1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 #include <linux/compiler.h> 31 #include <linux/ktime.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/mmu_context.h> 35 #include <asm/pgtable.h> 36 #include <asm/tlbflush.h> 37 #include <asm/io.h> 38 39 #include "power.h" 40 41 #ifdef CONFIG_DEBUG_RODATA 42 static bool hibernate_restore_protection; 43 static bool hibernate_restore_protection_active; 44 45 void enable_restore_image_protection(void) 46 { 47 hibernate_restore_protection = true; 48 } 49 50 static inline void hibernate_restore_protection_begin(void) 51 { 52 hibernate_restore_protection_active = hibernate_restore_protection; 53 } 54 55 static inline void hibernate_restore_protection_end(void) 56 { 57 hibernate_restore_protection_active = false; 58 } 59 60 static inline void hibernate_restore_protect_page(void *page_address) 61 { 62 if (hibernate_restore_protection_active) 63 set_memory_ro((unsigned long)page_address, 1); 64 } 65 66 static inline void hibernate_restore_unprotect_page(void *page_address) 67 { 68 if (hibernate_restore_protection_active) 69 set_memory_rw((unsigned long)page_address, 1); 70 } 71 #else 72 static inline void hibernate_restore_protection_begin(void) {} 73 static inline void hibernate_restore_protection_end(void) {} 74 static inline void hibernate_restore_protect_page(void *page_address) {} 75 static inline void hibernate_restore_unprotect_page(void *page_address) {} 76 #endif /* CONFIG_DEBUG_RODATA */ 77 78 static int swsusp_page_is_free(struct page *); 79 static void swsusp_set_page_forbidden(struct page *); 80 static void swsusp_unset_page_forbidden(struct page *); 81 82 /* 83 * Number of bytes to reserve for memory allocations made by device drivers 84 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 85 * cause image creation to fail (tunable via /sys/power/reserved_size). 86 */ 87 unsigned long reserved_size; 88 89 void __init hibernate_reserved_size_init(void) 90 { 91 reserved_size = SPARE_PAGES * PAGE_SIZE; 92 } 93 94 /* 95 * Preferred image size in bytes (tunable via /sys/power/image_size). 96 * When it is set to N, swsusp will do its best to ensure the image 97 * size will not exceed N bytes, but if that is impossible, it will 98 * try to create the smallest image possible. 99 */ 100 unsigned long image_size; 101 102 void __init hibernate_image_size_init(void) 103 { 104 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 105 } 106 107 /* 108 * List of PBEs needed for restoring the pages that were allocated before 109 * the suspend and included in the suspend image, but have also been 110 * allocated by the "resume" kernel, so their contents cannot be written 111 * directly to their "original" page frames. 112 */ 113 struct pbe *restore_pblist; 114 115 /* struct linked_page is used to build chains of pages */ 116 117 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 118 119 struct linked_page { 120 struct linked_page *next; 121 char data[LINKED_PAGE_DATA_SIZE]; 122 } __packed; 123 124 /* 125 * List of "safe" pages (ie. pages that were not used by the image kernel 126 * before hibernation) that may be used as temporary storage for image kernel 127 * memory contents. 128 */ 129 static struct linked_page *safe_pages_list; 130 131 /* Pointer to an auxiliary buffer (1 page) */ 132 static void *buffer; 133 134 #define PG_ANY 0 135 #define PG_SAFE 1 136 #define PG_UNSAFE_CLEAR 1 137 #define PG_UNSAFE_KEEP 0 138 139 static unsigned int allocated_unsafe_pages; 140 141 /** 142 * get_image_page - Allocate a page for a hibernation image. 143 * @gfp_mask: GFP mask for the allocation. 144 * @safe_needed: Get pages that were not used before hibernation (restore only) 145 * 146 * During image restoration, for storing the PBE list and the image data, we can 147 * only use memory pages that do not conflict with the pages used before 148 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 149 * using allocated_unsafe_pages. 150 * 151 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 152 * swsusp_free() can release it. 153 */ 154 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 155 { 156 void *res; 157 158 res = (void *)get_zeroed_page(gfp_mask); 159 if (safe_needed) 160 while (res && swsusp_page_is_free(virt_to_page(res))) { 161 /* The page is unsafe, mark it for swsusp_free() */ 162 swsusp_set_page_forbidden(virt_to_page(res)); 163 allocated_unsafe_pages++; 164 res = (void *)get_zeroed_page(gfp_mask); 165 } 166 if (res) { 167 swsusp_set_page_forbidden(virt_to_page(res)); 168 swsusp_set_page_free(virt_to_page(res)); 169 } 170 return res; 171 } 172 173 static void *__get_safe_page(gfp_t gfp_mask) 174 { 175 if (safe_pages_list) { 176 void *ret = safe_pages_list; 177 178 safe_pages_list = safe_pages_list->next; 179 memset(ret, 0, PAGE_SIZE); 180 return ret; 181 } 182 return get_image_page(gfp_mask, PG_SAFE); 183 } 184 185 unsigned long get_safe_page(gfp_t gfp_mask) 186 { 187 return (unsigned long)__get_safe_page(gfp_mask); 188 } 189 190 static struct page *alloc_image_page(gfp_t gfp_mask) 191 { 192 struct page *page; 193 194 page = alloc_page(gfp_mask); 195 if (page) { 196 swsusp_set_page_forbidden(page); 197 swsusp_set_page_free(page); 198 } 199 return page; 200 } 201 202 static void recycle_safe_page(void *page_address) 203 { 204 struct linked_page *lp = page_address; 205 206 lp->next = safe_pages_list; 207 safe_pages_list = lp; 208 } 209 210 /** 211 * free_image_page - Free a page allocated for hibernation image. 212 * @addr: Address of the page to free. 213 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 214 * 215 * The page to free should have been allocated by get_image_page() (page flags 216 * set by it are affected). 217 */ 218 static inline void free_image_page(void *addr, int clear_nosave_free) 219 { 220 struct page *page; 221 222 BUG_ON(!virt_addr_valid(addr)); 223 224 page = virt_to_page(addr); 225 226 swsusp_unset_page_forbidden(page); 227 if (clear_nosave_free) 228 swsusp_unset_page_free(page); 229 230 __free_page(page); 231 } 232 233 static inline void free_list_of_pages(struct linked_page *list, 234 int clear_page_nosave) 235 { 236 while (list) { 237 struct linked_page *lp = list->next; 238 239 free_image_page(list, clear_page_nosave); 240 list = lp; 241 } 242 } 243 244 /* 245 * struct chain_allocator is used for allocating small objects out of 246 * a linked list of pages called 'the chain'. 247 * 248 * The chain grows each time when there is no room for a new object in 249 * the current page. The allocated objects cannot be freed individually. 250 * It is only possible to free them all at once, by freeing the entire 251 * chain. 252 * 253 * NOTE: The chain allocator may be inefficient if the allocated objects 254 * are not much smaller than PAGE_SIZE. 255 */ 256 struct chain_allocator { 257 struct linked_page *chain; /* the chain */ 258 unsigned int used_space; /* total size of objects allocated out 259 of the current page */ 260 gfp_t gfp_mask; /* mask for allocating pages */ 261 int safe_needed; /* if set, only "safe" pages are allocated */ 262 }; 263 264 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 265 int safe_needed) 266 { 267 ca->chain = NULL; 268 ca->used_space = LINKED_PAGE_DATA_SIZE; 269 ca->gfp_mask = gfp_mask; 270 ca->safe_needed = safe_needed; 271 } 272 273 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 274 { 275 void *ret; 276 277 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 278 struct linked_page *lp; 279 280 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 281 get_image_page(ca->gfp_mask, PG_ANY); 282 if (!lp) 283 return NULL; 284 285 lp->next = ca->chain; 286 ca->chain = lp; 287 ca->used_space = 0; 288 } 289 ret = ca->chain->data + ca->used_space; 290 ca->used_space += size; 291 return ret; 292 } 293 294 /** 295 * Data types related to memory bitmaps. 296 * 297 * Memory bitmap is a structure consiting of many linked lists of 298 * objects. The main list's elements are of type struct zone_bitmap 299 * and each of them corresonds to one zone. For each zone bitmap 300 * object there is a list of objects of type struct bm_block that 301 * represent each blocks of bitmap in which information is stored. 302 * 303 * struct memory_bitmap contains a pointer to the main list of zone 304 * bitmap objects, a struct bm_position used for browsing the bitmap, 305 * and a pointer to the list of pages used for allocating all of the 306 * zone bitmap objects and bitmap block objects. 307 * 308 * NOTE: It has to be possible to lay out the bitmap in memory 309 * using only allocations of order 0. Additionally, the bitmap is 310 * designed to work with arbitrary number of zones (this is over the 311 * top for now, but let's avoid making unnecessary assumptions ;-). 312 * 313 * struct zone_bitmap contains a pointer to a list of bitmap block 314 * objects and a pointer to the bitmap block object that has been 315 * most recently used for setting bits. Additionally, it contains the 316 * PFNs that correspond to the start and end of the represented zone. 317 * 318 * struct bm_block contains a pointer to the memory page in which 319 * information is stored (in the form of a block of bitmap) 320 * It also contains the pfns that correspond to the start and end of 321 * the represented memory area. 322 * 323 * The memory bitmap is organized as a radix tree to guarantee fast random 324 * access to the bits. There is one radix tree for each zone (as returned 325 * from create_mem_extents). 326 * 327 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 328 * two linked lists for the nodes of the tree, one for the inner nodes and 329 * one for the leave nodes. The linked leave nodes are used for fast linear 330 * access of the memory bitmap. 