages);
2587 		if (error)
2588 			return error;
2589 
2590 		hibernate_restore_protection_begin();
2591 	} else if (handle->cur <= nr_meta_pages + 1) {
2592 		error = unpack_orig_pfns(buffer, &copy_bm);
2593 		if (error)
2594 			return error;
2595 
2596 		if (handle->cur == nr_meta_pages + 1) {
2597 			error = prepare_image(&orig_bm, &copy_bm);
2598 			if (error)
2599 				return error;
2600 
2601 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2602 			memory_bm_position_reset(&orig_bm);
2603 			restore_pblist = NULL;
2604 			handle->buffer = get_buffer(&orig_bm, &ca);
2605 			handle->sync_read = 0;
2606 			if (IS_ERR(handle->buffer))
2607 				return PTR_ERR(handle->buffer);
2608 		}
2609 	} else {
2610 		copy_last_highmem_page();
2611 		/* Restore page key for data page (s390 only). */
2612 		page_key_write(handle->buffer);
2613 		hibernate_restore_protect_page(handle->buffer);
2614 		handle->buffer = get_buffer(&orig_bm, &ca);
2615 		if (IS_ERR(handle->buffer))
2616 			return PTR_ERR(handle->buffer);
2617 		if (handle->buffer != buffer)
2618 			handle->sync_read = 0;
2619 	}
2620 	handle->cur++;
2621 	return PAGE_SIZE;
2622 }
2623 
2624 /**
2625  * snapshot_write_finalize - Complete the loading of a hibernation image.
2626  *
2627  * Must be called after the last call to snapshot_write_next() in case the last
2628  * page in the image happens to be a highmem page and its contents should be
2629  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2630  * necessary any more.
2631  */
2632 void snapshot_write_finalize(struct snapshot_handle *handle)
2633 {
2634 	copy_last_highmem_page();
2635 	/* Restore page key for data page (s390 only). */
2636 	page_key_write(handle->buffer);
2637 	page_key_free();
2638 	hibernate_restore_protect_page(handle->buffer);
2639 	/* Do that only if we have loaded the image entirely */
2640 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2641 		memory_bm_recycle(&orig_bm);
2642 		free_highmem_data();
2643 	}
2644 }
2645 
2646 int snapshot_image_loaded(struct snapshot_handle *handle)
2647 {
2648 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2649 			handle->cur <= nr_meta_pages + nr_copy_pages);
2650 }
2651 
2652 #ifdef CONFIG_HIGHMEM
2653 /* Assumes that @buf is ready and points to a "safe" page */
2654 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2655 				       void *buf)
2656 {
2657 	void *kaddr1, *kaddr2;
2658 
2659 	kaddr1 = kmap_atomic(p1);
2660 	kaddr2 = kmap_atomic(p2);
2661 	copy_page(buf, kaddr1);
2662 	copy_page(kaddr1, kaddr2);
2663 	copy_page(kaddr2, buf);
2664 	kunmap_atomic(kaddr2);
2665 	kunmap_atomic(kaddr1);
2666 }
2667 
2668 /**
2669  * restore_highmem - Put highmem image pages into their original locations.
2670  *
2671  * For each highmem page that was in use before hibernation and is included in
2672  * the image, and also has been allocated by the "restore" kernel, swap its
2673  * current contents with the previous (ie. "before hibernation") ones.
2674  *
2675  * If the restore eventually fails, we can call this function once again and
2676  * restore the highmem state as seen by the restore kernel.
2677  */
2678 int restore_highmem(void)
2679 {
2680 	struct highmem_pbe *pbe = highmem_pblist;
2681 	void *buf;
2682 
2683 	if (!pbe)
2684 		return 0;
2685 
2686 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2687 	if (!buf)
2688 		return -ENOMEM;
2689 
2690 	while (pbe) {
2691 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2692 		pbe = pbe->next;
2693 	}
2694 	free_image_page(buf, PG_UNSAFE_CLEAR);
2695 	return 0;
2696 }
2697 #endif /* CONFIG_HIGHMEM */
2698