1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/snapshot.c 4 * 5 * This file provides system snapshot/restore functionality for swsusp. 6 * 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 9 */ 10 11 #define pr_fmt(fmt) "PM: hibernation: " fmt 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/memblock.h> 25 #include <linux/nmi.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 #include <linux/compiler.h> 32 #include <linux/ktime.h> 33 #include <linux/set_memory.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/mmu_context.h> 37 #include <asm/tlbflush.h> 38 #include <asm/io.h> 39 40 #include "power.h" 41 42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 43 static bool hibernate_restore_protection; 44 static bool hibernate_restore_protection_active; 45 46 void enable_restore_image_protection(void) 47 { 48 hibernate_restore_protection = true; 49 } 50 51 static inline void hibernate_restore_protection_begin(void) 52 { 53 hibernate_restore_protection_active = hibernate_restore_protection; 54 } 55 56 static inline void hibernate_restore_protection_end(void) 57 { 58 hibernate_restore_protection_active = false; 59 } 60 61 static inline void hibernate_restore_protect_page(void *page_address) 62 { 63 if (hibernate_restore_protection_active) 64 set_memory_ro((unsigned long)page_address, 1); 65 } 66 67 static inline void hibernate_restore_unprotect_page(void *page_address) 68 { 69 if (hibernate_restore_protection_active) 70 set_memory_rw((unsigned long)page_address, 1); 71 } 72 #else 73 static inline void hibernate_restore_protection_begin(void) {} 74 static inline void hibernate_restore_protection_end(void) {} 75 static inline void hibernate_restore_protect_page(void *page_address) {} 76 static inline void hibernate_restore_unprotect_page(void *page_address) {} 77 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 78 79 80 /* 81 * The calls to set_direct_map_*() should not fail because remapping a page 82 * here means that we only update protection bits in an existing PTE. 83 * It is still worth to have a warning here if something changes and this 84 * will no longer be the case. 85 */ 86 static inline void hibernate_map_page(struct page *page) 87 { 88 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 89 int ret = set_direct_map_default_noflush(page); 90 91 if (ret) 92 pr_warn_once("Failed to remap page\n"); 93 } else { 94 debug_pagealloc_map_pages(page, 1); 95 } 96 } 97 98 static inline void hibernate_unmap_page(struct page *page) 99 { 100 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 101 unsigned long addr = (unsigned long)page_address(page); 102 int ret = set_direct_map_invalid_noflush(page); 103 104 if (ret) 105 pr_warn_once("Failed to remap page\n"); 106 107 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 108 } else { 109 debug_pagealloc_unmap_pages(page, 1); 110 } 111 } 112 113 static int swsusp_page_is_free(struct page *); 114 static void swsusp_set_page_forbidden(struct page *); 115 static void swsusp_unset_page_forbidden(struct page *); 116 117 /* 118 * Number of bytes to reserve for memory allocations made by device drivers 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 120 * cause image creation to fail (tunable via /sys/power/reserved_size). 121 */ 122 unsigned long reserved_size; 123 124 void __init hibernate_reserved_size_init(void) 125 { 126 reserved_size = SPARE_PAGES * PAGE_SIZE; 127 } 128 129 /* 130 * Preferred image size in bytes (tunable via /sys/power/image_size). 131 * When it is set to N, swsusp will do its best to ensure the image 132 * size will not exceed N bytes, but if that is impossible, it will 133 * try to create the smallest image possible. 134 */ 135 unsigned long image_size; 136 137 void __init hibernate_image_size_init(void) 138 { 139 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 140 } 141 142 /* 143 * List of PBEs needed for restoring the pages that were allocated before 144 * the suspend and included in the suspend image, but have also been 145 * allocated by the "resume" kernel, so their contents cannot be written 146 * directly to their "original" page frames. 147 */ 148 struct pbe *restore_pblist; 149 150 /* struct linked_page is used to build chains of pages */ 151 152 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 153 154 struct linked_page { 155 struct linked_page *next; 156 char data[LINKED_PAGE_DATA_SIZE]; 157 } __packed; 158 159 /* 160 * List of "safe" pages (ie. pages that were not used by the image kernel 161 * before hibernation) that may be used as temporary storage for image kernel 162 * memory contents. 163 */ 164 static struct linked_page *safe_pages_list; 165 166 /* Pointer to an auxiliary buffer (1 page) */ 167 static void *buffer; 168 169 #define PG_ANY 0 170 #define PG_SAFE 1 171 #define PG_UNSAFE_CLEAR 1 172 #define PG_UNSAFE_KEEP 0 173 174 static unsigned int allocated_unsafe_pages; 175 176 /** 177 * get_image_page - Allocate a page for a hibernation image. 178 * @gfp_mask: GFP mask for the allocation. 179 * @safe_needed: Get pages that were not used before hibernation (restore only) 180 * 181 * During image restoration, for storing the PBE list and the image data, we can 182 * only use memory pages that do not conflict with the pages used before 183 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 184 * using allocated_unsafe_pages. 185 * 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 187 * swsusp_free() can release it. 188 */ 189 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 190 { 191 void *res; 192 193 res = (void *)get_zeroed_page(gfp_mask); 194 if (safe_needed) 195 while (res && swsusp_page_is_free(virt_to_page(res))) { 196 /* The page is unsafe, mark it for swsusp_free() */ 197 swsusp_set_page_forbidden(virt_to_page(res)); 198 allocated_unsafe_pages++; 199 res = (void *)get_zeroed_page(gfp_mask); 200 } 201 if (res) { 202 swsusp_set_page_forbidden(virt_to_page(res)); 203 swsusp_set_page_free(virt_to_page(res)); 204 } 205 return res; 206 } 207 208 static void *__get_safe_page(gfp_t gfp_mask) 209 { 210 if (safe_pages_list) { 211 void *ret = safe_pages_list; 212 213 safe_pages_list = safe_pages_list->next; 214 memset(ret, 0, PAGE_SIZE); 215 return ret; 216 } 217 return get_image_page(gfp_mask, PG_SAFE); 218 } 219 220 unsigned long get_safe_page(gfp_t gfp_mask) 221 { 222 return (unsigned long)__get_safe_page(gfp_mask); 223 } 224 225 static struct page *alloc_image_page(gfp_t gfp_mask) 226 { 227 struct page *page; 228 229 page = alloc_page(gfp_mask); 230 if (page) { 231 swsusp_set_page_forbidden(page); 232 swsusp_set_page_free(page); 233 } 234 return page; 235 } 236 237 static void recycle_safe_page(void *page_address) 238 { 239 struct linked_page *lp = page_address; 240 241 lp->next = safe_pages_list; 242 safe_pages_list = lp; 243 } 244 245 /** 246 * free_image_page - Free a page allocated for hibernation image. 247 * @addr: Address of the page to free. 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 249 * 250 * The page to free should have been allocated by get_image_page() (page flags 251 * set by it are affected). 252 */ 253 static inline void free_image_page(void *addr, int clear_nosave_free) 254 { 255 struct page *page; 256 257 BUG_ON(!virt_addr_valid(addr)); 258 259 page = virt_to_page(addr); 260 261 swsusp_unset_page_forbidden(page); 262 if (clear_nosave_free) 263 swsusp_unset_page_free(page); 264 265 __free_page(page); 266 } 267 268 static inline void free_list_of_pages(struct linked_page *list, 269 int clear_page_nosave) 270 { 271 while (list) { 272 struct linked_page *lp = list->next; 273 274 free_image_page(list, clear_page_nosave); 275 list = lp; 276 } 277 } 278 279 /* 280 * struct chain_allocator is used for allocating small objects out of 281 * a linked list of pages called 'the chain'. 282 * 283 * The chain grows each time when there is no room for a new object in 284 * the current page. The allocated objects cannot be freed individually. 285 * It is only possible to free them all at once, by freeing the entire 286 * chain. 287 * 288 * NOTE: The chain allocator may be inefficient if the allocated objects 289 * are not much smaller than PAGE_SIZE. 290 */ 291 struct chain_allocator { 292 struct linked_page *chain; /* the chain */ 293 unsigned int used_space; /* total size of objects allocated out 294 of the current page */ 295 gfp_t gfp_mask; /* mask for allocating pages */ 296 int safe_needed; /* if set, only "safe" pages are allocated */ 297 }; 298 299 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 300 int safe_needed) 301 { 302 ca->chain = NULL; 303 ca->used_space = LINKED_PAGE_DATA_SIZE; 304 ca->gfp_mask = gfp_mask; 305 ca->safe_needed = safe_needed; 306 } 307 308 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 309 { 310 void *ret; 311 312 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 313 struct linked_page *lp; 314 315 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 316 get_image_page(ca->gfp_mask, PG_ANY); 317 if (!lp) 318 return NULL; 319 320 lp->next = ca->chain; 321 ca->chain = lp; 322 ca->used_space = 0; 323 } 324 ret = ca->chain->data + ca->used_space; 325 ca->used_space += size; 326 return ret; 327 } 328 329 /* 330 * Data types related to memory bitmaps. 331 * 332 * Memory bitmap is a structure consisting of many linked lists of 333 * objects. The main list's elements are of type struct zone_bitmap 334 * and each of them corresponds to one zone. For each zone bitmap 335 * object there is a list of objects of type struct bm_block that 336 * represent each blocks of bitmap in which information is stored. 337 * 338 * struct memory_bitmap contains a pointer to the main list of zone 339 * bitmap objects, a struct bm_position used for browsing the bitmap, 340 * and a pointer to the list of pages used for allocating all of the 341 * zone bitmap objects and bitmap block objects. 342 * 343 * NOTE: It has to be possible to lay out the bitmap in memory 344 * using only allocations of order 0. Additionally, the bitmap is 345 * designed to work with arbitrary number of zones (this is over the 346 * top for now, but let's avoid making unnecessary assumptions ;-). 