331 * 332 * The struct rtree_node represents one node of the radix tree. 333 */ 334 335 #define BM_END_OF_MAP (~0UL) 336 337 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 338 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 339 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 340 341 /* 342 * struct rtree_node is a wrapper struct to link the nodes 343 * of the rtree together for easy linear iteration over 344 * bits and easy freeing 345 */ 346 struct rtree_node { 347 struct list_head list; 348 unsigned long *data; 349 }; 350 351 /* 352 * struct mem_zone_bm_rtree represents a bitmap used for one 353 * populated memory zone. 354 */ 355 struct mem_zone_bm_rtree { 356 struct list_head list; /* Link Zones together */ 357 struct list_head nodes; /* Radix Tree inner nodes */ 358 struct list_head leaves; /* Radix Tree leaves */ 359 unsigned long start_pfn; /* Zone start page frame */ 360 unsigned long end_pfn; /* Zone end page frame + 1 */ 361 struct rtree_node *rtree; /* Radix Tree Root */ 362 int levels; /* Number of Radix Tree Levels */ 363 unsigned int blocks; /* Number of Bitmap Blocks */ 364 }; 365 366 /* strcut bm_position is used for browsing memory bitmaps */ 367 368 struct bm_position { 369 struct mem_zone_bm_rtree *zone; 370 struct rtree_node *node; 371 unsigned long node_pfn; 372 int node_bit; 373 }; 374 375 struct memory_bitmap { 376 struct list_head zones; 377 struct linked_page *p_list; /* list of pages used to store zone 378 bitmap objects and bitmap block 379 objects */ 380 struct bm_position cur; /* most recently used bit position */ 381 }; 382 383 /* Functions that operate on memory bitmaps */ 384 385 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 386 #if BITS_PER_LONG == 32 387 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 388 #else 389 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 390 #endif 391 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 392 393 /** 394 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 395 * 396 * This function is used to allocate inner nodes as well as the 397 * leave nodes of the radix tree. It also adds the node to the 398 * corresponding linked list passed in by the *list parameter. 399 */ 400 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 401 struct chain_allocator *ca, 402 struct list_head *list) 403 { 404 struct rtree_node *node; 405 406 node = chain_alloc(ca, sizeof(struct rtree_node)); 407 if (!node) 408 return NULL; 409 410 node->data = get_image_page(gfp_mask, safe_needed); 411 if (!node->data) 412 return NULL; 413 414 list_add_tail(&node->list, list); 415 416 return node; 417 } 418 419 /** 420 * add_rtree_block - Add a new leave node to the radix tree. 421 * 422 * The leave nodes need to be allocated in order to keep the leaves 423 * linked list in order. This is guaranteed by the zone->blocks 424 * counter. 425 */ 426 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 427 int safe_needed, struct chain_allocator *ca) 428 { 429 struct rtree_node *node, *block, **dst; 430 unsigned int levels_needed, block_nr; 431 int i; 432 433 block_nr = zone->blocks; 434 levels_needed = 0; 435 436 /* How many levels do we need for this block nr? */ 437 while (block_nr) { 438 levels_needed += 1; 439 block_nr >>= BM_RTREE_LEVEL_SHIFT; 440 } 441 442 /* Make sure the rtree has enough levels */ 443 for (i = zone->levels; i < levels_needed; i++) { 444 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 445 &zone->nodes); 446 if (!node) 447 return -ENOMEM; 448 449 node->data[0] = (unsigned long)zone->rtree; 450 zone->rtree = node; 451 zone->levels += 1; 452 } 453 454 /* Allocate new block */ 455 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 456 if (!block) 457 return -ENOMEM; 458 459 /* Now walk the rtree to insert the block */ 460 node = zone->rtree; 461 dst = &zone->rtree; 462 block_nr = zone->blocks; 463 for (i = zone->levels; i > 0; i--) { 464 int index; 465 466 if (!node) { 467 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 468 &zone->nodes); 469 if (!node) 470 return -ENOMEM; 471 *dst = node; 472 } 473 474 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 475 index &= BM_RTREE_LEVEL_MASK; 476 dst = (struct rtree_node **)&((*dst)->data[index]); 477 node = *dst; 478 } 479 480 zone->blocks += 1; 481 *dst = block; 482 483 return 0; 484 } 485 486 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 487 int clear_nosave_free); 488 489 /** 490 * create_zone_bm_rtree - Create a radix tree for one zone. 491 * 492 * Allocated the mem_zone_bm_rtree structure and initializes it. 493 * This function also allocated and builds the radix tree for the 494 * zone. 495 */ 496 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 497 int safe_needed, 498 struct chain_allocator *ca, 499 unsigned long start, 500 unsigned long end) 501 { 502 struct mem_zone_bm_rtree *zone; 503 unsigned int i, nr_blocks; 504 unsigned long pages; 505 506 pages = end - start; 507 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 508 if (!zone) 509 return NULL; 510 511 INIT_LIST_HEAD(&zone->nodes); 512 INIT_LIST_HEAD(&zone->leaves); 513 zone->start_pfn = start; 514 zone->end_pfn = end; 515 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 516 517 for (i = 0; i < nr_blocks; i++) { 518 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 519 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 520 return NULL; 521 } 522 } 523 524 return zone; 525 } 526 527 /** 528 * free_zone_bm_rtree - Free the memory of the radix tree. 529 * 530 * Free all node pages of the radix tree. The mem_zone_bm_rtree 531 * structure itself is not freed here nor are the rtree_node 532 * structs. 533 */ 534 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 535 int clear_nosave_free) 536 { 537 struct rtree_node *node; 538 539 list_for_each_entry(node, &zone->nodes, list) 540 free_image_page(node->data, clear_nosave_free); 541 542 list_for_each_entry(node, &zone->leaves, list) 543 free_image_page(node->data, clear_nosave_free); 544 } 545 546 static void memory_bm_position_reset(struct memory_bitmap *bm) 547 { 548 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 549 list); 550 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 551 struct rtree_node, list); 552 bm->cur.node_pfn = 0; 553 bm->cur.node_bit = 0; 554 } 555 556 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 557 558 struct mem_extent { 559 struct list_head hook; 560 unsigned long start; 561 unsigned long end; 562 }; 563 564 /** 565 * free_mem_extents - Free a list of memory extents. 566 * @list: List of extents to free. 567 */ 568 static void free_mem_extents(struct list_head *list) 569 { 570 struct mem_extent *ext, *aux; 571 572 list_for_each_entry_safe(ext, aux, list, hook) { 573 list_del(&ext->hook); 574 kfree(ext); 575 } 576 } 577 578 /** 579 * create_mem_extents - Create a list of memory extents. 580 * @list: List to put the extents into. 581 * @gfp_mask: Mask to use for memory allocations. 582 * 583 * The extents represent contiguous ranges of PFNs. 584 */ 585 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 586 { 587 struct zone *zone; 588 589 INIT_LIST_HEAD(list); 590 591 for_each_populated_zone(zone) { 592 unsigned long zone_start, zone_end; 593 struct mem_extent *ext, *cur, *aux; 594 595 zone_start = zone->zone_start_pfn; 596 zone_end = zone_end_pfn(zone); 597 598 list_for_each_entry(ext, list, hook) 599 if (zone_start <= ext->end) 600 break; 601 602 if (&ext->hook == list || zone_end < ext->start) { 603 /* New extent is necessary */ 604 struct mem_extent *new_ext; 605 606 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 607 if (!new_ext) { 608 free_mem_extents(list); 609 return -ENOMEM; 610 } 611 new_ext->start = zone_start; 612 new_ext->end = zone_end; 613 list_add_tail(&new_ext->hook, &ext->hook); 614 continue; 615 } 616 617 /* Merge this zone's range of PFNs with the existing one */ 618 if (zone_start < ext->start) 619 ext->start = zone_start; 620 if (zone_end > ext->end) 621 ext->end = zone_end; 622 623 /* More merging may be possible */ 624 cur = ext; 625 list_for_each_entry_safe_continue(cur, aux, list, hook) { 626 if (zone_end < cur->start) 627 break; 628 if (zone_end < cur->end) 629 ext->end = cur->end; 630 list_del(&cur->hook); 631 kfree(cur); 632 } 633 } 634 635 return 0; 636 } 637 638 /** 639 * memory_bm_create - Allocate memory for a memory bitmap. 640 */ 641 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 642 int safe_needed) 643 { 644 struct chain_allocator ca; 645 struct list_head mem_extents; 646 struct mem_extent *ext; 647 int error; 648 649 chain_init(&ca, gfp_mask, safe_needed); 650 INIT_LIST_HEAD(&bm->zones); 651 652 error = create_mem_extents(&mem_extents, gfp_mask); 653 if (error) 654 return error; 655 656 list_for_each_entry(ext, &mem_extents, hook) { 657 struct mem_zone_bm_rtree *zone; 658 659 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 660 ext->start, ext->end); 661 if (!zone) { 662 error = -ENOMEM; 663 goto Error; 664 } 665 list_add_tail(&zone->list, &bm->zones); 666 } 667 668 bm->p_list = ca.chain; 669 memory_bm_position_reset(bm); 670 Exit: 671 free_mem_extents(&mem_extents); 672 return error; 673 674 Error: 675 bm->p_list = ca.chain; 676 memory_bm_free(bm, PG_UNSAFE_CLEAR); 677 goto Exit; 678 } 679 680 /** 681 * memory_bm_free - Free memory occupied by the memory bitmap. 682 * @bm: Memory bitmap. 