xref: /linux/kernel/power/main.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * kernel/power/main.c - PM subsystem core functionality.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  */
10 
11 #include <linux/export.h>
12 #include <linux/kobject.h>
13 #include <linux/string.h>
14 #include <linux/pm-trace.h>
15 #include <linux/workqueue.h>
16 #include <linux/debugfs.h>
17 #include <linux/seq_file.h>
18 
19 #include "power.h"
20 
21 DEFINE_MUTEX(pm_mutex);
22 
23 #ifdef CONFIG_PM_SLEEP
24 
25 /* Routines for PM-transition notifications */
26 
27 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
28 
29 int register_pm_notifier(struct notifier_block *nb)
30 {
31 	return blocking_notifier_chain_register(&pm_chain_head, nb);
32 }
33 EXPORT_SYMBOL_GPL(register_pm_notifier);
34 
35 int unregister_pm_notifier(struct notifier_block *nb)
36 {
37 	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
38 }
39 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
40 
41 int __pm_notifier_call_chain(unsigned long val, int nr_to_call, int *nr_calls)
42 {
43 	int ret;
44 
45 	ret = __blocking_notifier_call_chain(&pm_chain_head, val, NULL,
46 						nr_to_call, nr_calls);
47 
48 	return notifier_to_errno(ret);
49 }
50 int pm_notifier_call_chain(unsigned long val)
51 {
52 	return __pm_notifier_call_chain(val, -1, NULL);
53 }
54 
55 /* If set, devices may be suspended and resumed asynchronously. */
56 int pm_async_enabled = 1;
57 
58 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
59 			     char *buf)
60 {
61 	return sprintf(buf, "%d\n", pm_async_enabled);
62 }
63 
64 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
65 			      const char *buf, size_t n)
66 {
67 	unsigned long val;
68 
69 	if (kstrtoul(buf, 10, &val))
70 		return -EINVAL;
71 
72 	if (val > 1)
73 		return -EINVAL;
74 
75 	pm_async_enabled = val;
76 	return n;
77 }
78 
79 power_attr(pm_async);
80 
81 #ifdef CONFIG_PM_DEBUG
82 int pm_test_level = TEST_NONE;
83 
84 static const char * const pm_tests[__TEST_AFTER_LAST] = {
85 	[TEST_NONE] = "none",
86 	[TEST_CORE] = "core",
87 	[TEST_CPUS] = "processors",
88 	[TEST_PLATFORM] = "platform",
89 	[TEST_DEVICES] = "devices",
90 	[TEST_FREEZER] = "freezer",
91 };
92 
93 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
94 				char *buf)
95 {
96 	char *s = buf;
97 	int level;
98 
99 	for (level = TEST_FIRST; level <= TEST_MAX; level++)
100 		if (pm_tests[level]) {
101 			if (level == pm_test_level)
102 				s += sprintf(s, "[%s] ", pm_tests[level]);
103 			else
104 				s += sprintf(s, "%s ", pm_tests[level]);
105 		}
106 
107 	if (s != buf)
108 		/* convert the last space to a newline */
109 		*(s-1) = '\n';
110 
111 	return (s - buf);
112 }
113 
114 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
115 				const char *buf, size_t n)
116 {
117 	const char * const *s;
118 	int level;
119 	char *p;
120 	int len;
121 	int error = -EINVAL;
122 
123 	p = memchr(buf, '\n', n);
124 	len = p ? p - buf : n;
125 
126 	lock_system_sleep();
127 
128 	level = TEST_FIRST;
129 	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
130 		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
131 			pm_test_level = level;
132 			error = 0;
133 			break;
134 		}
135 
136 	unlock_system_sleep();
137 
138 	return error ? error : n;
139 }
140 
141 power_attr(pm_test);
142 #endif /* CONFIG_PM_DEBUG */
143 
144 #ifdef CONFIG_DEBUG_FS
145 static char *suspend_step_name(enum suspend_stat_step step)