347 * 348 * struct zone_bitmap contains a pointer to a list of bitmap block 349 * objects and a pointer to the bitmap block object that has been 350 * most recently used for setting bits. Additionally, it contains the 351 * PFNs that correspond to the start and end of the represented zone. 352 * 353 * struct bm_block contains a pointer to the memory page in which 354 * information is stored (in the form of a block of bitmap) 355 * It also contains the pfns that correspond to the start and end of 356 * the represented memory area. 357 * 358 * The memory bitmap is organized as a radix tree to guarantee fast random 359 * access to the bits. There is one radix tree for each zone (as returned 360 * from create_mem_extents). 361 * 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 363 * two linked lists for the nodes of the tree, one for the inner nodes and 364 * one for the leave nodes. The linked leave nodes are used for fast linear 365 * access of the memory bitmap. 366 * 367 * The struct rtree_node represents one node of the radix tree. 368 */ 369 370 #define BM_END_OF_MAP (~0UL) 371 372 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 373 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 374 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 375 376 /* 377 * struct rtree_node is a wrapper struct to link the nodes 378 * of the rtree together for easy linear iteration over 379 * bits and easy freeing 380 */ 381 struct rtree_node { 382 struct list_head list; 383 unsigned long *data; 384 }; 385 386 /* 387 * struct mem_zone_bm_rtree represents a bitmap used for one 388 * populated memory zone. 389 */ 390 struct mem_zone_bm_rtree { 391 struct list_head list; /* Link Zones together */ 392 struct list_head nodes; /* Radix Tree inner nodes */ 393 struct list_head leaves; /* Radix Tree leaves */ 394 unsigned long start_pfn; /* Zone start page frame */ 395 unsigned long end_pfn; /* Zone end page frame + 1 */ 396 struct rtree_node *rtree; /* Radix Tree Root */ 397 int levels; /* Number of Radix Tree Levels */ 398 unsigned int blocks; /* Number of Bitmap Blocks */ 399 }; 400 401 /* strcut bm_position is used for browsing memory bitmaps */ 402 403 struct bm_position { 404 struct mem_zone_bm_rtree *zone; 405 struct rtree_node *node; 406 unsigned long node_pfn; 407 int node_bit; 408 }; 409 410 struct memory_bitmap { 411 struct list_head zones; 412 struct linked_page *p_list; /* list of pages used to store zone 413 bitmap objects and bitmap block 414 objects */ 415 struct bm_position cur; /* most recently used bit position */ 416 }; 417 418 /* Functions that operate on memory bitmaps */ 419 420 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 421 #if BITS_PER_LONG == 32 422 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 423 #else 424 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 425 #endif 426 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 427 428 /** 429 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 430 * @gfp_mask: GFP mask for the allocation. 431 * @safe_needed: Get pages not used before hibernation (restore only) 432 * @ca: Pointer to a linked list of pages ("a chain") to allocate from 433 * @list: Radix Tree node to add. 434 * 435 * This function is used to allocate inner nodes as well as the 436 * leave nodes of the radix tree. It also adds the node to the 437 * corresponding linked list passed in by the *list parameter. 438 */ 439 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 440 struct chain_allocator *ca, 441 struct list_head *list) 442 { 443 struct rtree_node *node; 444 445 node = chain_alloc(ca, sizeof(struct rtree_node)); 446 if (!node) 447 return NULL; 448 449 node->data = get_image_page(gfp_mask, safe_needed); 450 if (!node->data) 451 return NULL; 452 453 list_add_tail(&node->list, list); 454 455 return node; 456 } 457 458 /** 459 * add_rtree_block - Add a new leave node to the radix tree. 460 * 461 * The leave nodes need to be allocated in order to keep the leaves 462 * linked list in order. This is guaranteed by the zone->blocks 463 * counter. 464 */ 465 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 466 int safe_needed, struct chain_allocator *ca) 467 { 468 struct rtree_node *node, *block, **dst; 469 unsigned int levels_needed, block_nr; 470 int i; 471 472 block_nr = zone->blocks; 473 levels_needed = 0; 474 475 /* How many levels do we need for this block nr? */ 476 while (block_nr) { 477 levels_needed += 1; 478 block_nr >>= BM_RTREE_LEVEL_SHIFT; 479 } 480 481 /* Make sure the rtree has enough levels */ 482 for (i = zone->levels; i < levels_needed; i++) { 483 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 484 &zone->nodes); 485 if (!node) 486 return -ENOMEM; 487 488 node->data[0] = (unsigned long)zone->rtree; 489 zone->rtree = node; 490 zone->levels += 1; 491 } 492 493 /* Allocate new block */ 494 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 495 if (!block) 496 return -ENOMEM; 497 498 /* Now walk the rtree to insert the block */ 499 node = zone->rtree; 500 dst = &zone->rtree; 501 block_nr = zone->blocks; 502 for (i = zone->levels; i > 0; i--) { 503 int index; 504 505 if (!node) { 506 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 507 &zone->nodes); 508 if (!node) 509 return -ENOMEM; 510 *dst = node; 511 } 512 513 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 514 index &= BM_RTREE_LEVEL_MASK; 515 dst = (struct rtree_node **)&((*dst)->data[index]); 516 node = *dst; 517 } 518 519 zone->blocks += 1; 520 *dst = block; 521 522 return 0; 523 } 524 525 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 526 int clear_nosave_free); 527 528 /** 529 * create_zone_bm_rtree - Create a radix tree for one zone. 530 * 531 * Allocated the mem_zone_bm_rtree structure and initializes it. 532 * This function also allocated and builds the radix tree for the 533 * zone. 534 */ 535 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 536 int safe_needed, 537 struct chain_allocator *ca, 538 unsigned long start, 539 unsigned long end) 540 { 541 struct mem_zone_bm_rtree *zone; 542 unsigned int i, nr_blocks; 543 unsigned long pages; 544 545 pages = end - start; 546 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 547 if (!zone) 548 return NULL; 549 550 INIT_LIST_HEAD(&zone->nodes); 551 INIT_LIST_HEAD(&zone->leaves); 552 zone->start_pfn = start; 553 zone->end_pfn = end; 554 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 555 556 for (i = 0; i < nr_blocks; i++) { 557 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 558 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 559 return NULL; 560 } 561 } 562 563 return zone; 564 } 565 566 /** 567 * free_zone_bm_rtree - Free the memory of the radix tree. 568 * 569 * Free all node pages of the radix tree. The mem_zone_bm_rtree 570 * structure itself is not freed here nor are the rtree_node 571 * structs. 572 */ 573 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 574 int clear_nosave_free) 575 { 576 struct rtree_node *node; 577 578 list_for_each_entry(node, &zone->nodes, list) 579 free_image_page(node->data, clear_nosave_free); 580 581 list_for_each_entry(node, &zone->leaves, list) 582 free_image_page(node->data, clear_nosave_free); 583 } 584 585 static void memory_bm_position_reset(struct memory_bitmap *bm) 586 { 587 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 588 list); 589 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 590 struct rtree_node, list); 591 bm->cur.node_pfn = 0; 592 bm->cur.node_bit = 0; 593 } 594 595 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 596 597 struct mem_extent { 598 struct list_head hook; 599 unsigned long start; 600 unsigned long end; 601 }; 602 603 /** 604 * free_mem_extents - Free a list of memory extents. 605 * @list: List of extents to free. 606 */ 607 static void free_mem_extents(struct list_head *list) 608 { 609 struct mem_extent *ext, *aux; 610 611 list_for_each_entry_safe(ext, aux, list, hook) { 612 list_del(&ext->hook); 613 kfree(ext); 614 } 615 } 616 617 /** 618 * create_mem_extents - Create a list of memory extents. 619 * @list: List to put the extents into. 620 * @gfp_mask: Mask to use for memory allocations. 621 * 622 * The extents represent contiguous ranges of PFNs. 623 */ 624 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 625 { 626 struct zone *zone; 627 628 INIT_LIST_HEAD(list); 629 630 for_each_populated_zone(zone) { 631 unsigned long zone_start, zone_end; 632 struct mem_extent *ext, *cur, *aux; 633 634 zone_start = zone->zone_start_pfn; 635 zone_end = zone_end_pfn(zone); 636 637 list_for_each_entry(ext, list, hook) 638 if (zone_start <= ext->end) 639 break; 640 641 if (&ext->hook == list || zone_end < ext->start) { 642 /* New extent is necessary */ 643 struct mem_extent *new_ext; 644 645 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 646 if (!new_ext) { 647 free_mem_extents(list); 648 return -ENOMEM; 649 } 650 new_ext->start = zone_start; 651 new_ext->end = zone_end; 652 list_add_tail(&new_ext->hook, &ext->hook); 653 continue; 654 } 655 656 /* Merge this zone's range of PFNs with the existing one */ 657 if (zone_start < ext->start) 658 ext->start = zone_start; 659 if (zone_end > ext->end) 660 ext->end = zone_end; 661 662 /* More merging may be possible */ 663 cur = ext; 664 list_for_each_entry_safe_continue(cur, aux, list, hook) { 665 if (zone_end < cur->start) 666 break; 667 if (zone_end < cur->end) 668 ext->end = cur->end; 669 list_del(&cur->hook); 670 kfree(cur); 671 } 672 } 673 674 return 0; 675 } 676 677 /** 678 * memory_bm_create - Allocate memory for a memory bitmap. 679 */ 680 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 681 int safe_needed) 682 { 683 struct chain_allocator ca; 684 struct list_head mem_extents; 685 struct mem_extent *ext; 686 int error; 687 688 chain_init(&ca, gfp_mask, safe_needed); 689 INIT_LIST_HEAD(&bm->zones); 690 691 error = create_mem_extents(&mem_extents, gfp_mask); 692 if (error) 693 return error; 694 695 list_for_each_entry(ext, &mem_extents, hook) { 696 struct mem_zone_bm_rtree *zone; 697 698 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 699 ext->start, ext->end); 700 if (!zone) { 701 error = -ENOMEM; 702 goto Error; 703 } 704 list_add_tail(&zone->list, &bm->zones); 705 } 706 707 bm->p_list = ca.chain; 708 memory_bm_position_reset(bm); 709 Exit: 710 free_mem_extents(&mem_extents); 711 return error; 712 713 Error: 714 bm->p_list = ca.chain; 715 memory_bm_free(bm, PG_UNSAFE_CLEAR); 716 goto Exit; 717 } 718 719 /** 720 * memory_bm_free - Free memory occupied by the memory bitmap. 