683 */ 684 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 685 { 686 struct mem_zone_bm_rtree *zone; 687 688 list_for_each_entry(zone, &bm->zones, list) 689 free_zone_bm_rtree(zone, clear_nosave_free); 690 691 free_list_of_pages(bm->p_list, clear_nosave_free); 692 693 INIT_LIST_HEAD(&bm->zones); 694 } 695 696 /** 697 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 698 * 699 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 700 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 701 * 702 * Walk the radix tree to find the page containing the bit that represents @pfn 703 * and return the position of the bit in @addr and @bit_nr. 704 */ 705 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 706 void **addr, unsigned int *bit_nr) 707 { 708 struct mem_zone_bm_rtree *curr, *zone; 709 struct rtree_node *node; 710 int i, block_nr; 711 712 zone = bm->cur.zone; 713 714 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 715 goto zone_found; 716 717 zone = NULL; 718 719 /* Find the right zone */ 720 list_for_each_entry(curr, &bm->zones, list) { 721 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 722 zone = curr; 723 break; 724 } 725 } 726 727 if (!zone) 728 return -EFAULT; 729 730 zone_found: 731 /* 732 * We have found the zone. Now walk the radix tree to find the leaf node 733 * for our PFN. 734 */ 735 node = bm->cur.node; 736 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 737 goto node_found; 738 739 node = zone->rtree; 740 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 741 742 for (i = zone->levels; i > 0; i--) { 743 int index; 744 745 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 746 index &= BM_RTREE_LEVEL_MASK; 747 BUG_ON(node->data[index] == 0); 748 node = (struct rtree_node *)node->data[index]; 749 } 750 751 node_found: 752 /* Update last position */ 753 bm->cur.zone = zone; 754 bm->cur.node = node; 755 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 756 757 /* Set return values */ 758 *addr = node->data; 759 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 760 761 return 0; 762 } 763 764 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 765 { 766 void *addr; 767 unsigned int bit; 768 int error; 769 770 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 771 BUG_ON(error); 772 set_bit(bit, addr); 773 } 774 775 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 776 { 777 void *addr; 778 unsigned int bit; 779 int error; 780 781 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 782 if (!error) 783 set_bit(bit, addr); 784 785 return error; 786 } 787 788 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 789 { 790 void *addr; 791 unsigned int bit; 792 int error; 793 794 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 795 BUG_ON(error); 796 clear_bit(bit, addr); 797 } 798 799 static void memory_bm_clear_current(struct memory_bitmap *bm) 800 { 801 int bit; 802 803 bit = max(bm->cur.node_bit - 1, 0); 804 clear_bit(bit, bm->cur.node->data); 805 } 806 807 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 808 { 809 void *addr; 810 unsigned int bit; 811 int error; 812 813 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 814 BUG_ON(error); 815 return test_bit(bit, addr); 816 } 817 818 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 819 { 820 void *addr; 821 unsigned int bit; 822 823 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 824 } 825 826 /* 827 * rtree_next_node - Jump to the next leaf node. 828 * 829 * Set the position to the beginning of the next node in the 830 * memory bitmap. This is either the next node in the current 831 * zone's radix tree or the first node in the radix tree of the 832 * next zone. 833 * 834 * Return true if there is a next node, false otherwise. 835 */ 836 static bool rtree_next_node(struct memory_bitmap *bm) 837 { 838 bm->cur.node = list_entry(bm->cur.node->list.next, 839 struct rtree_node, list); 840 if (&bm->cur.node->list != &bm->cur.zone->leaves) { 841 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 842 bm->cur.node_bit = 0; 843 touch_softlockup_watchdog(); 844 return true; 845 } 846 847 /* No more nodes, goto next zone */ 848 bm->cur.zone = list_entry(bm->cur.zone->list.next, 849 struct mem_zone_bm_rtree, list); 850 if (&bm->cur.zone->list != &bm->zones) { 851 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 852 struct rtree_node, list); 853 bm->cur.node_pfn = 0; 854 bm->cur.node_bit = 0; 855 return true; 856 } 857 858 /* No more zones */ 859 return false; 860 } 861 862 /** 863 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap. 864 * @bm: Memory bitmap. 865 * 866 * Starting from the last returned position this function searches for the next 867 * set bit in @bm and returns the PFN represented by it. If no more bits are 868 * set, BM_END_OF_MAP is returned. 869 * 870 * It is required to run memory_bm_position_reset() before the first call to 871 * this function for the given memory bitmap. 872 */ 873 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 874 { 875 unsigned long bits, pfn, pages; 876 int bit; 877 878 do { 879 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 880 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 881 bit = find_next_bit(bm->cur.node->data, bits, 882 bm->cur.node_bit); 883 if (bit < bits) { 884 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 885 bm->cur.node_bit = bit + 1; 886 return pfn; 887 } 888 } while (rtree_next_node(bm)); 889 890 return BM_END_OF_MAP; 891 } 892 893 /* 894 * This structure represents a range of page frames the contents of which 895 * should not be saved during hibernation. 896 */ 897 struct nosave_region { 898 struct list_head list; 899 unsigned long start_pfn; 900 unsigned long end_pfn; 901 }; 902 903 static LIST_HEAD(nosave_regions); 904 905 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 906 { 907 struct rtree_node *node; 908 909 list_for_each_entry(node, &zone->nodes, list) 910 recycle_safe_page(node->data); 911 912 list_for_each_entry(node, &zone->leaves, list) 913 recycle_safe_page(node->data); 914 } 915 916 static void memory_bm_recycle(struct memory_bitmap *bm) 917 { 918 struct mem_zone_bm_rtree *zone; 919 struct linked_page *p_list; 920 921 list_for_each_entry(zone, &bm->zones, list) 922 recycle_zone_bm_rtree(zone); 923 924 p_list = bm->p_list; 925 while (p_list) { 926 struct linked_page *lp = p_list; 927 928 p_list = lp->next; 929 recycle_safe_page(lp); 930 } 931 } 932 933 /** 934 * register_nosave_region - Register a region of unsaveable memory. 935 * 936 * Register a range of page frames the contents of which should not be saved 937 * during hibernation (to be used in the early initialization code). 938 */ 939 void __init __register_nosave_region(unsigned long start_pfn, 940 unsigned long end_pfn, int use_kmalloc) 941 { 942 struct nosave_region *region; 943 944 if (start_pfn >= end_pfn) 945 return; 946 947 if (!list_empty(&nosave_regions)) { 948 /* Try to extend the previous region (they should be sorted) */ 949 region = list_entry(nosave_regions.prev, 950 struct nosave_region, list); 951 if (region->end_pfn == start_pfn) { 952 region->end_pfn = end_pfn; 953 goto Report; 954 } 955 } 956 if (use_kmalloc) { 957 /* During init, this shouldn't fail */ 958 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 959 BUG_ON(!region); 960 } else { 961 /* This allocation cannot fail */ 962 region = memblock_virt_alloc(sizeof(struct nosave_region), 0); 963 } 964 region->start_pfn = start_pfn; 965 region->end_pfn = end_pfn; 966 list_add_tail(®ion->list, &nosave_regions); 967 Report: 968 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n", 969 (unsigned long long) start_pfn << PAGE_SHIFT, 970 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 971 } 972 973 /* 974 * Set bits in this map correspond to the page frames the contents of which 975 * should not be saved during the suspend. 976 */ 977 static struct memory_bitmap *forbidden_pages_map; 978 979 /* Set bits in this map correspond to free page frames. */ 980 static struct memory_bitmap *free_pages_map; 981 982 /* 983 * Each page frame allocated for creating the image is marked by setting the 984 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 985 */ 986 987 void swsusp_set_page_free(struct page *page) 988 { 989 if (free_pages_map) 990 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 991 } 992 993 static int swsusp_page_is_free(struct page *page) 994 { 995 return free_pages_map ? 996 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 997 } 998 999 void swsusp_unset_page_free(struct page *page) 1000 { 1001 if (free_pages_map) 1002 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1003 } 1004 1005 static void swsusp_set_page_forbidden(struct page *page) 1006 { 1007 if (forbidden_pages_map) 1008 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1009 } 1010 1011 int swsusp_page_is_forbidden(struct page *page) 1012 { 1013 return forbidden_pages_map ? 1014 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1015 } 1016 1017 static void swsusp_unset_page_forbidden(struct page *page) 1018 { 1019 if (forbidden_pages_map) 1020 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1021 } 1022 1023 /** 1024 * mark_nosave_pages - Mark pages that should not be saved. 1025 * @bm: Memory bitmap. 1026 * 1027 * Set the bits in @bm that correspond to the page frames the contents of which 1028 * should not be saved. 1029 */ 1030 static void mark_nosave_pages(struct memory_bitmap *bm) 1031 { 1032 struct nosave_region *region; 1033 1034 if (list_empty(&nosave_regions)) 1035 return; 1036 1037 list_for_each_entry(region, &nosave_regions, list) { 1038 unsigned long pfn; 1039 1040 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n", 1041 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1042 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1043 - 1); 1044 1045 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1046 if (pfn_valid(pfn)) { 1047 /* 1048 * It is safe to ignore the result of 1049 * mem_bm_set_bit_check() here, since we won't 1050 * touch the PFNs for which the error is 1051 * returned anyway. 