146 {
147 	switch (step) {
148 	case SUSPEND_FREEZE:
149 		return "freeze";
150 	case SUSPEND_PREPARE:
151 		return "prepare";
152 	case SUSPEND_SUSPEND:
153 		return "suspend";
154 	case SUSPEND_SUSPEND_NOIRQ:
155 		return "suspend_noirq";
156 	case SUSPEND_RESUME_NOIRQ:
157 		return "resume_noirq";
158 	case SUSPEND_RESUME:
159 		return "resume";
160 	default:
161 		return "";
162 	}
163 }
164 
165 static int suspend_stats_show(struct seq_file *s, void *unused)
166 {
167 	int i, index, last_dev, last_errno, last_step;
168 
169 	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
170 	last_dev %= REC_FAILED_NUM;
171 	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
172 	last_errno %= REC_FAILED_NUM;
173 	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
174 	last_step %= REC_FAILED_NUM;
175 	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
176 			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
177 			"success", suspend_stats.success,
178 			"fail", suspend_stats.fail,
179 			"failed_freeze", suspend_stats.failed_freeze,
180 			"failed_prepare", suspend_stats.failed_prepare,
181 			"failed_suspend", suspend_stats.failed_suspend,
182 			"failed_suspend_late",
183 				suspend_stats.failed_suspend_late,
184 			"failed_suspend_noirq",
185 				suspend_stats.failed_suspend_noirq,
186 			"failed_resume", suspend_stats.failed_resume,
187 			"failed_resume_early",
188 				suspend_stats.failed_resume_early,
189 			"failed_resume_noirq",
190 				suspend_stats.failed_resume_noirq);
191 	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
192 			suspend_stats.failed_devs[last_dev]);
193 	for (i = 1; i < REC_FAILED_NUM; i++) {
194 		index = last_dev + REC_FAILED_NUM - i;
195 		index %= REC_FAILED_NUM;
196 		seq_printf(s, "\t\t\t%-s\n",
197 			suspend_stats.failed_devs[index]);
198 	}
199 	seq_printf(s,	"  last_failed_errno:\t%-d\n",
200 			suspend_stats.errno[last_errno]);
201 	for (i = 1; i < REC_FAILED_NUM; i++) {
202 		index = last_errno + REC_FAILED_NUM - i;
203 		index %= REC_FAILED_NUM;
204 		seq_printf(s, "\t\t\t%-d\n",
205 			suspend_stats.errno[index]);
206 	}
207 	seq_printf(s,	"  last_failed_step:\t%-s\n",
208 			suspend_step_name(
209 				suspend_stats.failed_steps[last_step]));
210 	for (i = 1; i < REC_FAILED_NUM; i++) {
211 		index = last_step + REC_FAILED_NUM - i;
212 		index %= REC_FAILED_NUM;
213 		seq_printf(s, "\t\t\t%-s\n",
214 			suspend_step_name(
215 				suspend_stats.failed_steps[index]));
216 	}
217 
218 	return 0;
219 }
220 
221 static int suspend_stats_open(struct inode *inode, struct file *file)
222 {
223 	return single_open(file, suspend_stats_show, NULL);
224 }
225 
226 static const struct file_operations suspend_stats_operations = {
227 	.open           = suspend_stats_open,
228 	.read           = seq_read,
229 	.llseek         = seq_lseek,
230 	.release        = single_release,
231 };
232 
233 static int __init pm_debugfs_init(void)
234 {
235 	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
236 			NULL, NULL, &suspend_stats_operations);
237 	return 0;
238 }
239 
240 late_initcall(pm_debugfs_init);
241 #endif /* CONFIG_DEBUG_FS */
242 
243 #endif /* CONFIG_PM_SLEEP */
244 
245 #ifdef CONFIG_PM_SLEEP_DEBUG
246 /*
247  * pm_print_times: print time taken by devices to suspend and resume.
248  *
249  * show() returns whether printing of suspend and resume times is enabled.
250  * store() accepts 0 or 1.  0 disables printing and 1 enables it.