721 * @bm: Memory bitmap. 722 */ 723 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 724 { 725 struct mem_zone_bm_rtree *zone; 726 727 list_for_each_entry(zone, &bm->zones, list) 728 free_zone_bm_rtree(zone, clear_nosave_free); 729 730 free_list_of_pages(bm->p_list, clear_nosave_free); 731 732 INIT_LIST_HEAD(&bm->zones); 733 } 734 735 /** 736 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 737 * 738 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 739 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 740 * 741 * Walk the radix tree to find the page containing the bit that represents @pfn 742 * and return the position of the bit in @addr and @bit_nr. 743 */ 744 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 745 void **addr, unsigned int *bit_nr) 746 { 747 struct mem_zone_bm_rtree *curr, *zone; 748 struct rtree_node *node; 749 int i, block_nr; 750 751 zone = bm->cur.zone; 752 753 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 754 goto zone_found; 755 756 zone = NULL; 757 758 /* Find the right zone */ 759 list_for_each_entry(curr, &bm->zones, list) { 760 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 761 zone = curr; 762 break; 763 } 764 } 765 766 if (!zone) 767 return -EFAULT; 768 769 zone_found: 770 /* 771 * We have found the zone. Now walk the radix tree to find the leaf node 772 * for our PFN. 773 */ 774 775 /* 776 * If the zone we wish to scan is the current zone and the 777 * pfn falls into the current node then we do not need to walk 778 * the tree. 779 */ 780 node = bm->cur.node; 781 if (zone == bm->cur.zone && 782 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 783 goto node_found; 784 785 node = zone->rtree; 786 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 787 788 for (i = zone->levels; i > 0; i--) { 789 int index; 790 791 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 792 index &= BM_RTREE_LEVEL_MASK; 793 BUG_ON(node->data[index] == 0); 794 node = (struct rtree_node *)node->data[index]; 795 } 796 797 node_found: 798 /* Update last position */ 799 bm->cur.zone = zone; 800 bm->cur.node = node; 801 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 802 803 /* Set return values */ 804 *addr = node->data; 805 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 806 807 return 0; 808 } 809 810 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 811 { 812 void *addr; 813 unsigned int bit; 814 int error; 815 816 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 817 BUG_ON(error); 818 set_bit(bit, addr); 819 } 820 821 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 822 { 823 void *addr; 824 unsigned int bit; 825 int error; 826 827 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 828 if (!error) 829 set_bit(bit, addr); 830 831 return error; 832 } 833 834 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 835 { 836 void *addr; 837 unsigned int bit; 838 int error; 839 840 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 841 BUG_ON(error); 842 clear_bit(bit, addr); 843 } 844 845 static void memory_bm_clear_current(struct memory_bitmap *bm) 846 { 847 int bit; 848 849 bit = max(bm->cur.node_bit - 1, 0); 850 clear_bit(bit, bm->cur.node->data); 851 } 852 853 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 854 { 855 void *addr; 856 unsigned int bit; 857 int error; 858 859 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 860 BUG_ON(error); 861 return test_bit(bit, addr); 862 } 863 864 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 865 { 866 void *addr; 867 unsigned int bit; 868 869 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 870 } 871 872 /* 873 * rtree_next_node - Jump to the next leaf node. 874 * 875 * Set the position to the beginning of the next node in the 876 * memory bitmap. This is either the next node in the current 877 * zone's radix tree or the first node in the radix tree of the 878 * next zone. 879 * 880 * Return true if there is a next node, false otherwise. 881 */ 882 static bool rtree_next_node(struct memory_bitmap *bm) 883 { 884 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 885 bm->cur.node = list_entry(bm->cur.node->list.next, 886 struct rtree_node, list); 887 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 888 bm->cur.node_bit = 0; 889 touch_softlockup_watchdog(); 890 return true; 891 } 892 893 /* No more nodes, goto next zone */ 894 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 895 bm->cur.zone = list_entry(bm->cur.zone->list.next, 896 struct mem_zone_bm_rtree, list); 897 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 898 struct rtree_node, list); 899 bm->cur.node_pfn = 0; 900 bm->cur.node_bit = 0; 901 return true; 902 } 903 904 /* No more zones */ 905 return false; 906 } 907 908 /** 909 * memory_bm_next_pfn - Find the next set bit in a memory bitmap. 910 * @bm: Memory bitmap. 911 * 912 * Starting from the last returned position this function searches for the next 913 * set bit in @bm and returns the PFN represented by it. If no more bits are 914 * set, BM_END_OF_MAP is returned. 915 * 916 * It is required to run memory_bm_position_reset() before the first call to 917 * this function for the given memory bitmap. 918 */ 919 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 920 { 921 unsigned long bits, pfn, pages; 922 int bit; 923 924 do { 925 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 926 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 927 bit = find_next_bit(bm->cur.node->data, bits, 928 bm->cur.node_bit); 929 if (bit < bits) { 930 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 931 bm->cur.node_bit = bit + 1; 932 return pfn; 933 } 934 } while (rtree_next_node(bm)); 935 936 return BM_END_OF_MAP; 937 } 938 939 /* 940 * This structure represents a range of page frames the contents of which 941 * should not be saved during hibernation. 942 */ 943 struct nosave_region { 944 struct list_head list; 945 unsigned long start_pfn; 946 unsigned long end_pfn; 947 }; 948 949 static LIST_HEAD(nosave_regions); 950 951 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 952 { 953 struct rtree_node *node; 954 955 list_for_each_entry(node, &zone->nodes, list) 956 recycle_safe_page(node->data); 957 958 list_for_each_entry(node, &zone->leaves, list) 959 recycle_safe_page(node->data); 960 } 961 962 static void memory_bm_recycle(struct memory_bitmap *bm) 963 { 964 struct mem_zone_bm_rtree *zone; 965 struct linked_page *p_list; 966 967 list_for_each_entry(zone, &bm->zones, list) 968 recycle_zone_bm_rtree(zone); 969 970 p_list = bm->p_list; 971 while (p_list) { 972 struct linked_page *lp = p_list; 973 974 p_list = lp->next; 975 recycle_safe_page(lp); 976 } 977 } 978 979 /** 980 * register_nosave_region - Register a region of unsaveable memory. 981 * 982 * Register a range of page frames the contents of which should not be saved 983 * during hibernation (to be used in the early initialization code). 984 */ 985 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn) 986 { 987 struct nosave_region *region; 988 989 if (start_pfn >= end_pfn) 990 return; 991 992 if (!list_empty(&nosave_regions)) { 993 /* Try to extend the previous region (they should be sorted) */ 994 region = list_entry(nosave_regions.prev, 995 struct nosave_region, list); 996 if (region->end_pfn == start_pfn) { 997 region->end_pfn = end_pfn; 998 goto Report; 999 } 1000 } 1001 /* This allocation cannot fail */ 1002 region = memblock_alloc(sizeof(struct nosave_region), 1003 SMP_CACHE_BYTES); 1004 if (!region) 1005 panic("%s: Failed to allocate %zu bytes\n", __func__, 1006 sizeof(struct nosave_region)); 1007 region->start_pfn = start_pfn; 1008 region->end_pfn = end_pfn; 1009 list_add_tail(®ion->list, &nosave_regions); 1010 Report: 1011 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 1012 (unsigned long long) start_pfn << PAGE_SHIFT, 1013 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1014 } 1015 1016 /* 1017 * Set bits in this map correspond to the page frames the contents of which 1018 * should not be saved during the suspend. 1019 */ 1020 static struct memory_bitmap *forbidden_pages_map; 1021 1022 /* Set bits in this map correspond to free page frames. */ 1023 static struct memory_bitmap *free_pages_map; 1024 1025 /* 1026 * Each page frame allocated for creating the image is marked by setting the 1027 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 1028 */ 1029 1030 void swsusp_set_page_free(struct page *page) 1031 { 1032 if (free_pages_map) 1033 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 1034 } 1035 1036 static int swsusp_page_is_free(struct page *page) 1037 { 1038 return free_pages_map ? 1039 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1040 } 1041 1042 void swsusp_unset_page_free(struct page *page) 1043 { 1044 if (free_pages_map) 1045 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1046 } 1047 1048 static void swsusp_set_page_forbidden(struct page *page) 1049 { 1050 if (forbidden_pages_map) 1051 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1052 } 1053 1054 int swsusp_page_is_forbidden(struct page *page) 1055 { 1056 return forbidden_pages_map ? 1057 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1058 } 1059 1060 static void swsusp_unset_page_forbidden(struct page *page) 1061 { 1062 if (forbidden_pages_map) 1063 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1064 } 1065 1066 /** 1067 * mark_nosave_pages - Mark pages that should not be saved. 1068 * @bm: Memory bitmap. 1069 * 1070 * Set the bits in @bm that correspond to the page frames the contents of which 1071 * should not be saved. 