1052 */ 1053 mem_bm_set_bit_check(bm, pfn); 1054 } 1055 } 1056 } 1057 1058 /** 1059 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1060 * 1061 * Create bitmaps needed for marking page frames that should not be saved and 1062 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1063 * only modified if everything goes well, because we don't want the bits to be 1064 * touched before both bitmaps are set up. 1065 */ 1066 int create_basic_memory_bitmaps(void) 1067 { 1068 struct memory_bitmap *bm1, *bm2; 1069 int error = 0; 1070 1071 if (forbidden_pages_map && free_pages_map) 1072 return 0; 1073 else 1074 BUG_ON(forbidden_pages_map || free_pages_map); 1075 1076 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1077 if (!bm1) 1078 return -ENOMEM; 1079 1080 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1081 if (error) 1082 goto Free_first_object; 1083 1084 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1085 if (!bm2) 1086 goto Free_first_bitmap; 1087 1088 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1089 if (error) 1090 goto Free_second_object; 1091 1092 forbidden_pages_map = bm1; 1093 free_pages_map = bm2; 1094 mark_nosave_pages(forbidden_pages_map); 1095 1096 pr_debug("PM: Basic memory bitmaps created\n"); 1097 1098 return 0; 1099 1100 Free_second_object: 1101 kfree(bm2); 1102 Free_first_bitmap: 1103 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1104 Free_first_object: 1105 kfree(bm1); 1106 return -ENOMEM; 1107 } 1108 1109 /** 1110 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1111 * 1112 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1113 * auxiliary pointers are necessary so that the bitmaps themselves are not 1114 * referred to while they are being freed. 1115 */ 1116 void free_basic_memory_bitmaps(void) 1117 { 1118 struct memory_bitmap *bm1, *bm2; 1119 1120 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1121 return; 1122 1123 bm1 = forbidden_pages_map; 1124 bm2 = free_pages_map; 1125 forbidden_pages_map = NULL; 1126 free_pages_map = NULL; 1127 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1128 kfree(bm1); 1129 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1130 kfree(bm2); 1131 1132 pr_debug("PM: Basic memory bitmaps freed\n"); 1133 } 1134 1135 /** 1136 * snapshot_additional_pages - Estimate the number of extra pages needed. 1137 * @zone: Memory zone to carry out the computation for. 1138 * 1139 * Estimate the number of additional pages needed for setting up a hibernation 1140 * image data structures for @zone (usually, the returned value is greater than 1141 * the exact number). 1142 */ 1143 unsigned int snapshot_additional_pages(struct zone *zone) 1144 { 1145 unsigned int rtree, nodes; 1146 1147 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1148 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1149 LINKED_PAGE_DATA_SIZE); 1150 while (nodes > 1) { 1151 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1152 rtree += nodes; 1153 } 1154 1155 return 2 * rtree; 1156 } 1157 1158 #ifdef CONFIG_HIGHMEM 1159 /** 1160 * count_free_highmem_pages - Compute the total number of free highmem pages. 1161 * 1162 * The returned number is system-wide. 1163 */ 1164 static unsigned int count_free_highmem_pages(void) 1165 { 1166 struct zone *zone; 1167 unsigned int cnt = 0; 1168 1169 for_each_populated_zone(zone) 1170 if (is_highmem(zone)) 1171 cnt += zone_page_state(zone, NR_FREE_PAGES); 1172 1173 return cnt; 1174 } 1175 1176 /** 1177 * saveable_highmem_page - Check if a highmem page is saveable. 1178 * 1179 * Determine whether a highmem page should be included in a hibernation image. 1180 * 1181 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1182 * and it isn't part of a free chunk of pages. 1183 */ 1184 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1185 { 1186 struct page *page; 1187 1188 if (!pfn_valid(pfn)) 1189 return NULL; 1190 1191 page = pfn_to_page(pfn); 1192 if (page_zone(page) != zone) 1193 return NULL; 1194 1195 BUG_ON(!PageHighMem(page)); 1196 1197 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 1198 PageReserved(page)) 1199 return NULL; 1200 1201 if (page_is_guard(page)) 1202 return NULL; 1203 1204 return page; 1205 } 1206 1207 /** 1208 * count_highmem_pages - Compute the total number of saveable highmem pages. 1209 */ 1210 static unsigned int count_highmem_pages(void) 1211 { 1212 struct zone *zone; 1213 unsigned int n = 0; 1214 1215 for_each_populated_zone(zone) { 1216 unsigned long pfn, max_zone_pfn; 1217 1218 if (!is_highmem(zone)) 1219 continue; 1220 1221 mark_free_pages(zone); 1222 max_zone_pfn = zone_end_pfn(zone); 1223 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1224 if (saveable_highmem_page(zone, pfn)) 1225 n++; 1226 } 1227 return n; 1228 } 1229 #else 1230 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1231 { 1232 return NULL; 1233 } 1234 #endif /* CONFIG_HIGHMEM */ 1235 1236 /** 1237 * saveable_page - Check if the given page is saveable. 1238 * 1239 * Determine whether a non-highmem page should be included in a hibernation 1240 * image. 1241 * 1242 * We should save the page if it isn't Nosave, and is not in the range 1243 * of pages statically defined as 'unsaveable', and it isn't part of 1244 * a free chunk of pages. 1245 */ 1246 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1247 { 1248 struct page *page; 1249 1250 if (!pfn_valid(pfn)) 1251 return NULL; 1252 1253 page = pfn_to_page(pfn); 1254 if (page_zone(page) != zone) 1255 return NULL; 1256 1257 BUG_ON(PageHighMem(page)); 1258 1259 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1260 return NULL; 1261 1262 if (PageReserved(page) 1263 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1264 return NULL; 1265 1266 if (page_is_guard(page)) 1267 return NULL; 1268 1269 return page; 1270 } 1271 1272 /** 1273 * count_data_pages - Compute the total number of saveable non-highmem pages. 1274 */ 1275 static unsigned int count_data_pages(void) 1276 { 1277 struct zone *zone; 1278 unsigned long pfn, max_zone_pfn; 1279 unsigned int n = 0; 1280 1281 for_each_populated_zone(zone) { 1282 if (is_highmem(zone)) 1283 continue; 1284 1285 mark_free_pages(zone); 1286 max_zone_pfn = zone_end_pfn(zone); 1287 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1288 if (saveable_page(zone, pfn)) 1289 n++; 1290 } 1291 return n; 1292 } 1293 1294 /* 1295 * This is needed, because copy_page and memcpy are not usable for copying 1296 * task structs. 1297 */ 1298 static inline void do_copy_page(long *dst, long *src) 1299 { 1300 int n; 1301 1302 for (n = PAGE_SIZE / sizeof(long); n; n--) 1303 *dst++ = *src++; 1304 } 1305 1306 /** 1307 * safe_copy_page - Copy a page in a safe way. 1308 * 1309 * Check if the page we are going to copy is marked as present in the kernel 1310 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set 1311 * and in that case kernel_page_present() always returns 'true'). 1312 */ 1313 static void safe_copy_page(void *dst, struct page *s_page) 1314 { 1315 if (kernel_page_present(s_page)) { 1316 do_copy_page(dst, page_address(s_page)); 1317 } else { 1318 kernel_map_pages(s_page, 1, 1); 1319 do_copy_page(dst, page_address(s_page)); 1320 kernel_map_pages(s_page, 1, 0); 1321 } 1322 } 1323 1324 #ifdef CONFIG_HIGHMEM 1325 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1326 { 1327 return is_highmem(zone) ? 1328 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1329 } 1330 1331 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1332 { 1333 struct page *s_page, *d_page; 1334 void *src, *dst; 1335 1336 s_page = pfn_to_page(src_pfn); 1337 d_page = pfn_to_page(dst_pfn); 1338 if (PageHighMem(s_page)) { 1339 src = kmap_atomic(s_page); 1340 dst = kmap_atomic(d_page); 1341 do_copy_page(dst, src); 1342 kunmap_atomic(dst); 1343 kunmap_atomic(src); 1344 } else { 1345 if (PageHighMem(d_page)) { 1346 /* 1347 * The page pointed to by src may contain some kernel 1348 * data modified by kmap_atomic() 1349 */ 1350 safe_copy_page(buffer, s_page); 1351 dst = kmap_atomic(d_page); 1352 copy_page(dst, buffer); 1353 kunmap_atomic(dst); 1354 } else { 1355 safe_copy_page(page_address(d_page), s_page); 1356 } 1357 } 1358 } 1359 #else 1360 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1361 1362 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1363 { 1364 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1365 pfn_to_page(src_pfn)); 1366 } 1367 #endif /* CONFIG_HIGHMEM */ 1368 1369 static void copy_data_pages(struct memory_bitmap *copy_bm, 1370 struct memory_bitmap *orig_bm) 1371 { 1372 struct zone *zone; 1373 unsigned long pfn; 1374 1375 for_each_populated_zone(zone) { 1376 unsigned long max_zone_pfn; 1377 1378 mark_free_pages(zone); 1379 max_zone_pfn = zone_end_pfn(zone); 1380 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1381 if (page_is_saveable(zone, pfn)) 1382 memory_bm_set_bit(orig_bm, pfn); 1383 } 1384 memory_bm_position_reset(orig_bm); 1385 memory_bm_position_reset(copy_bm); 1386 for(;;) { 1387 pfn = memory_bm_next_pfn(orig_bm); 1388 if (unlikely(pfn == BM_END_OF_MAP)) 1389 break; 1390 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1391 } 1392 } 1393 1394 /* Total number of image pages */ 1395 static unsigned int nr_copy_pages; 1396 /* Number of pages needed for saving the original pfns of the image pages */ 1397 static unsigned int nr_meta_pages; 1398 /* 1399 * Numbers of normal and highmem page frames allocated for hibernation image 1400 * before suspending devices. 1401 */ 1402 unsigned int alloc_normal, alloc_highmem; 1403 /* 1404 * Memory bitmap used for marking saveable pages (during hibernation) or 1405 * hibernation image pages (during restore) 1406 */ 1407 static struct memory_bitmap orig_bm; 1408 /* 1409 * Memory bitmap used during hibernation for marking allocated page frames that 1410 * will contain copies of saveable pages. During restore it is initially used 1411 * for marking hibernation image pages, but then the set bits from it are 1412 * duplicated in @orig_bm and it is released. On highmem systems it is next 1413 * used for marking "safe" highmem pages, but it has to be reinitialized for 1414 * this purpose. 1415 */ 1416 static struct memory_bitmap copy_bm; 1417 1418 /** 1419 * swsusp_free - Free pages allocated for hibernation image. 1420 * 1421 * Image pages are alocated before snapshot creation, so they need to be 1422 * released after resume. 