1072 */ 1073 static void mark_nosave_pages(struct memory_bitmap *bm) 1074 { 1075 struct nosave_region *region; 1076 1077 if (list_empty(&nosave_regions)) 1078 return; 1079 1080 list_for_each_entry(region, &nosave_regions, list) { 1081 unsigned long pfn; 1082 1083 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1084 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1085 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1086 - 1); 1087 1088 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1089 if (pfn_valid(pfn)) { 1090 /* 1091 * It is safe to ignore the result of 1092 * mem_bm_set_bit_check() here, since we won't 1093 * touch the PFNs for which the error is 1094 * returned anyway. 1095 */ 1096 mem_bm_set_bit_check(bm, pfn); 1097 } 1098 } 1099 } 1100 1101 /** 1102 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1103 * 1104 * Create bitmaps needed for marking page frames that should not be saved and 1105 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1106 * only modified if everything goes well, because we don't want the bits to be 1107 * touched before both bitmaps are set up. 1108 */ 1109 int create_basic_memory_bitmaps(void) 1110 { 1111 struct memory_bitmap *bm1, *bm2; 1112 int error = 0; 1113 1114 if (forbidden_pages_map && free_pages_map) 1115 return 0; 1116 else 1117 BUG_ON(forbidden_pages_map || free_pages_map); 1118 1119 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1120 if (!bm1) 1121 return -ENOMEM; 1122 1123 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1124 if (error) 1125 goto Free_first_object; 1126 1127 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1128 if (!bm2) 1129 goto Free_first_bitmap; 1130 1131 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1132 if (error) 1133 goto Free_second_object; 1134 1135 forbidden_pages_map = bm1; 1136 free_pages_map = bm2; 1137 mark_nosave_pages(forbidden_pages_map); 1138 1139 pr_debug("Basic memory bitmaps created\n"); 1140 1141 return 0; 1142 1143 Free_second_object: 1144 kfree(bm2); 1145 Free_first_bitmap: 1146 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1147 Free_first_object: 1148 kfree(bm1); 1149 return -ENOMEM; 1150 } 1151 1152 /** 1153 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1154 * 1155 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1156 * auxiliary pointers are necessary so that the bitmaps themselves are not 1157 * referred to while they are being freed. 1158 */ 1159 void free_basic_memory_bitmaps(void) 1160 { 1161 struct memory_bitmap *bm1, *bm2; 1162 1163 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1164 return; 1165 1166 bm1 = forbidden_pages_map; 1167 bm2 = free_pages_map; 1168 forbidden_pages_map = NULL; 1169 free_pages_map = NULL; 1170 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1171 kfree(bm1); 1172 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1173 kfree(bm2); 1174 1175 pr_debug("Basic memory bitmaps freed\n"); 1176 } 1177 1178 static void clear_or_poison_free_page(struct page *page) 1179 { 1180 if (page_poisoning_enabled_static()) 1181 __kernel_poison_pages(page, 1); 1182 else if (want_init_on_free()) 1183 clear_highpage(page); 1184 } 1185 1186 void clear_or_poison_free_pages(void) 1187 { 1188 struct memory_bitmap *bm = free_pages_map; 1189 unsigned long pfn; 1190 1191 if (WARN_ON(!(free_pages_map))) 1192 return; 1193 1194 if (page_poisoning_enabled() || want_init_on_free()) { 1195 memory_bm_position_reset(bm); 1196 pfn = memory_bm_next_pfn(bm); 1197 while (pfn != BM_END_OF_MAP) { 1198 if (pfn_valid(pfn)) 1199 clear_or_poison_free_page(pfn_to_page(pfn)); 1200 1201 pfn = memory_bm_next_pfn(bm); 1202 } 1203 memory_bm_position_reset(bm); 1204 pr_info("free pages cleared after restore\n"); 1205 } 1206 } 1207 1208 /** 1209 * snapshot_additional_pages - Estimate the number of extra pages needed. 1210 * @zone: Memory zone to carry out the computation for. 1211 * 1212 * Estimate the number of additional pages needed for setting up a hibernation 1213 * image data structures for @zone (usually, the returned value is greater than 1214 * the exact number). 1215 */ 1216 unsigned int snapshot_additional_pages(struct zone *zone) 1217 { 1218 unsigned int rtree, nodes; 1219 1220 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1221 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1222 LINKED_PAGE_DATA_SIZE); 1223 while (nodes > 1) { 1224 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1225 rtree += nodes; 1226 } 1227 1228 return 2 * rtree; 1229 } 1230 1231 #ifdef CONFIG_HIGHMEM 1232 /** 1233 * count_free_highmem_pages - Compute the total number of free highmem pages. 1234 * 1235 * The returned number is system-wide. 1236 */ 1237 static unsigned int count_free_highmem_pages(void) 1238 { 1239 struct zone *zone; 1240 unsigned int cnt = 0; 1241 1242 for_each_populated_zone(zone) 1243 if (is_highmem(zone)) 1244 cnt += zone_page_state(zone, NR_FREE_PAGES); 1245 1246 return cnt; 1247 } 1248 1249 /** 1250 * saveable_highmem_page - Check if a highmem page is saveable. 1251 * 1252 * Determine whether a highmem page should be included in a hibernation image. 1253 * 1254 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1255 * and it isn't part of a free chunk of pages. 1256 */ 1257 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1258 { 1259 struct page *page; 1260 1261 if (!pfn_valid(pfn)) 1262 return NULL; 1263 1264 page = pfn_to_online_page(pfn); 1265 if (!page || page_zone(page) != zone) 1266 return NULL; 1267 1268 BUG_ON(!PageHighMem(page)); 1269 1270 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1271 return NULL; 1272 1273 if (PageReserved(page) || PageOffline(page)) 1274 return NULL; 1275 1276 if (page_is_guard(page)) 1277 return NULL; 1278 1279 return page; 1280 } 1281 1282 /** 1283 * count_highmem_pages - Compute the total number of saveable highmem pages. 1284 */ 1285 static unsigned int count_highmem_pages(void) 1286 { 1287 struct zone *zone; 1288 unsigned int n = 0; 1289 1290 for_each_populated_zone(zone) { 1291 unsigned long pfn, max_zone_pfn; 1292 1293 if (!is_highmem(zone)) 1294 continue; 1295 1296 mark_free_pages(zone); 1297 max_zone_pfn = zone_end_pfn(zone); 1298 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1299 if (saveable_highmem_page(zone, pfn)) 1300 n++; 1301 } 1302 return n; 1303 } 1304 #else 1305 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1306 { 1307 return NULL; 1308 } 1309 #endif /* CONFIG_HIGHMEM */ 1310 1311 /** 1312 * saveable_page - Check if the given page is saveable. 1313 * 1314 * Determine whether a non-highmem page should be included in a hibernation 1315 * image. 1316 * 1317 * We should save the page if it isn't Nosave, and is not in the range 1318 * of pages statically defined as 'unsaveable', and it isn't part of 1319 * a free chunk of pages. 1320 */ 1321 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1322 { 1323 struct page *page; 1324 1325 if (!pfn_valid(pfn)) 1326 return NULL; 1327 1328 page = pfn_to_online_page(pfn); 1329 if (!page || page_zone(page) != zone) 1330 return NULL; 1331 1332 BUG_ON(PageHighMem(page)); 1333 1334 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1335 return NULL; 1336 1337 if (PageOffline(page)) 1338 return NULL; 1339 1340 if (PageReserved(page) 1341 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1342 return NULL; 1343 1344 if (page_is_guard(page)) 1345 return NULL; 1346 1347 return page; 1348 } 1349 1350 /** 1351 * count_data_pages - Compute the total number of saveable non-highmem pages. 1352 */ 1353 static unsigned int count_data_pages(void) 1354 { 1355 struct zone *zone; 1356 unsigned long pfn, max_zone_pfn; 1357 unsigned int n = 0; 1358 1359 for_each_populated_zone(zone) { 1360 if (is_highmem(zone)) 1361 continue; 1362 1363 mark_free_pages(zone); 1364 max_zone_pfn = zone_end_pfn(zone); 1365 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1366 if (saveable_page(zone, pfn)) 1367 n++; 1368 } 1369 return n; 1370 } 1371 1372 /* 1373 * This is needed, because copy_page and memcpy are not usable for copying 1374 * task structs. 1375 */ 1376 static inline void do_copy_page(long *dst, long *src) 1377 { 1378 int n; 1379 1380 for (n = PAGE_SIZE / sizeof(long); n; n--) 1381 *dst++ = *src++; 1382 } 1383 1384 /** 1385 * safe_copy_page - Copy a page in a safe way. 1386 * 1387 * Check if the page we are going to copy is marked as present in the kernel 1388 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or 1389 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present() 1390 * always returns 'true'. 1391 */ 1392 static void safe_copy_page(void *dst, struct page *s_page) 1393 { 1394 if (kernel_page_present(s_page)) { 1395 do_copy_page(dst, page_address(s_page)); 1396 } else { 1397 hibernate_map_page(s_page); 1398 do_copy_page(dst, page_address(s_page)); 1399 hibernate_unmap_page(s_page); 1400 } 1401 } 1402 1403 #ifdef CONFIG_HIGHMEM 1404 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1405 { 1406 return is_highmem(zone) ? 1407 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1408 } 1409 1410 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1411 { 1412 struct page *s_page, *d_page; 1413 void *src, *dst; 1414 1415 s_page = pfn_to_page(src_pfn); 1416 d_page = pfn_to_page(dst_pfn); 1417 if (PageHighMem(s_page)) { 1418 src = kmap_atomic(s_page); 1419 dst = kmap_atomic(d_page); 1420 do_copy_page(dst, src); 1421 kunmap_atomic(dst); 1422 kunmap_atomic(src); 1423 } else { 1424 if (PageHighMem(d_page)) { 1425 /* 1426 * The page pointed to by src may contain some kernel 1427 * data modified by kmap_atomic() 1428 */ 1429 safe_copy_page(buffer, s_page); 1430 dst = kmap_atomic(d_page); 1431 copy_page(dst, buffer); 1432 kunmap_atomic(dst); 1433 } else { 1434 safe_copy_page(page_address(d_page), s_page); 1435 } 1436 } 1437 } 1438 #else 1439 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1440 1441 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1442 { 1443 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1444 pfn_to_page(src_pfn)); 1445 } 1446 #endif /* CONFIG_HIGHMEM */ 1447 1448 static void copy_data_pages(struct memory_bitmap *copy_bm, 1449 struct memory_bitmap *orig_bm) 1450 { 1451 struct zone *zone; 1452 unsigned long pfn; 1453 1454 for_each_populated_zone(zone) { 1455 unsigned long max_zone_pfn; 1456 1457 mark_free_pages(zone); 1458 max_zone_pfn = zone_end_pfn(zone); 1459 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1460 if (page_is_saveable(zone, pfn)) 1461 memory_bm_set_bit(orig_bm, pfn); 1462 } 1463 memory_bm_position_reset(orig_bm); 1464 memory_bm_position_reset(copy_bm); 1465 for(;;) { 1466 pfn = memory_bm_next_pfn(orig_bm); 1467 if (unlikely(pfn == BM_END_OF_MAP)) 1468 break; 1469 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1470 } 1471 } 1472 1473 /* Total number of image pages */ 1474 static unsigned int nr_copy_pages; 1475 /* Number of pages needed for saving the original pfns of the image pages */ 1476 static unsigned int nr_meta_pages; 1477 /* 1478 * Numbers of normal and highmem page frames allocated for hibernation image 1479 * before suspending devices. 