1423 */ 1424 void swsusp_free(void) 1425 { 1426 unsigned long fb_pfn, fr_pfn; 1427 1428 if (!forbidden_pages_map || !free_pages_map) 1429 goto out; 1430 1431 memory_bm_position_reset(forbidden_pages_map); 1432 memory_bm_position_reset(free_pages_map); 1433 1434 loop: 1435 fr_pfn = memory_bm_next_pfn(free_pages_map); 1436 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1437 1438 /* 1439 * Find the next bit set in both bitmaps. This is guaranteed to 1440 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1441 */ 1442 do { 1443 if (fb_pfn < fr_pfn) 1444 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1445 if (fr_pfn < fb_pfn) 1446 fr_pfn = memory_bm_next_pfn(free_pages_map); 1447 } while (fb_pfn != fr_pfn); 1448 1449 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1450 struct page *page = pfn_to_page(fr_pfn); 1451 1452 memory_bm_clear_current(forbidden_pages_map); 1453 memory_bm_clear_current(free_pages_map); 1454 hibernate_restore_unprotect_page(page_address(page)); 1455 __free_page(page); 1456 goto loop; 1457 } 1458 1459 out: 1460 nr_copy_pages = 0; 1461 nr_meta_pages = 0; 1462 restore_pblist = NULL; 1463 buffer = NULL; 1464 alloc_normal = 0; 1465 alloc_highmem = 0; 1466 hibernate_restore_protection_end(); 1467 } 1468 1469 /* Helper functions used for the shrinking of memory. */ 1470 1471 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1472 1473 /** 1474 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1475 * @nr_pages: Number of page frames to allocate. 1476 * @mask: GFP flags to use for the allocation. 1477 * 1478 * Return value: Number of page frames actually allocated 1479 */ 1480 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1481 { 1482 unsigned long nr_alloc = 0; 1483 1484 while (nr_pages > 0) { 1485 struct page *page; 1486 1487 page = alloc_image_page(mask); 1488 if (!page) 1489 break; 1490 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1491 if (PageHighMem(page)) 1492 alloc_highmem++; 1493 else 1494 alloc_normal++; 1495 nr_pages--; 1496 nr_alloc++; 1497 } 1498 1499 return nr_alloc; 1500 } 1501 1502 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1503 unsigned long avail_normal) 1504 { 1505 unsigned long alloc; 1506 1507 if (avail_normal <= alloc_normal) 1508 return 0; 1509 1510 alloc = avail_normal - alloc_normal; 1511 if (nr_pages < alloc) 1512 alloc = nr_pages; 1513 1514 return preallocate_image_pages(alloc, GFP_IMAGE); 1515 } 1516 1517 #ifdef CONFIG_HIGHMEM 1518 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1519 { 1520 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1521 } 1522 1523 /** 1524 * __fraction - Compute (an approximation of) x * (multiplier / base). 1525 */ 1526 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1527 { 1528 x *= multiplier; 1529 do_div(x, base); 1530 return (unsigned long)x; 1531 } 1532 1533 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1534 unsigned long highmem, 1535 unsigned long total) 1536 { 1537 unsigned long alloc = __fraction(nr_pages, highmem, total); 1538 1539 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1540 } 1541 #else /* CONFIG_HIGHMEM */ 1542 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1543 { 1544 return 0; 1545 } 1546 1547 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1548 unsigned long highmem, 1549 unsigned long total) 1550 { 1551 return 0; 1552 } 1553 #endif /* CONFIG_HIGHMEM */ 1554 1555 /** 1556 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1557 */ 1558 static unsigned long free_unnecessary_pages(void) 1559 { 1560 unsigned long save, to_free_normal, to_free_highmem, free; 1561 1562 save = count_data_pages(); 1563 if (alloc_normal >= save) { 1564 to_free_normal = alloc_normal - save; 1565 save = 0; 1566 } else { 1567 to_free_normal = 0; 1568 save -= alloc_normal; 1569 } 1570 save += count_highmem_pages(); 1571 if (alloc_highmem >= save) { 1572 to_free_highmem = alloc_highmem - save; 1573 } else { 1574 to_free_highmem = 0; 1575 save -= alloc_highmem; 1576 if (to_free_normal > save) 1577 to_free_normal -= save; 1578 else 1579 to_free_normal = 0; 1580 } 1581 free = to_free_normal + to_free_highmem; 1582 1583 memory_bm_position_reset(©_bm); 1584 1585 while (to_free_normal > 0 || to_free_highmem > 0) { 1586 unsigned long pfn = memory_bm_next_pfn(©_bm); 1587 struct page *page = pfn_to_page(pfn); 1588 1589 if (PageHighMem(page)) { 1590 if (!to_free_highmem) 1591 continue; 1592 to_free_highmem--; 1593 alloc_highmem--; 1594 } else { 1595 if (!to_free_normal) 1596 continue; 1597 to_free_normal--; 1598 alloc_normal--; 1599 } 1600 memory_bm_clear_bit(©_bm, pfn); 1601 swsusp_unset_page_forbidden(page); 1602 swsusp_unset_page_free(page); 1603 __free_page(page); 1604 } 1605 1606 return free; 1607 } 1608 1609 /** 1610 * minimum_image_size - Estimate the minimum acceptable size of an image. 1611 * @saveable: Number of saveable pages in the system. 1612 * 1613 * We want to avoid attempting to free too much memory too hard, so estimate the 1614 * minimum acceptable size of a hibernation image to use as the lower limit for 1615 * preallocating memory. 1616 * 1617 * We assume that the minimum image size should be proportional to 1618 * 1619 * [number of saveable pages] - [number of pages that can be freed in theory] 1620 * 1621 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1622 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages, 1623 * minus mapped file pages. 1624 */ 1625 static unsigned long minimum_image_size(unsigned long saveable) 1626 { 1627 unsigned long size; 1628 1629 size = global_page_state(NR_SLAB_RECLAIMABLE) 1630 + global_node_page_state(NR_ACTIVE_ANON) 1631 + global_node_page_state(NR_INACTIVE_ANON) 1632 + global_node_page_state(NR_ACTIVE_FILE) 1633 + global_node_page_state(NR_INACTIVE_FILE) 1634 - global_node_page_state(NR_FILE_MAPPED); 1635 1636 return saveable <= size ? 0 : saveable - size; 1637 } 1638 1639 /** 1640 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1641 * 1642 * To create a hibernation image it is necessary to make a copy of every page 1643 * frame in use. We also need a number of page frames to be free during 1644 * hibernation for allocations made while saving the image and for device 1645 * drivers, in case they need to allocate memory from their hibernation 1646 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1647 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1648 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1649 * total number of available page frames and allocate at least 1650 * 1651 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1652 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1653 * 1654 * of them, which corresponds to the maximum size of a hibernation image. 1655 * 1656 * If image_size is set below the number following from the above formula, 1657 * the preallocation of memory is continued until the total number of saveable 1658 * pages in the system is below the requested image size or the minimum 1659 * acceptable image size returned by minimum_image_size(), whichever is greater. 1660 */ 1661 int hibernate_preallocate_memory(void) 1662 { 1663 struct zone *zone; 1664 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1665 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1666 ktime_t start, stop; 1667 int error; 1668 1669 printk(KERN_INFO "PM: Preallocating image memory... "); 1670 start = ktime_get(); 1671 1672 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1673 if (error) 1674 goto err_out; 1675 1676 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1677 if (error) 1678 goto err_out; 1679 1680 alloc_normal = 0; 1681 alloc_highmem = 0; 1682 1683 /* Count the number of saveable data pages. */ 1684 save_highmem = count_highmem_pages(); 1685 saveable = count_data_pages(); 1686 1687 /* 1688 * Compute the total number of page frames we can use (count) and the 1689 * number of pages needed for image metadata (size). 1690 */ 1691 count = saveable; 1692 saveable += save_highmem; 1693 highmem = save_highmem; 1694 size = 0; 1695 for_each_populated_zone(zone) { 1696 size += snapshot_additional_pages(zone); 1697 if (is_highmem(zone)) 1698 highmem += zone_page_state(zone, NR_FREE_PAGES); 1699 else 1700 count += zone_page_state(zone, NR_FREE_PAGES); 1701 } 1702 avail_normal = count; 1703 count += highmem; 1704 count -= totalreserve_pages; 1705 1706 /* Add number of pages required for page keys (s390 only). */ 1707 size += page_key_additional_pages(saveable); 1708 1709 /* Compute the maximum number of saveable pages to leave in memory. */ 1710 max_size = (count - (size + PAGES_FOR_IO)) / 2 1711 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1712 /* Compute the desired number of image pages specified by image_size. */ 1713 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1714 if (size > max_size) 1715 size = max_size; 1716 /* 1717 * If the desired number of image pages is at least as large as the 1718 * current number of saveable pages in memory, allocate page frames for 1719 * the image and we're done. 1720 */ 1721 if (size >= saveable) { 1722 pages = preallocate_image_highmem(save_highmem); 1723 pages += preallocate_image_memory(saveable - pages, avail_normal); 1724 goto out; 1725 } 1726 1727 /* Estimate the minimum size of the image. */ 1728 pages = minimum_image_size(saveable); 1729 /* 1730 * To avoid excessive pressure on the normal zone, leave room in it to 1731 * accommodate an image of the minimum size (unless it's already too 1732 * small, in which case don't preallocate pages from it at all). 1733 */ 1734 if (avail_normal > pages) 1735 avail_normal -= pages; 1736 else 1737 avail_normal = 0; 1738 if (size < pages) 1739 size = min_t(unsigned long, pages, max_size); 1740 1741 /* 1742 * Let the memory management subsystem know that we're going to need a 1743 * large number of page frames to allocate and make it free some memory. 1744 * NOTE: If this is not done, performance will be hurt badly in some 1745 * test cases. 