1480 */ 1481 static unsigned int alloc_normal, alloc_highmem; 1482 /* 1483 * Memory bitmap used for marking saveable pages (during hibernation) or 1484 * hibernation image pages (during restore) 1485 */ 1486 static struct memory_bitmap orig_bm; 1487 /* 1488 * Memory bitmap used during hibernation for marking allocated page frames that 1489 * will contain copies of saveable pages. During restore it is initially used 1490 * for marking hibernation image pages, but then the set bits from it are 1491 * duplicated in @orig_bm and it is released. On highmem systems it is next 1492 * used for marking "safe" highmem pages, but it has to be reinitialized for 1493 * this purpose. 1494 */ 1495 static struct memory_bitmap copy_bm; 1496 1497 /** 1498 * swsusp_free - Free pages allocated for hibernation image. 1499 * 1500 * Image pages are allocated before snapshot creation, so they need to be 1501 * released after resume. 1502 */ 1503 void swsusp_free(void) 1504 { 1505 unsigned long fb_pfn, fr_pfn; 1506 1507 if (!forbidden_pages_map || !free_pages_map) 1508 goto out; 1509 1510 memory_bm_position_reset(forbidden_pages_map); 1511 memory_bm_position_reset(free_pages_map); 1512 1513 loop: 1514 fr_pfn = memory_bm_next_pfn(free_pages_map); 1515 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1516 1517 /* 1518 * Find the next bit set in both bitmaps. This is guaranteed to 1519 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1520 */ 1521 do { 1522 if (fb_pfn < fr_pfn) 1523 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1524 if (fr_pfn < fb_pfn) 1525 fr_pfn = memory_bm_next_pfn(free_pages_map); 1526 } while (fb_pfn != fr_pfn); 1527 1528 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1529 struct page *page = pfn_to_page(fr_pfn); 1530 1531 memory_bm_clear_current(forbidden_pages_map); 1532 memory_bm_clear_current(free_pages_map); 1533 hibernate_restore_unprotect_page(page_address(page)); 1534 __free_page(page); 1535 goto loop; 1536 } 1537 1538 out: 1539 nr_copy_pages = 0; 1540 nr_meta_pages = 0; 1541 restore_pblist = NULL; 1542 buffer = NULL; 1543 alloc_normal = 0; 1544 alloc_highmem = 0; 1545 hibernate_restore_protection_end(); 1546 } 1547 1548 /* Helper functions used for the shrinking of memory. */ 1549 1550 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1551 1552 /** 1553 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1554 * @nr_pages: Number of page frames to allocate. 1555 * @mask: GFP flags to use for the allocation. 1556 * 1557 * Return value: Number of page frames actually allocated 1558 */ 1559 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1560 { 1561 unsigned long nr_alloc = 0; 1562 1563 while (nr_pages > 0) { 1564 struct page *page; 1565 1566 page = alloc_image_page(mask); 1567 if (!page) 1568 break; 1569 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1570 if (PageHighMem(page)) 1571 alloc_highmem++; 1572 else 1573 alloc_normal++; 1574 nr_pages--; 1575 nr_alloc++; 1576 } 1577 1578 return nr_alloc; 1579 } 1580 1581 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1582 unsigned long avail_normal) 1583 { 1584 unsigned long alloc; 1585 1586 if (avail_normal <= alloc_normal) 1587 return 0; 1588 1589 alloc = avail_normal - alloc_normal; 1590 if (nr_pages < alloc) 1591 alloc = nr_pages; 1592 1593 return preallocate_image_pages(alloc, GFP_IMAGE); 1594 } 1595 1596 #ifdef CONFIG_HIGHMEM 1597 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1598 { 1599 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1600 } 1601 1602 /** 1603 * __fraction - Compute (an approximation of) x * (multiplier / base). 1604 */ 1605 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1606 { 1607 return div64_u64(x * multiplier, base); 1608 } 1609 1610 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1611 unsigned long highmem, 1612 unsigned long total) 1613 { 1614 unsigned long alloc = __fraction(nr_pages, highmem, total); 1615 1616 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1617 } 1618 #else /* CONFIG_HIGHMEM */ 1619 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1620 { 1621 return 0; 1622 } 1623 1624 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1625 unsigned long highmem, 1626 unsigned long total) 1627 { 1628 return 0; 1629 } 1630 #endif /* CONFIG_HIGHMEM */ 1631 1632 /** 1633 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1634 */ 1635 static unsigned long free_unnecessary_pages(void) 1636 { 1637 unsigned long save, to_free_normal, to_free_highmem, free; 1638 1639 save = count_data_pages(); 1640 if (alloc_normal >= save) { 1641 to_free_normal = alloc_normal - save; 1642 save = 0; 1643 } else { 1644 to_free_normal = 0; 1645 save -= alloc_normal; 1646 } 1647 save += count_highmem_pages(); 1648 if (alloc_highmem >= save) { 1649 to_free_highmem = alloc_highmem - save; 1650 } else { 1651 to_free_highmem = 0; 1652 save -= alloc_highmem; 1653 if (to_free_normal > save) 1654 to_free_normal -= save; 1655 else 1656 to_free_normal = 0; 1657 } 1658 free = to_free_normal + to_free_highmem; 1659 1660 memory_bm_position_reset(©_bm); 1661 1662 while (to_free_normal > 0 || to_free_highmem > 0) { 1663 unsigned long pfn = memory_bm_next_pfn(©_bm); 1664 struct page *page = pfn_to_page(pfn); 1665 1666 if (PageHighMem(page)) { 1667 if (!to_free_highmem) 1668 continue; 1669 to_free_highmem--; 1670 alloc_highmem--; 1671 } else { 1672 if (!to_free_normal) 1673 continue; 1674 to_free_normal--; 1675 alloc_normal--; 1676 } 1677 memory_bm_clear_bit(©_bm, pfn); 1678 swsusp_unset_page_forbidden(page); 1679 swsusp_unset_page_free(page); 1680 __free_page(page); 1681 } 1682 1683 return free; 1684 } 1685 1686 /** 1687 * minimum_image_size - Estimate the minimum acceptable size of an image. 1688 * @saveable: Number of saveable pages in the system. 1689 * 1690 * We want to avoid attempting to free too much memory too hard, so estimate the 1691 * minimum acceptable size of a hibernation image to use as the lower limit for 1692 * preallocating memory. 1693 * 1694 * We assume that the minimum image size should be proportional to 1695 * 1696 * [number of saveable pages] - [number of pages that can be freed in theory] 1697 * 1698 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1699 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1700 */ 1701 static unsigned long minimum_image_size(unsigned long saveable) 1702 { 1703 unsigned long size; 1704 1705 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) 1706 + global_node_page_state(NR_ACTIVE_ANON) 1707 + global_node_page_state(NR_INACTIVE_ANON) 1708 + global_node_page_state(NR_ACTIVE_FILE) 1709 + global_node_page_state(NR_INACTIVE_FILE); 1710 1711 return saveable <= size ? 0 : saveable - size; 1712 } 1713 1714 /** 1715 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1716 * 1717 * To create a hibernation image it is necessary to make a copy of every page 1718 * frame in use. We also need a number of page frames to be free during 1719 * hibernation for allocations made while saving the image and for device 1720 * drivers, in case they need to allocate memory from their hibernation 1721 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1722 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through 1723 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1724 * total number of available page frames and allocate at least 1725 * 1726 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2 1727 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1728 * 1729 * of them, which corresponds to the maximum size of a hibernation image. 1730 * 1731 * If image_size is set below the number following from the above formula, 1732 * the preallocation of memory is continued until the total number of saveable 1733 * pages in the system is below the requested image size or the minimum 1734 * acceptable image size returned by minimum_image_size(), whichever is greater. 1735 */ 1736 int hibernate_preallocate_memory(void) 1737 { 1738 struct zone *zone; 1739 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1740 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1741 ktime_t start, stop; 1742 int error; 1743 1744 pr_info("Preallocating image memory\n"); 1745 start = ktime_get(); 1746 1747 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1748 if (error) { 1749 pr_err("Cannot allocate original bitmap\n"); 1750 goto err_out; 1751 } 1752 1753 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1754 if (error) { 1755 pr_err("Cannot allocate copy bitmap\n"); 1756 goto err_out; 1757 } 1758 1759 alloc_normal = 0; 1760 alloc_highmem = 0; 1761 1762 /* Count the number of saveable data pages. */ 1763 save_highmem = count_highmem_pages(); 1764 saveable = count_data_pages(); 1765 1766 /* 1767 * Compute the total number of page frames we can use (count) and the 1768 * number of pages needed for image metadata (size). 