1746 */ 1747 shrink_all_memory(saveable - size); 1748 1749 /* 1750 * The number of saveable pages in memory was too high, so apply some 1751 * pressure to decrease it. First, make room for the largest possible 1752 * image and fail if that doesn't work. Next, try to decrease the size 1753 * of the image as much as indicated by 'size' using allocations from 1754 * highmem and non-highmem zones separately. 1755 */ 1756 pages_highmem = preallocate_image_highmem(highmem / 2); 1757 alloc = count - max_size; 1758 if (alloc > pages_highmem) 1759 alloc -= pages_highmem; 1760 else 1761 alloc = 0; 1762 pages = preallocate_image_memory(alloc, avail_normal); 1763 if (pages < alloc) { 1764 /* We have exhausted non-highmem pages, try highmem. */ 1765 alloc -= pages; 1766 pages += pages_highmem; 1767 pages_highmem = preallocate_image_highmem(alloc); 1768 if (pages_highmem < alloc) 1769 goto err_out; 1770 pages += pages_highmem; 1771 /* 1772 * size is the desired number of saveable pages to leave in 1773 * memory, so try to preallocate (all memory - size) pages. 1774 */ 1775 alloc = (count - pages) - size; 1776 pages += preallocate_image_highmem(alloc); 1777 } else { 1778 /* 1779 * There are approximately max_size saveable pages at this point 1780 * and we want to reduce this number down to size. 1781 */ 1782 alloc = max_size - size; 1783 size = preallocate_highmem_fraction(alloc, highmem, count); 1784 pages_highmem += size; 1785 alloc -= size; 1786 size = preallocate_image_memory(alloc, avail_normal); 1787 pages_highmem += preallocate_image_highmem(alloc - size); 1788 pages += pages_highmem + size; 1789 } 1790 1791 /* 1792 * We only need as many page frames for the image as there are saveable 1793 * pages in memory, but we have allocated more. Release the excessive 1794 * ones now. 1795 */ 1796 pages -= free_unnecessary_pages(); 1797 1798 out: 1799 stop = ktime_get(); 1800 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1801 swsusp_show_speed(start, stop, pages, "Allocated"); 1802 1803 return 0; 1804 1805 err_out: 1806 printk(KERN_CONT "\n"); 1807 swsusp_free(); 1808 return -ENOMEM; 1809 } 1810 1811 #ifdef CONFIG_HIGHMEM 1812 /** 1813 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1814 * 1815 * Compute the number of non-highmem pages that will be necessary for creating 1816 * copies of highmem pages. 1817 */ 1818 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1819 { 1820 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1821 1822 if (free_highmem >= nr_highmem) 1823 nr_highmem = 0; 1824 else 1825 nr_highmem -= free_highmem; 1826 1827 return nr_highmem; 1828 } 1829 #else 1830 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1831 #endif /* CONFIG_HIGHMEM */ 1832 1833 /** 1834 * enough_free_mem - Check if there is enough free memory for the image. 1835 */ 1836 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1837 { 1838 struct zone *zone; 1839 unsigned int free = alloc_normal; 1840 1841 for_each_populated_zone(zone) 1842 if (!is_highmem(zone)) 1843 free += zone_page_state(zone, NR_FREE_PAGES); 1844 1845 nr_pages += count_pages_for_highmem(nr_highmem); 1846 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1847 nr_pages, PAGES_FOR_IO, free); 1848 1849 return free > nr_pages + PAGES_FOR_IO; 1850 } 1851 1852 #ifdef CONFIG_HIGHMEM 1853 /** 1854 * get_highmem_buffer - Allocate a buffer for highmem pages. 1855 * 1856 * If there are some highmem pages in the hibernation image, we may need a 1857 * buffer to copy them and/or load their data. 1858 */ 1859 static inline int get_highmem_buffer(int safe_needed) 1860 { 1861 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1862 return buffer ? 0 : -ENOMEM; 1863 } 1864 1865 /** 1866 * alloc_highmem_image_pages - Allocate some highmem pages for the image. 1867 * 1868 * Try to allocate as many pages as needed, but if the number of free highmem 1869 * pages is less than that, allocate them all. 1870 */ 1871 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1872 unsigned int nr_highmem) 1873 { 1874 unsigned int to_alloc = count_free_highmem_pages(); 1875 1876 if (to_alloc > nr_highmem) 1877 to_alloc = nr_highmem; 1878 1879 nr_highmem -= to_alloc; 1880 while (to_alloc-- > 0) { 1881 struct page *page; 1882 1883 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 1884 memory_bm_set_bit(bm, page_to_pfn(page)); 1885 } 1886 return nr_highmem; 1887 } 1888 #else 1889 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1890 1891 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1892 unsigned int n) { return 0; } 1893 #endif /* CONFIG_HIGHMEM */ 1894 1895 /** 1896 * swsusp_alloc - Allocate memory for hibernation image. 1897 * 1898 * We first try to allocate as many highmem pages as there are 1899 * saveable highmem pages in the system. If that fails, we allocate 1900 * non-highmem pages for the copies of the remaining highmem ones. 1901 * 1902 * In this approach it is likely that the copies of highmem pages will 1903 * also be located in the high memory, because of the way in which 1904 * copy_data_pages() works. 1905 */ 1906 static int swsusp_alloc(struct memory_bitmap *orig_bm, 1907 struct memory_bitmap *copy_bm, 1908 unsigned int nr_pages, unsigned int nr_highmem) 1909 { 1910 if (nr_highmem > 0) { 1911 if (get_highmem_buffer(PG_ANY)) 1912 goto err_out; 1913 if (nr_highmem > alloc_highmem) { 1914 nr_highmem -= alloc_highmem; 1915 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1916 } 1917 } 1918 if (nr_pages > alloc_normal) { 1919 nr_pages -= alloc_normal; 1920 while (nr_pages-- > 0) { 1921 struct page *page; 1922 1923 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1924 if (!page) 1925 goto err_out; 1926 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1927 } 1928 } 1929 1930 return 0; 1931 1932 err_out: 1933 swsusp_free(); 1934 return -ENOMEM; 1935 } 1936 1937 asmlinkage __visible int swsusp_save(void) 1938 { 1939 unsigned int nr_pages, nr_highmem; 1940 1941 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1942 1943 drain_local_pages(NULL); 1944 nr_pages = count_data_pages(); 1945 nr_highmem = count_highmem_pages(); 1946 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1947 1948 if (!enough_free_mem(nr_pages, nr_highmem)) { 1949 printk(KERN_ERR "PM: Not enough free memory\n"); 1950 return -ENOMEM; 1951 } 1952 1953 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1954 printk(KERN_ERR "PM: Memory allocation failed\n"); 1955 return -ENOMEM; 1956 } 1957 1958 /* 1959 * During allocating of suspend pagedir, new cold pages may appear. 1960 * Kill them. 1961 */ 1962 drain_local_pages(NULL); 1963 copy_data_pages(©_bm, &orig_bm); 1964 1965 /* 1966 * End of critical section. From now on, we can write to memory, 1967 * but we should not touch disk. This specially means we must _not_ 1968 * touch swap space! Except we must write out our image of course. 1969 */ 1970 1971 nr_pages += nr_highmem; 1972 nr_copy_pages = nr_pages; 1973 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1974 1975 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1976 nr_pages); 1977 1978 return 0; 1979 } 1980 1981 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1982 static int init_header_complete(struct swsusp_info *info) 1983 { 1984 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1985 info->version_code = LINUX_VERSION_CODE; 1986 return 0; 1987 } 1988 1989 static char *check_image_kernel(struct swsusp_info *info) 1990 { 1991 if (info->version_code != LINUX_VERSION_CODE) 1992 return "kernel version"; 1993 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1994 return "system type"; 1995 if (strcmp(info->uts.release,init_utsname()->release)) 1996 return "kernel release"; 1997 if (strcmp(info->uts.version,init_utsname()->version)) 1998 return "version"; 1999 if (strcmp(info->uts.machine,init_utsname()->machine)) 2000 return "machine"; 2001 return NULL; 2002 } 2003 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2004 2005 unsigned long snapshot_get_image_size(void) 2006 { 2007 return nr_copy_pages + nr_meta_pages + 1; 2008 } 2009 2010 static int init_header(struct swsusp_info *info) 2011 { 2012 memset(info, 0, sizeof(struct swsusp_info)); 2013 info->num_physpages = get_num_physpages(); 2014 info->image_pages = nr_copy_pages; 2015 info->pages = snapshot_get_image_size(); 2016 info->size = info->pages; 2017 info->size <<= PAGE_SHIFT; 2018 return init_header_complete(info); 2019 } 2020 2021 /** 2022 * pack_pfns - Prepare PFNs for saving. 2023 * @bm: Memory bitmap. 2024 * @buf: Memory buffer to store the PFNs in. 2025 * 2026 * PFNs corresponding to set bits in @bm are stored in the area of memory 2027 * pointed to by @buf (1 page at a time). 2028 */ 2029 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2030 { 2031 int j; 2032 2033 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2034 buf[j] = memory_bm_next_pfn(bm); 2035 if (unlikely(buf[j] == BM_END_OF_MAP)) 2036 break; 2037 /* Save page key for data page (s390 only). */ 2038 page_key_read(buf + j); 2039 } 2040 } 2041 2042 /** 2043 * snapshot_read_next - Get the address to read the next image page from. 2044 * @handle: Snapshot handle to be used for the reading. 2045 * 2046 * On the first call, @handle should point to a zeroed snapshot_handle 2047 * structure. The structure gets populated then and a pointer to it should be 2048 * passed to this function every next time. 2049 * 2050 * On success, the function returns a positive number. Then, the caller 2051 * is allowed to read up to the returned number of bytes from the memory 2052 * location computed by the data_of() macro. 2053 * 2054 * The function returns 0 to indicate the end of the data stream condition, 2055 * and negative numbers are returned on errors. If that happens, the structure 2056 * pointed to by @handle is not updated and should not be used any more. 2057 */ 2058 int snapshot_read_next(struct snapshot_handle *handle) 2059 { 2060 if (handle->cur > nr_meta_pages + nr_copy_pages) 2061 return 0; 2062 2063 if (!buffer) { 2064 /* This makes the buffer be freed by swsusp_free() */ 2065 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2066 if (!buffer) 2067 return -ENOMEM; 2068 } 2069 if (!handle->cur) { 2070 int error; 2071 2072 error = init_header((struct swsusp_info *)buffer); 2073 if (error) 2074 return error; 2075 handle->buffer = buffer; 2076 memory_bm_position_reset(&orig_bm); 2077 memory_bm_position_reset(©_bm); 2078 } else if (handle->cur <= nr_meta_pages) { 2079 clear_page(buffer); 2080 pack_pfns(buffer, &orig_bm); 2081 } else { 2082 struct page *page; 2083 2084 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2085 if (PageHighMem(page)) { 2086 /* 2087 * Highmem pages are copied to the buffer, 2088 * because we can't return with a kmapped 2089 * highmem page (we may not be called again). 2090 */ 2091 void *kaddr; 2092 2093 kaddr = kmap_atomic(page); 2094 copy_page(buffer, kaddr); 2095 kunmap_atomic(kaddr); 2096 handle->buffer = buffer; 2097 } else { 2098 handle->buffer = page_address(page); 2099 } 2100 } 2101 handle->cur++; 2102 return PAGE_SIZE; 2103 } 2104 2105 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2106 struct memory_bitmap *src) 2107 { 2108 unsigned long pfn; 2109 2110 memory_bm_position_reset(src); 2111 pfn = memory_bm_next_pfn(src); 2112 while (pfn != BM_END_OF_MAP) { 2113 memory_bm_set_bit(dst, pfn); 2114 pfn = memory_bm_next_pfn(src); 2115 } 2116 } 2117 2118 /** 2119 * mark_unsafe_pages - Mark pages that were used before hibernation. 2120 * 2121 * Mark the pages that cannot be used for storing the image during restoration, 2122 * because they conflict with the pages that had been used before hibernation. 2123 */ 2124 static void mark_unsafe_pages(struct memory_bitmap *bm) 2125 { 2126 unsigned long pfn; 2127 2128 /* Clear the "free"/"unsafe" bit for all PFNs */ 2129 memory_bm_position_reset(free_pages_map); 2130 pfn = memory_bm_next_pfn(free_pages_map); 2131 while (pfn != BM_END_OF_MAP) { 2132 memory_bm_clear_current(free_pages_map); 2133 pfn = memory_bm_next_pfn(free_pages_map); 2134 } 2135 2136 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2137 duplicate_memory_bitmap(free_pages_map, bm); 2138 2139 allocated_unsafe_pages = 0; 2140 } 2141 2142 static int check_header(struct swsusp_info *info) 2143 { 2144 char *reason; 2145 2146 reason = check_image_kernel(info); 2147 if (!reason && info->num_physpages != get_num_physpages()) 2148 reason = "memory size"; 2149 if (reason) { 2150 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 2151 return -EPERM; 2152 } 2153 return 0; 2154 } 2155 2156 /** 2157 * load header - Check the image header and copy the data from it. 2158 */ 2159 static int load_header(struct swsusp_info *info) 2160 { 2161 int error; 2162 2163 restore_pblist = NULL; 2164 error = check_header(info); 2165 if (!error) { 2166 nr_copy_pages = info->image_pages; 2167 nr_meta_pages = info->pages - info->image_pages - 1; 2168 } 2169 return error; 2170 } 2171 2172 /** 2173 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2174 * @bm: Memory bitmap. 2175 * @buf: Area of memory containing the PFNs. 2176 * 2177 * For each element of the array pointed to by @buf (1 page at a time), set the 2178 * corresponding bit in @bm. 2179 */ 2180 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2181 { 2182 int j; 2183 2184 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2185 if (unlikely(buf[j] == BM_END_OF_MAP)) 2186 break; 2187 2188 /* Extract and buffer page key for data page (s390 only). */ 2189 page_key_memorize(buf + j); 2190 2191 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) 2192 memory_bm_set_bit(bm, buf[j]); 2193 else 2194 return -EFAULT; 2195 } 2196 2197 return 0; 2198 } 2199 2200 #ifdef CONFIG_HIGHMEM 2201 /* 2202 * struct highmem_pbe is used for creating the list of highmem pages that 2203 * should be restored atomically during the resume from disk, because the page 2204 * frames they have occupied before the suspend are in use. 2205 */ 2206 struct highmem_pbe { 2207 struct page *copy_page; /* data is here now */ 2208 struct page *orig_page; /* data was here before the suspend */ 2209 struct highmem_pbe *next; 2210 }; 2211 2212 /* 2213 * List of highmem PBEs needed for restoring the highmem pages that were 2214 * allocated before the suspend and included in the suspend image, but have 2215 * also been allocated by the "resume" kernel, so their contents cannot be 2216 * written directly to their "original" page frames. 2217 */ 2218 static struct highmem_pbe *highmem_pblist; 2219 2220 /** 2221 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2222 * @bm: Memory bitmap. 2223 * 2224 * The bits in @bm that correspond to image pages are assumed to be set. 2225 */ 2226 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2227 { 2228 unsigned long pfn; 2229 unsigned int cnt = 0; 2230 2231 memory_bm_position_reset(bm); 2232 pfn = memory_bm_next_pfn(bm); 2233 while (pfn != BM_END_OF_MAP) { 2234 if (PageHighMem(pfn_to_page(pfn))) 2235 cnt++; 2236 2237 pfn = memory_bm_next_pfn(bm); 2238 } 2239 return cnt; 2240 } 2241 2242 static unsigned int safe_highmem_pages; 2243 2244 static struct memory_bitmap *safe_highmem_bm; 2245 2246 /** 2247 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2248 * @bm: Pointer to an uninitialized memory bitmap structure. 2249 * @nr_highmem_p: Pointer to the number of highmem image pages. 2250 * 2251 * Try to allocate as many highmem pages as there are highmem image pages 2252 * (@nr_highmem_p points to the variable containing the number of highmem image 2253 * pages). The pages that are "safe" (ie. will not be overwritten when the 2254 * hibernation image is restored entirely) have the corresponding bits set in 2255 * @bm (it must be unitialized). 2256 * 2257 * NOTE: This function should not be called if there are no highmem image pages. 2258 */ 2259 static int prepare_highmem_image(struct memory_bitmap *bm, 2260 unsigned int *nr_highmem_p) 2261 { 2262 unsigned int to_alloc; 2263 2264 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2265 return -ENOMEM; 2266 2267 if (get_highmem_buffer(PG_SAFE)) 2268 return -ENOMEM; 2269 2270 to_alloc = count_free_highmem_pages(); 2271 if (to_alloc > *nr_highmem_p) 2272 to_alloc = *nr_highmem_p; 2273 else 2274 *nr_highmem_p = to_alloc; 2275 2276 safe_highmem_pages = 0; 2277 while (to_alloc-- > 0) { 2278 struct page *page; 2279 2280 page = alloc_page(__GFP_HIGHMEM); 2281 if (!swsusp_page_is_free(page)) { 2282 /* The page is "safe", set its bit the bitmap */ 2283 memory_bm_set_bit(bm, page_to_pfn(page)); 2284 safe_highmem_pages++; 2285 } 2286 /* Mark the page as allocated */ 2287 swsusp_set_page_forbidden(page); 2288 swsusp_set_page_free(page); 2289 } 2290 memory_bm_position_reset(bm); 2291 safe_highmem_bm = bm; 2292 return 0; 2293 } 2294 2295 static struct page *last_highmem_page; 2296 2297 /** 2298 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2299 * 2300 * For a given highmem image page get a buffer that suspend_write_next() should 2301 * return to its caller to write to. 2302 * 2303 * If the page is to be saved to its "original" page frame or a copy of 2304 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2305 * the copy of the page is to be made in normal memory, so the address of 2306 * the copy is returned. 2307 * 2308 * If @buffer is returned, the caller of suspend_write_next() will write 2309 * the page's contents to @buffer, so they will have to be copied to the 2310 * right location on the next call to suspend_write_next() and it is done 2311 * with the help of copy_last_highmem_page(). For this purpose, if 2312 * @buffer is returned, @last_highmem_page is set to the page to which 2313 * the data will have to be copied from @buffer. 2314 */ 2315 static void *get_highmem_page_buffer(struct page *page, 2316 struct chain_allocator *ca) 2317 { 2318 struct highmem_pbe *pbe; 2319 void *kaddr; 2320 2321 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2322 /* 2323 * We have allocated the "original" page frame and we can 2324 * use it directly to store the loaded page. 2325 */ 2326 last_highmem_page = page; 2327 return buffer; 2328 } 2329 /* 2330 * The "original" page frame has not been allocated and we have to 2331 * use a "safe" page frame to store the loaded page. 2332 */ 2333 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2334 if (!pbe) { 2335 swsusp_free(); 2336 return ERR_PTR(-ENOMEM); 2337 } 2338 pbe->orig_page = page; 2339 if (safe_highmem_pages > 0) { 2340 struct page *tmp; 2341 2342 /* Copy of the page will be stored in high memory */ 2343 kaddr = buffer; 2344 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2345 safe_highmem_pages--; 2346 last_highmem_page = tmp; 2347 pbe->copy_page = tmp; 2348 } else { 2349 /* Copy of the page will be stored in normal memory */ 2350 kaddr = safe_pages_list; 2351 safe_pages_list = safe_pages_list->next; 2352 pbe->copy_page = virt_to_page(kaddr); 2353 } 2354 pbe->next = highmem_pblist; 2355 highmem_pblist = pbe; 2356 return kaddr; 2357 } 2358 2359 /** 2360 * copy_last_highmem_page - Copy most the most recent highmem image page. 2361 * 2362 * Copy the contents of a highmem image from @buffer, where the caller of 2363 * snapshot_write_next() has stored them, to the right location represented by 2364 * @last_highmem_page . 