1769 */ 1770 count = saveable; 1771 saveable += save_highmem; 1772 highmem = save_highmem; 1773 size = 0; 1774 for_each_populated_zone(zone) { 1775 size += snapshot_additional_pages(zone); 1776 if (is_highmem(zone)) 1777 highmem += zone_page_state(zone, NR_FREE_PAGES); 1778 else 1779 count += zone_page_state(zone, NR_FREE_PAGES); 1780 } 1781 avail_normal = count; 1782 count += highmem; 1783 count -= totalreserve_pages; 1784 1785 /* Compute the maximum number of saveable pages to leave in memory. */ 1786 max_size = (count - (size + PAGES_FOR_IO)) / 2 1787 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1788 /* Compute the desired number of image pages specified by image_size. */ 1789 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1790 if (size > max_size) 1791 size = max_size; 1792 /* 1793 * If the desired number of image pages is at least as large as the 1794 * current number of saveable pages in memory, allocate page frames for 1795 * the image and we're done. 1796 */ 1797 if (size >= saveable) { 1798 pages = preallocate_image_highmem(save_highmem); 1799 pages += preallocate_image_memory(saveable - pages, avail_normal); 1800 goto out; 1801 } 1802 1803 /* Estimate the minimum size of the image. */ 1804 pages = minimum_image_size(saveable); 1805 /* 1806 * To avoid excessive pressure on the normal zone, leave room in it to 1807 * accommodate an image of the minimum size (unless it's already too 1808 * small, in which case don't preallocate pages from it at all). 1809 */ 1810 if (avail_normal > pages) 1811 avail_normal -= pages; 1812 else 1813 avail_normal = 0; 1814 if (size < pages) 1815 size = min_t(unsigned long, pages, max_size); 1816 1817 /* 1818 * Let the memory management subsystem know that we're going to need a 1819 * large number of page frames to allocate and make it free some memory. 1820 * NOTE: If this is not done, performance will be hurt badly in some 1821 * test cases. 1822 */ 1823 shrink_all_memory(saveable - size); 1824 1825 /* 1826 * The number of saveable pages in memory was too high, so apply some 1827 * pressure to decrease it. First, make room for the largest possible 1828 * image and fail if that doesn't work. Next, try to decrease the size 1829 * of the image as much as indicated by 'size' using allocations from 1830 * highmem and non-highmem zones separately. 1831 */ 1832 pages_highmem = preallocate_image_highmem(highmem / 2); 1833 alloc = count - max_size; 1834 if (alloc > pages_highmem) 1835 alloc -= pages_highmem; 1836 else 1837 alloc = 0; 1838 pages = preallocate_image_memory(alloc, avail_normal); 1839 if (pages < alloc) { 1840 /* We have exhausted non-highmem pages, try highmem. */ 1841 alloc -= pages; 1842 pages += pages_highmem; 1843 pages_highmem = preallocate_image_highmem(alloc); 1844 if (pages_highmem < alloc) { 1845 pr_err("Image allocation is %lu pages short\n", 1846 alloc - pages_highmem); 1847 goto err_out; 1848 } 1849 pages += pages_highmem; 1850 /* 1851 * size is the desired number of saveable pages to leave in 1852 * memory, so try to preallocate (all memory - size) pages. 1853 */ 1854 alloc = (count - pages) - size; 1855 pages += preallocate_image_highmem(alloc); 1856 } else { 1857 /* 1858 * There are approximately max_size saveable pages at this point 1859 * and we want to reduce this number down to size. 1860 */ 1861 alloc = max_size - size; 1862 size = preallocate_highmem_fraction(alloc, highmem, count); 1863 pages_highmem += size; 1864 alloc -= size; 1865 size = preallocate_image_memory(alloc, avail_normal); 1866 pages_highmem += preallocate_image_highmem(alloc - size); 1867 pages += pages_highmem + size; 1868 } 1869 1870 /* 1871 * We only need as many page frames for the image as there are saveable 1872 * pages in memory, but we have allocated more. Release the excessive 1873 * ones now. 1874 */ 1875 pages -= free_unnecessary_pages(); 1876 1877 out: 1878 stop = ktime_get(); 1879 pr_info("Allocated %lu pages for snapshot\n", pages); 1880 swsusp_show_speed(start, stop, pages, "Allocated"); 1881 1882 return 0; 1883 1884 err_out: 1885 swsusp_free(); 1886 return -ENOMEM; 1887 } 1888 1889 #ifdef CONFIG_HIGHMEM 1890 /** 1891 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1892 * 1893 * Compute the number of non-highmem pages that will be necessary for creating 1894 * copies of highmem pages. 1895 */ 1896 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1897 { 1898 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1899 1900 if (free_highmem >= nr_highmem) 1901 nr_highmem = 0; 1902 else 1903 nr_highmem -= free_highmem; 1904 1905 return nr_highmem; 1906 } 1907 #else 1908 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1909 #endif /* CONFIG_HIGHMEM */ 1910 1911 /** 1912 * enough_free_mem - Check if there is enough free memory for the image. 1913 */ 1914 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1915 { 1916 struct zone *zone; 1917 unsigned int free = alloc_normal; 1918 1919 for_each_populated_zone(zone) 1920 if (!is_highmem(zone)) 1921 free += zone_page_state(zone, NR_FREE_PAGES); 1922 1923 nr_pages += count_pages_for_highmem(nr_highmem); 1924 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 1925 nr_pages, PAGES_FOR_IO, free); 1926 1927 return free > nr_pages + PAGES_FOR_IO; 1928 } 1929 1930 #ifdef CONFIG_HIGHMEM 1931 /** 1932 * get_highmem_buffer - Allocate a buffer for highmem pages. 1933 * 1934 * If there are some highmem pages in the hibernation image, we may need a 1935 * buffer to copy them and/or load their data. 1936 */ 1937 static inline int get_highmem_buffer(int safe_needed) 1938 { 1939 buffer = get_image_page(GFP_ATOMIC, safe_needed); 1940 return buffer ? 0 : -ENOMEM; 1941 } 1942 1943 /** 1944 * alloc_highmem_pages - Allocate some highmem pages for the image. 1945 * 1946 * Try to allocate as many pages as needed, but if the number of free highmem 1947 * pages is less than that, allocate them all. 1948 */ 1949 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1950 unsigned int nr_highmem) 1951 { 1952 unsigned int to_alloc = count_free_highmem_pages(); 1953 1954 if (to_alloc > nr_highmem) 1955 to_alloc = nr_highmem; 1956 1957 nr_highmem -= to_alloc; 1958 while (to_alloc-- > 0) { 1959 struct page *page; 1960 1961 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 1962 memory_bm_set_bit(bm, page_to_pfn(page)); 1963 } 1964 return nr_highmem; 1965 } 1966 #else 1967 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1968 1969 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1970 unsigned int n) { return 0; } 1971 #endif /* CONFIG_HIGHMEM */ 1972 1973 /** 1974 * swsusp_alloc - Allocate memory for hibernation image. 1975 * 1976 * We first try to allocate as many highmem pages as there are 1977 * saveable highmem pages in the system. If that fails, we allocate 1978 * non-highmem pages for the copies of the remaining highmem ones. 1979 * 1980 * In this approach it is likely that the copies of highmem pages will 1981 * also be located in the high memory, because of the way in which 1982 * copy_data_pages() works. 1983 */ 1984 static int swsusp_alloc(struct memory_bitmap *copy_bm, 1985 unsigned int nr_pages, unsigned int nr_highmem) 1986 { 1987 if (nr_highmem > 0) { 1988 if (get_highmem_buffer(PG_ANY)) 1989 goto err_out; 1990 if (nr_highmem > alloc_highmem) { 1991 nr_highmem -= alloc_highmem; 1992 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1993 } 1994 } 1995 if (nr_pages > alloc_normal) { 1996 nr_pages -= alloc_normal; 1997 while (nr_pages-- > 0) { 1998 struct page *page; 1999 2000 page = alloc_image_page(GFP_ATOMIC); 2001 if (!page) 2002 goto err_out; 2003 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 2004 } 2005 } 2006 2007 return 0; 2008 2009 err_out: 2010 swsusp_free(); 2011 return -ENOMEM; 2012 } 2013 2014 asmlinkage __visible int swsusp_save(void) 2015 { 2016 unsigned int nr_pages, nr_highmem; 2017 2018 pr_info("Creating image:\n"); 2019 2020 drain_local_pages(NULL); 2021 nr_pages = count_data_pages(); 2022 nr_highmem = count_highmem_pages(); 2023 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 2024 2025 if (!enough_free_mem(nr_pages, nr_highmem)) { 2026 pr_err("Not enough free memory\n"); 2027 return -ENOMEM; 2028 } 2029 2030 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 2031 pr_err("Memory allocation failed\n"); 2032 return -ENOMEM; 2033 } 2034 2035 /* 2036 * During allocating of suspend pagedir, new cold pages may appear. 2037 * Kill them. 2038 */ 2039 drain_local_pages(NULL); 2040 copy_data_pages(©_bm, &orig_bm); 2041 2042 /* 2043 * End of critical section. From now on, we can write to memory, 2044 * but we should not touch disk. This specially means we must _not_ 2045 * touch swap space! Except we must write out our image of course. 2046 */ 2047 2048 nr_pages += nr_highmem; 2049 nr_copy_pages = nr_pages; 2050 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2051 2052 pr_info("Image created (%d pages copied)\n", nr_pages); 2053 2054 return 0; 2055 } 2056 2057 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2058 static int init_header_complete(struct swsusp_info *info) 2059 { 2060 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2061 info->version_code = LINUX_VERSION_CODE; 2062 return 0; 2063 } 2064 2065 static const char *check_image_kernel(struct swsusp_info *info) 2066 { 2067 if (info->version_code != LINUX_VERSION_CODE) 2068 return "kernel version"; 2069 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2070 return "system type"; 2071 if (strcmp(info->uts.release,init_utsname()->release)) 2072 return "kernel release"; 2073 if (strcmp(info->uts.version,init_utsname()->version)) 2074 return "version"; 2075 if (strcmp(info->uts.machine,init_utsname()->machine)) 2076 return "machine"; 2077 return NULL; 2078 } 2079 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2080 2081 unsigned long snapshot_get_image_size(void) 2082 { 2083 return nr_copy_pages + nr_meta_pages + 1; 2084 } 2085 2086 static int init_header(struct swsusp_info *info) 2087 { 2088 memset(info, 0, sizeof(struct swsusp_info)); 2089 info->num_physpages = get_num_physpages(); 2090 info->image_pages = nr_copy_pages; 2091 info->pages = snapshot_get_image_size(); 2092 info->size = info->pages; 2093 info->size <<= PAGE_SHIFT; 2094 return init_header_complete(info); 2095 } 2096 2097 /** 2098 * pack_pfns - Prepare PFNs for saving. 2099 * @bm: Memory bitmap. 2100 * @buf: Memory buffer to store the PFNs in. 2101 * 2102 * PFNs corresponding to set bits in @bm are stored in the area of memory 2103 * pointed to by @buf (1 page at a time). 2104 */ 2105 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2106 { 2107 int j; 2108 2109 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2110 buf[j] = memory_bm_next_pfn(bm); 2111 if (unlikely(buf[j] == BM_END_OF_MAP)) 2112 break; 2113 } 2114 } 2115 2116 /** 2117 * snapshot_read_next - Get the address to read the next image page from. 2118 * @handle: Snapshot handle to be used for the reading. 