2365 */ 2366 static void copy_last_highmem_page(void) 2367 { 2368 if (last_highmem_page) { 2369 void *dst; 2370 2371 dst = kmap_atomic(last_highmem_page); 2372 copy_page(dst, buffer); 2373 kunmap_atomic(dst); 2374 last_highmem_page = NULL; 2375 } 2376 } 2377 2378 static inline int last_highmem_page_copied(void) 2379 { 2380 return !last_highmem_page; 2381 } 2382 2383 static inline void free_highmem_data(void) 2384 { 2385 if (safe_highmem_bm) 2386 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2387 2388 if (buffer) 2389 free_image_page(buffer, PG_UNSAFE_CLEAR); 2390 } 2391 #else 2392 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2393 2394 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2395 unsigned int *nr_highmem_p) { return 0; } 2396 2397 static inline void *get_highmem_page_buffer(struct page *page, 2398 struct chain_allocator *ca) 2399 { 2400 return ERR_PTR(-EINVAL); 2401 } 2402 2403 static inline void copy_last_highmem_page(void) {} 2404 static inline int last_highmem_page_copied(void) { return 1; } 2405 static inline void free_highmem_data(void) {} 2406 #endif /* CONFIG_HIGHMEM */ 2407 2408 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2409 2410 /** 2411 * prepare_image - Make room for loading hibernation image. 2412 * @new_bm: Unitialized memory bitmap structure. 2413 * @bm: Memory bitmap with unsafe pages marked. 2414 * 2415 * Use @bm to mark the pages that will be overwritten in the process of 2416 * restoring the system memory state from the suspend image ("unsafe" pages) 2417 * and allocate memory for the image. 2418 * 2419 * The idea is to allocate a new memory bitmap first and then allocate 2420 * as many pages as needed for image data, but without specifying what those 2421 * pages will be used for just yet. Instead, we mark them all as allocated and 2422 * create a lists of "safe" pages to be used later. On systems with high 2423 * memory a list of "safe" highmem pages is created too. 2424 */ 2425 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2426 { 2427 unsigned int nr_pages, nr_highmem; 2428 struct linked_page *lp; 2429 int error; 2430 2431 /* If there is no highmem, the buffer will not be necessary */ 2432 free_image_page(buffer, PG_UNSAFE_CLEAR); 2433 buffer = NULL; 2434 2435 nr_highmem = count_highmem_image_pages(bm); 2436 mark_unsafe_pages(bm); 2437 2438 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2439 if (error) 2440 goto Free; 2441 2442 duplicate_memory_bitmap(new_bm, bm); 2443 memory_bm_free(bm, PG_UNSAFE_KEEP); 2444 if (nr_highmem > 0) { 2445 error = prepare_highmem_image(bm, &nr_highmem); 2446 if (error) 2447 goto Free; 2448 } 2449 /* 2450 * Reserve some safe pages for potential later use. 2451 * 2452 * NOTE: This way we make sure there will be enough safe pages for the 2453 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2454 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2455 * 2456 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2457 */ 2458 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2459 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2460 while (nr_pages > 0) { 2461 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2462 if (!lp) { 2463 error = -ENOMEM; 2464 goto Free; 2465 } 2466 lp->next = safe_pages_list; 2467 safe_pages_list = lp; 2468 nr_pages--; 2469 } 2470 /* Preallocate memory for the image */ 2471 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2472 while (nr_pages > 0) { 2473 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2474 if (!lp) { 2475 error = -ENOMEM; 2476 goto Free; 2477 } 2478 if (!swsusp_page_is_free(virt_to_page(lp))) { 2479 /* The page is "safe", add it to the list */ 2480 lp->next = safe_pages_list; 2481 safe_pages_list = lp; 2482 } 2483 /* Mark the page as allocated */ 2484 swsusp_set_page_forbidden(virt_to_page(lp)); 2485 swsusp_set_page_free(virt_to_page(lp)); 2486 nr_pages--; 2487 } 2488 return 0; 2489 2490 Free: 2491 swsusp_free(); 2492 return error; 2493 } 2494 2495 /** 2496 * get_buffer - Get the address to store the next image data page. 2497 * 2498 * Get the address that snapshot_write_next() should return to its caller to 2499 * write to. 2500 */ 2501 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2502 { 2503 struct pbe *pbe; 2504 struct page *page; 2505 unsigned long pfn = memory_bm_next_pfn(bm); 2506 2507 if (pfn == BM_END_OF_MAP) 2508 return ERR_PTR(-EFAULT); 2509 2510 page = pfn_to_page(pfn); 2511 if (PageHighMem(page)) 2512 return get_highmem_page_buffer(page, ca); 2513 2514 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2515 /* 2516 * We have allocated the "original" page frame and we can 2517 * use it directly to store the loaded page. 2518 */ 2519 return page_address(page); 2520 2521 /* 2522 * The "original" page frame has not been allocated and we have to 2523 * use a "safe" page frame to store the loaded page. 2524 */ 2525 pbe = chain_alloc(ca, sizeof(struct pbe)); 2526 if (!pbe) { 2527 swsusp_free(); 2528 return ERR_PTR(-ENOMEM); 2529 } 2530 pbe->orig_address = page_address(page); 2531 pbe->address = safe_pages_list; 2532 safe_pages_list = safe_pages_list->next; 2533 pbe->next = restore_pblist; 2534 restore_pblist = pbe; 2535 return pbe->address; 2536 } 2537 2538 /** 2539 * snapshot_write_next - Get the address to store the next image page. 2540 * @handle: Snapshot handle structure to guide the writing. 2541 * 2542 * On the first call, @handle should point to a zeroed snapshot_handle 2543 * structure. The structure gets populated then and a pointer to it should be 2544 * passed to this function every next time. 2545 * 2546 * On success, the function returns a positive number. Then, the caller 2547 * is allowed to write up to the returned number of bytes to the memory 2548 * location computed by the data_of() macro. 2549 * 2550 * The function returns 0 to indicate the "end of file" condition. Negative 2551 * numbers are returned on errors, in which cases the structure pointed to by 2552 * @handle is not updated and should not be used any more. 2553 */ 2554 int snapshot_write_next(struct snapshot_handle *handle) 2555 { 2556 static struct chain_allocator ca; 2557 int error = 0; 2558 2559 /* Check if we have already loaded the entire image */ 2560 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2561 return 0; 2562 2563 handle->sync_read = 1; 2564 2565 if (!handle->cur) { 2566 if (!buffer) 2567 /* This makes the buffer be freed by swsusp_free() */ 2568 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2569 2570 if (!buffer) 2571 return -ENOMEM; 2572 2573 handle->buffer = buffer; 2574 } else if (handle->cur == 1) { 2575 error = load_header(buffer); 2576 if (error) 2577 return error; 2578 2579 safe_pages_list = NULL; 2580 2581 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2582 if (error) 2583 return error; 2584 2585 /* Allocate buffer for page keys. */ 2586 error = page_key_alloc(nr_copy_pages); 2587 if (error) 2588 return error; 2589 2590 hibernate_restore_protection_begin(); 2591 } else if (handle->cur <= nr_meta_pages + 1) { 2592 error = unpack_orig_pfns(buffer, ©_bm); 2593 if (error) 2594 return error; 2595 2596 if (handle->cur == nr_meta_pages + 1) { 2597 error = prepare_image(&orig_bm, ©_bm); 2598 if (error) 2599 return error; 2600 2601 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2602 memory_bm_position_reset(&orig_bm); 2603 restore_pblist = NULL; 2604 handle->buffer = get_buffer(&orig_bm, &ca); 2605 handle->sync_read = 0; 2606 if (IS_ERR(handle->buffer)) 2607 return PTR_ERR(handle->buffer); 2608 } 2609 } else { 2610 copy_last_highmem_page(); 2611 /* Restore page key for data page (s390 only). */ 2612 page_key_write(handle->buffer); 2613 hibernate_restore_protect_page(handle->buffer); 2614 handle->buffer = get_buffer(&orig_bm, &ca); 2615 if (IS_ERR(handle->buffer)) 2616 return PTR_ERR(handle->buffer); 2617 if (handle->buffer != buffer) 2618 handle->sync_read = 0; 2619 } 2620 handle->cur++; 2621 return PAGE_SIZE; 2622 } 2623 2624 /** 2625 * snapshot_write_finalize - Complete the loading of a hibernation image. 2626 * 2627 * Must be called after the last call to snapshot_write_next() in case the last 2628 * page in the image happens to be a highmem page and its contents should be 2629 * stored in highmem. Additionally, it recycles bitmap memory that's not 2630 * necessary any more. 2631 */ 2632 void snapshot_write_finalize(struct snapshot_handle *handle) 2633 { 2634 copy_last_highmem_page(); 2635 /* Restore page key for data page (s390 only). */ 2636 page_key_write(handle->buffer); 2637 page_key_free(); 2638 hibernate_restore_protect_page(handle->buffer); 2639 /* Do that only if we have loaded the image entirely */ 2640 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2641 memory_bm_recycle(&orig_bm); 2642 free_highmem_data(); 2643 } 2644 } 2645 2646 int snapshot_image_loaded(struct snapshot_handle *handle) 2647 { 2648 return !(!nr_copy_pages || !last_highmem_page_copied() || 2649 handle->cur <= nr_meta_pages + nr_copy_pages); 2650 } 2651 2652 #ifdef CONFIG_HIGHMEM 2653 /* Assumes that @buf is ready and points to a "safe" page */ 2654 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2655 void *buf) 2656 { 2657 void *kaddr1, *kaddr2; 2658 2659 kaddr1 = kmap_atomic(p1); 2660 kaddr2 = kmap_atomic(p2); 2661 copy_page(buf, kaddr1); 2662 copy_page(kaddr1, kaddr2); 2663 copy_page(kaddr2, buf); 2664 kunmap_atomic(kaddr2); 2665 kunmap_atomic(kaddr1); 2666 } 2667 2668 /** 2669 * restore_highmem - Put highmem image pages into their original locations. 2670 * 2671 * For each highmem page that was in use before hibernation and is included in 2672 * the image, and also has been allocated by the "restore" kernel, swap its 2673 * current contents with the previous (ie. "before hibernation") ones. 2674 * 2675 * If the restore eventually fails, we can call this function once again and 2676 * restore the highmem state as seen by the restore kernel. 2677 */ 2678 int restore_highmem(void) 2679 { 2680 struct highmem_pbe *pbe = highmem_pblist; 2681 void *buf; 2682 2683 if (!pbe) 2684 return 0; 2685 2686 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2687 if (!buf) 2688 return -ENOMEM; 2689 2690 while (pbe) { 2691 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2692 pbe = pbe->next; 2693 } 2694 free_image_page(buf, PG_UNSAFE_CLEAR); 2695 return 0; 2696 } 2697 #endif /* CONFIG_HIGHMEM */ 2698