2119 * 2120 * On the first call, @handle should point to a zeroed snapshot_handle 2121 * structure. The structure gets populated then and a pointer to it should be 2122 * passed to this function every next time. 2123 * 2124 * On success, the function returns a positive number. Then, the caller 2125 * is allowed to read up to the returned number of bytes from the memory 2126 * location computed by the data_of() macro. 2127 * 2128 * The function returns 0 to indicate the end of the data stream condition, 2129 * and negative numbers are returned on errors. If that happens, the structure 2130 * pointed to by @handle is not updated and should not be used any more. 2131 */ 2132 int snapshot_read_next(struct snapshot_handle *handle) 2133 { 2134 if (handle->cur > nr_meta_pages + nr_copy_pages) 2135 return 0; 2136 2137 if (!buffer) { 2138 /* This makes the buffer be freed by swsusp_free() */ 2139 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2140 if (!buffer) 2141 return -ENOMEM; 2142 } 2143 if (!handle->cur) { 2144 int error; 2145 2146 error = init_header((struct swsusp_info *)buffer); 2147 if (error) 2148 return error; 2149 handle->buffer = buffer; 2150 memory_bm_position_reset(&orig_bm); 2151 memory_bm_position_reset(©_bm); 2152 } else if (handle->cur <= nr_meta_pages) { 2153 clear_page(buffer); 2154 pack_pfns(buffer, &orig_bm); 2155 } else { 2156 struct page *page; 2157 2158 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2159 if (PageHighMem(page)) { 2160 /* 2161 * Highmem pages are copied to the buffer, 2162 * because we can't return with a kmapped 2163 * highmem page (we may not be called again). 2164 */ 2165 void *kaddr; 2166 2167 kaddr = kmap_atomic(page); 2168 copy_page(buffer, kaddr); 2169 kunmap_atomic(kaddr); 2170 handle->buffer = buffer; 2171 } else { 2172 handle->buffer = page_address(page); 2173 } 2174 } 2175 handle->cur++; 2176 return PAGE_SIZE; 2177 } 2178 2179 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2180 struct memory_bitmap *src) 2181 { 2182 unsigned long pfn; 2183 2184 memory_bm_position_reset(src); 2185 pfn = memory_bm_next_pfn(src); 2186 while (pfn != BM_END_OF_MAP) { 2187 memory_bm_set_bit(dst, pfn); 2188 pfn = memory_bm_next_pfn(src); 2189 } 2190 } 2191 2192 /** 2193 * mark_unsafe_pages - Mark pages that were used before hibernation. 2194 * 2195 * Mark the pages that cannot be used for storing the image during restoration, 2196 * because they conflict with the pages that had been used before hibernation. 2197 */ 2198 static void mark_unsafe_pages(struct memory_bitmap *bm) 2199 { 2200 unsigned long pfn; 2201 2202 /* Clear the "free"/"unsafe" bit for all PFNs */ 2203 memory_bm_position_reset(free_pages_map); 2204 pfn = memory_bm_next_pfn(free_pages_map); 2205 while (pfn != BM_END_OF_MAP) { 2206 memory_bm_clear_current(free_pages_map); 2207 pfn = memory_bm_next_pfn(free_pages_map); 2208 } 2209 2210 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2211 duplicate_memory_bitmap(free_pages_map, bm); 2212 2213 allocated_unsafe_pages = 0; 2214 } 2215 2216 static int check_header(struct swsusp_info *info) 2217 { 2218 const char *reason; 2219 2220 reason = check_image_kernel(info); 2221 if (!reason && info->num_physpages != get_num_physpages()) 2222 reason = "memory size"; 2223 if (reason) { 2224 pr_err("Image mismatch: %s\n", reason); 2225 return -EPERM; 2226 } 2227 return 0; 2228 } 2229 2230 /** 2231 * load_header - Check the image header and copy the data from it. 2232 */ 2233 static int load_header(struct swsusp_info *info) 2234 { 2235 int error; 2236 2237 restore_pblist = NULL; 2238 error = check_header(info); 2239 if (!error) { 2240 nr_copy_pages = info->image_pages; 2241 nr_meta_pages = info->pages - info->image_pages - 1; 2242 } 2243 return error; 2244 } 2245 2246 /** 2247 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2248 * @bm: Memory bitmap. 2249 * @buf: Area of memory containing the PFNs. 2250 * 2251 * For each element of the array pointed to by @buf (1 page at a time), set the 2252 * corresponding bit in @bm. 2253 */ 2254 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2255 { 2256 int j; 2257 2258 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2259 if (unlikely(buf[j] == BM_END_OF_MAP)) 2260 break; 2261 2262 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) { 2263 memory_bm_set_bit(bm, buf[j]); 2264 } else { 2265 if (!pfn_valid(buf[j])) 2266 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n", 2267 (unsigned long long)PFN_PHYS(buf[j])); 2268 return -EFAULT; 2269 } 2270 } 2271 2272 return 0; 2273 } 2274 2275 #ifdef CONFIG_HIGHMEM 2276 /* 2277 * struct highmem_pbe is used for creating the list of highmem pages that 2278 * should be restored atomically during the resume from disk, because the page 2279 * frames they have occupied before the suspend are in use. 2280 */ 2281 struct highmem_pbe { 2282 struct page *copy_page; /* data is here now */ 2283 struct page *orig_page; /* data was here before the suspend */ 2284 struct highmem_pbe *next; 2285 }; 2286 2287 /* 2288 * List of highmem PBEs needed for restoring the highmem pages that were 2289 * allocated before the suspend and included in the suspend image, but have 2290 * also been allocated by the "resume" kernel, so their contents cannot be 2291 * written directly to their "original" page frames. 2292 */ 2293 static struct highmem_pbe *highmem_pblist; 2294 2295 /** 2296 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2297 * @bm: Memory bitmap. 2298 * 2299 * The bits in @bm that correspond to image pages are assumed to be set. 2300 */ 2301 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2302 { 2303 unsigned long pfn; 2304 unsigned int cnt = 0; 2305 2306 memory_bm_position_reset(bm); 2307 pfn = memory_bm_next_pfn(bm); 2308 while (pfn != BM_END_OF_MAP) { 2309 if (PageHighMem(pfn_to_page(pfn))) 2310 cnt++; 2311 2312 pfn = memory_bm_next_pfn(bm); 2313 } 2314 return cnt; 2315 } 2316 2317 static unsigned int safe_highmem_pages; 2318 2319 static struct memory_bitmap *safe_highmem_bm; 2320 2321 /** 2322 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2323 * @bm: Pointer to an uninitialized memory bitmap structure. 2324 * @nr_highmem_p: Pointer to the number of highmem image pages. 2325 * 2326 * Try to allocate as many highmem pages as there are highmem image pages 2327 * (@nr_highmem_p points to the variable containing the number of highmem image 2328 * pages). The pages that are "safe" (ie. will not be overwritten when the 2329 * hibernation image is restored entirely) have the corresponding bits set in 2330 * @bm (it must be uninitialized). 2331 * 2332 * NOTE: This function should not be called if there are no highmem image pages. 2333 */ 2334 static int prepare_highmem_image(struct memory_bitmap *bm, 2335 unsigned int *nr_highmem_p) 2336 { 2337 unsigned int to_alloc; 2338 2339 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2340 return -ENOMEM; 2341 2342 if (get_highmem_buffer(PG_SAFE)) 2343 return -ENOMEM; 2344 2345 to_alloc = count_free_highmem_pages(); 2346 if (to_alloc > *nr_highmem_p) 2347 to_alloc = *nr_highmem_p; 2348 else 2349 *nr_highmem_p = to_alloc; 2350 2351 safe_highmem_pages = 0; 2352 while (to_alloc-- > 0) { 2353 struct page *page; 2354 2355 page = alloc_page(__GFP_HIGHMEM); 2356 if (!swsusp_page_is_free(page)) { 2357 /* The page is "safe", set its bit the bitmap */ 2358 memory_bm_set_bit(bm, page_to_pfn(page)); 2359 safe_highmem_pages++; 2360 } 2361 /* Mark the page as allocated */ 2362 swsusp_set_page_forbidden(page); 2363 swsusp_set_page_free(page); 2364 } 2365 memory_bm_position_reset(bm); 2366 safe_highmem_bm = bm; 2367 return 0; 2368 } 2369 2370 static struct page *last_highmem_page; 2371 2372 /** 2373 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2374 * 2375 * For a given highmem image page get a buffer that suspend_write_next() should 2376 * return to its caller to write to. 2377 * 2378 * If the page is to be saved to its "original" page frame or a copy of 2379 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2380 * the copy of the page is to be made in normal memory, so the address of 2381 * the copy is returned. 2382 * 2383 * If @buffer is returned, the caller of suspend_write_next() will write 2384 * the page's contents to @buffer, so they will have to be copied to the 2385 * right location on the next call to suspend_write_next() and it is done 2386 * with the help of copy_last_highmem_page(). For this purpose, if 2387 * @buffer is returned, @last_highmem_page is set to the page to which 2388 * the data will have to be copied from @buffer. 2389 */ 2390 static void *get_highmem_page_buffer(struct page *page, 2391 struct chain_allocator *ca) 2392 { 2393 struct highmem_pbe *pbe; 2394 void *kaddr; 2395 2396 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2397 /* 2398 * We have allocated the "original" page frame and we can 2399 * use it directly to store the loaded page. 2400 */ 2401 last_highmem_page = page; 2402 return buffer; 2403 } 2404 /* 2405 * The "original" page frame has not been allocated and we have to 2406 * use a "safe" page frame to store the loaded page. 2407 */ 2408 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2409 if (!pbe) { 2410 swsusp_free(); 2411 return ERR_PTR(-ENOMEM); 2412 } 2413 pbe->orig_page = page; 2414 if (safe_highmem_pages > 0) { 2415 struct page *tmp; 2416 2417 /* Copy of the page will be stored in high memory */ 2418 kaddr = buffer; 2419 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2420 safe_highmem_pages--; 2421 last_highmem_page = tmp; 2422 pbe->copy_page = tmp; 2423 } else { 2424 /* Copy of the page will be stored in normal memory */ 2425 kaddr = safe_pages_list; 2426 safe_pages_list = safe_pages_list->next; 2427 pbe->copy_page = virt_to_page(kaddr); 2428 } 2429 pbe->next = highmem_pblist; 2430 highmem_pblist = pbe; 2431 return kaddr; 2432 } 2433 2434 /** 2435 * copy_last_highmem_page - Copy most the most recent highmem image page. 2436 * 2437 * Copy the contents of a highmem image from @buffer, where the caller of 2438 * snapshot_write_next() has stored them, to the right location represented by 2439 * @last_highmem_page . 2440 */ 2441 static void copy_last_highmem_page(void) 2442 { 2443 if (last_highmem_page) { 2444 void *dst; 2445 2446 dst = kmap_atomic(last_highmem_page); 2447 copy_page(dst, buffer); 2448 kunmap_atomic(dst); 2449 last_highmem_page = NULL; 2450 } 2451 } 2452 2453 static inline int last_highmem_page_copied(void) 2454 { 2455 return !last_highmem_page; 2456 } 2457 2458 static inline void free_highmem_data(void) 2459 { 2460 if (safe_highmem_bm) 2461 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2462 2463 if (buffer) 2464 free_image_page(buffer, PG_UNSAFE_CLEAR); 2465 } 2466 #else 2467 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2468 2469 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2470 unsigned int *nr_highmem_p) { return 0; } 2471 2472 static inline void *get_highmem_page_buffer(struct page *page, 2473 struct chain_allocator *ca) 2474 { 2475 return ERR_PTR(-EINVAL); 2476 } 2477 2478 static inline void copy_last_highmem_page(void) {} 2479 static inline int last_highmem_page_copied(void) { return 1; } 2480 static inline void free_highmem_data(void) {} 2481 #endif /* CONFIG_HIGHMEM */ 2482 2483 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2484 2485 /** 2486 * prepare_image - Make room for loading hibernation image. 2487 * @new_bm: Uninitialized memory bitmap structure. 2488 * @bm: Memory bitmap with unsafe pages marked. 2489 * 2490 * Use @bm to mark the pages that will be overwritten in the process of 2491 * restoring the system memory state from the suspend image ("unsafe" pages) 2492 * and allocate memory for the image. 2493 * 2494 * The idea is to allocate a new memory bitmap first and then allocate 2495 * as many pages as needed for image data, but without specifying what those 2496 * pages will be used for just yet. Instead, we mark them all as allocated and 2497 * create a lists of "safe" pages to be used later. On systems with high 2498 * memory a list of "safe" highmem pages is created too. 2499 */ 2500 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2501 { 2502 unsigned int nr_pages, nr_highmem; 2503 struct linked_page *lp; 2504 int error; 2505 2506 /* If there is no highmem, the buffer will not be necessary */ 2507 free_image_page(buffer, PG_UNSAFE_CLEAR); 2508 buffer = NULL; 2509 2510 nr_highmem = count_highmem_image_pages(bm); 2511 mark_unsafe_pages(bm); 2512 2513 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2514 if (error) 2515 goto Free; 2516 2517 duplicate_memory_bitmap(new_bm, bm); 2518 memory_bm_free(bm, PG_UNSAFE_KEEP); 2519 if (nr_highmem > 0) { 2520 error = prepare_highmem_image(bm, &nr_highmem); 2521 if (error) 2522 goto Free; 2523 } 2524 /* 2525 * Reserve some safe pages for potential later use. 2526 * 2527 * NOTE: This way we make sure there will be enough safe pages for the 2528 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2529 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2530 * 2531 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2532 */ 2533 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2534 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2535 while (nr_pages > 0) { 2536 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2537 if (!lp) { 2538 error = -ENOMEM; 2539 goto Free; 2540 } 2541 lp->next = safe_pages_list; 2542 safe_pages_list = lp; 2543 nr_pages--; 2544 } 2545 /* Preallocate memory for the image */ 2546 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2547 while (nr_pages > 0) { 2548 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2549 if (!lp) { 2550 error = -ENOMEM; 2551 goto Free; 2552 } 2553 if (!swsusp_page_is_free(virt_to_page(lp))) { 2554 /* The page is "safe", add it to the list */ 2555 lp->next = safe_pages_list; 2556 safe_pages_list = lp; 2557 } 2558 /* Mark the page as allocated */ 2559 swsusp_set_page_forbidden(virt_to_page(lp)); 2560 swsusp_set_page_free(virt_to_page(lp)); 2561 nr_pages--; 2562 } 2563 return 0; 2564 2565 Free: 2566 swsusp_free(); 2567 return error; 2568 } 2569 2570 /** 2571 * get_buffer - Get the address to store the next image data page. 2572 * 2573 * Get the address that snapshot_write_next() should return to its caller to 2574 * write to. 2575 */ 2576 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2577 { 2578 struct pbe *pbe; 2579 struct page *page; 2580 unsigned long pfn = memory_bm_next_pfn(bm); 2581 2582 if (pfn == BM_END_OF_MAP) 2583 return ERR_PTR(-EFAULT); 2584 2585 page = pfn_to_page(pfn); 2586 if (PageHighMem(page)) 2587 return get_highmem_page_buffer(page, ca); 2588 2589 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2590 /* 2591 * We have allocated the "original" page frame and we can 2592 * use it directly to store the loaded page. 2593 */ 2594 return page_address(page); 2595 2596 /* 2597 * The "original" page frame has not been allocated and we have to 2598 * use a "safe" page frame to store the loaded page. 2599 */ 2600 pbe = chain_alloc(ca, sizeof(struct pbe)); 2601 if (!pbe) { 2602 swsusp_free(); 2603 return ERR_PTR(-ENOMEM); 2604 } 2605 pbe->orig_address = page_address(page); 2606 pbe->address = safe_pages_list; 2607 safe_pages_list = safe_pages_list->next; 2608 pbe->next = restore_pblist; 2609 restore_pblist = pbe; 2610 return pbe->address; 2611 } 2612 2613 /** 2614 * snapshot_write_next - Get the address to store the next image page. 2615 * @handle: Snapshot handle structure to guide the writing. 2616 * 2617 * On the first call, @handle should point to a zeroed snapshot_handle 2618 * structure. The structure gets populated then and a pointer to it should be 2619 * passed to this function every next time. 2620 * 2621 * On success, the function returns a positive number. Then, the caller 2622 * is allowed to write up to the returned number of bytes to the memory 2623 * location computed by the data_of() macro. 2624 * 2625 * The function returns 0 to indicate the "end of file" condition. Negative 2626 * numbers are returned on errors, in which cases the structure pointed to by 2627 * @handle is not updated and should not be used any more. 2628 */ 2629 int snapshot_write_next(struct snapshot_handle *handle) 2630 { 2631 static struct chain_allocator ca; 2632 int error = 0; 2633 2634 /* Check if we have already loaded the entire image */ 2635 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2636 return 0; 2637 2638 handle->sync_read = 1; 2639 2640 if (!handle->cur) { 2641 if (!buffer) 2642 /* This makes the buffer be freed by swsusp_free() */ 2643 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2644 2645 if (!buffer) 2646 return -ENOMEM; 2647 2648 handle->buffer = buffer; 2649 } else if (handle->cur == 1) { 2650 error = load_header(buffer); 2651 if (error) 2652 return error; 2653 2654 safe_pages_list = NULL; 2655 2656 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2657 if (error) 2658 return error; 2659 2660 hibernate_restore_protection_begin(); 2661 } else if (handle->cur <= nr_meta_pages + 1) { 2662 error = unpack_orig_pfns(buffer, ©_bm); 2663 if (error) 2664 return error; 2665 2666 if (handle->cur == nr_meta_pages + 1) { 2667 error = prepare_image(&orig_bm, ©_bm); 2668 if (error) 2669 return error; 2670 2671 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2672 memory_bm_position_reset(&orig_bm); 2673 restore_pblist = NULL; 2674 handle->buffer = get_buffer(&orig_bm, &ca); 2675 handle->sync_read = 0; 2676 if (IS_ERR(handle->buffer)) 2677 return PTR_ERR(handle->buffer); 2678 } 2679 } else { 2680 copy_last_highmem_page(); 2681 hibernate_restore_protect_page(handle->buffer); 2682 handle->buffer = get_buffer(&orig_bm, &ca); 2683 if (IS_ERR(handle->buffer)) 2684 return PTR_ERR(handle->buffer); 2685 if (handle->buffer != buffer) 2686 handle->sync_read = 0; 2687 } 2688 handle->cur++; 2689 return PAGE_SIZE; 2690 } 2691 2692 /** 2693 * snapshot_write_finalize - Complete the loading of a hibernation image. 2694 * 2695 * Must be called after the last call to snapshot_write_next() in case the last 2696 * page in the image happens to be a highmem page and its contents should be 2697 * stored in highmem. Additionally, it recycles bitmap memory that's not 2698 * necessary any more. 2699 */ 2700 void snapshot_write_finalize(struct snapshot_handle *handle) 2701 { 2702 copy_last_highmem_page(); 2703 hibernate_restore_protect_page(handle->buffer); 2704 /* Do that only if we have loaded the image entirely */ 2705 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2706 memory_bm_recycle(&orig_bm); 2707 free_highmem_data(); 2708 } 2709 } 2710 2711 int snapshot_image_loaded(struct snapshot_handle *handle) 2712 { 2713 return !(!nr_copy_pages || !last_highmem_page_copied() || 2714 handle->cur <= nr_meta_pages + nr_copy_pages); 2715 } 2716 2717 #ifdef CONFIG_HIGHMEM 2718 /* Assumes that @buf is ready and points to a "safe" page */ 2719 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2720 void *buf) 2721 { 2722 void *kaddr1, *kaddr2; 2723 2724 kaddr1 = kmap_atomic(p1); 2725 kaddr2 = kmap_atomic(p2); 2726 copy_page(buf, kaddr1); 2727 copy_page(kaddr1, kaddr2); 2728 copy_page(kaddr2, buf); 2729 kunmap_atomic(kaddr2); 2730 kunmap_atomic(kaddr1); 2731 } 2732 2733 /** 2734 * restore_highmem - Put highmem image pages into their original locations. 2735 * 2736 * For each highmem page that was in use before hibernation and is included in 2737 * the image, and also has been allocated by the "restore" kernel, swap its 2738 * current contents with the previous (ie. "before hibernation") ones. 2739 * 2740 * If the restore eventually fails, we can call this function once again and 2741 * restore the highmem state as seen by the restore kernel. 2742 */ 2743 int restore_highmem(void) 2744 { 2745 struct highmem_pbe *pbe = highmem_pblist; 2746 void *buf; 2747 2748 if (!pbe) 2749 return 0; 2750 2751 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2752 if (!buf) 2753 return -ENOMEM; 2754 2755 while (pbe) { 2756 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2757 pbe = pbe->next; 2758 } 2759 free_image_page(buf, PG_UNSAFE_CLEAR); 2760 return 0; 2761 } 2762 #endif /* CONFIG_HIGHMEM */ 2763