251  */
252 bool pm_print_times_enabled;
253 
254 static ssize_t pm_print_times_show(struct kobject *kobj,
255 				   struct kobj_attribute *attr, char *buf)
256 {
257 	return sprintf(buf, "%d\n", pm_print_times_enabled);
258 }
259 
260 static ssize_t pm_print_times_store(struct kobject *kobj,
261 				    struct kobj_attribute *attr,
262 				    const char *buf, size_t n)
263 {
264 	unsigned long val;
265 
266 	if (kstrtoul(buf, 10, &val))
267 		return -EINVAL;
268 
269 	if (val > 1)
270 		return -EINVAL;
271 
272 	pm_print_times_enabled = !!val;
273 	return n;
274 }
275 
276 power_attr(pm_print_times);
277 
278 static inline void pm_print_times_init(void)
279 {
280 	pm_print_times_enabled = !!initcall_debug;
281 }
282 
283 static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
284 					struct kobj_attribute *attr,
285 					char *buf)
286 {
287 	return pm_wakeup_irq ? sprintf(buf, "%u\n", pm_wakeup_irq) : -ENODATA;
288 }
289 
290 power_attr_ro(pm_wakeup_irq);
291 
292 #else /* !CONFIG_PM_SLEEP_DEBUG */
293 static inline void pm_print_times_init(void) {}
294 #endif /* CONFIG_PM_SLEEP_DEBUG */
295 
296 struct kobject *power_kobj;
297 
298 /**
299  * state - control system sleep states.
300  *
301  * show() returns available sleep state labels, which may be "mem", "standby",
302  * "freeze" and "disk" (hibernation).  See Documentation/power/states.txt for a
303  * description of what they mean.
304  *
305  * store() accepts one of those strings, translates it into the proper
306  * enumerated value, and initiates a suspend transition.
307  */
308 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
309 			  char *buf)
310 {
311 	char *s = buf;
312 #ifdef CONFIG_SUSPEND
313 	suspend_state_t i;
314 
315 	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
316 		if (pm_states[i])
317 			s += sprintf(s,"%s ", pm_states[i]);
318 
319 #endif
320 	if (hibernation_available())
321 		s += sprintf(s, "disk ");
322 	if (s != buf)
323 		/* convert the last space to a newline */
324 		*(s-1) = '\n';
325 	return (s - buf);
326 }
327 
328 static suspend_state_t decode_state(const char *buf, size_t n)
329 {
330 #ifdef CONFIG_SUSPEND
331 	suspend_state_t state;
332 #endif
333 	char *p;
334 	int len;
335 
336 	p = memchr(buf, '\n', n);
337 	len = p ? p - buf : n;
338 
339 	/* Check hibernation first. */
340 	if (len == 4 && !strncmp(buf, "disk", len))
341 		return PM_SUSPEND_MAX;
342 
343 #ifdef CONFIG_SUSPEND
344 	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
345 		const char *label = pm_states[state];
346 
347 		if (label && len == strlen(label) && !strncmp(buf, label, len))
348 			return state;
349 	}
350 #endif
351 
352 	return PM_SUSPEND_ON;
353 }
354 
355 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
356 			   const char *buf, size_t n)
357 {
358 	suspend_state_t state;
359 	int error;
360 
361 	error = pm_autosleep_lock();
362 	if (error)
363 		return error;
364 
365 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
366 		error = -EBUSY;
367 		goto out;
368 	}
369 
370 	state = decode_state(buf, n);
371 	if (state < PM_SUSPEND_MAX)
372 		error = pm_suspend(state);
373 	else if (state == PM_SUSPEND_MAX)
374 		error = hibernate();
375 	else
376 		error = -EINVAL;
377 
378  out:
379 	pm_autosleep_unlock();
380 	return error ? error : n;
381 }
382 
383 power_attr(state);
384 
385 #ifdef CONFIG_PM_SLEEP
386 /*
387  * The 'wakeup_count' attribute, along with the functions defined in
388  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
389  * handled in a non-racy way.
390  *
391  * If a wakeup event occurs when the system is in a sleep state, it simply is
392  * woken up.  In turn, if an event that would wake the system up from a sleep
393  * state occurs when it is undergoing a transition to that sleep state, the
394  * transition should be aborted.  Moreover, if such an event occurs when the
395  * system is in the working state, an attempt to start a transition to the
396  * given sleep state should fail during certain period after the detection of
397  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
398  * these requirements, because a wakeup event may occur exactly when 'state'
399  * is being written to and may be delivered to user space right before it is
400  * frozen, so the event will remain only partially processed until the system is
401  * woken up by another event.  In particular, it won't cause the transition to
402  * a sleep state to be aborted.
403  *
404  * This difficulty may be overcome if user space uses 'wakeup_count' before
405  * writing to 'state'.  It first should read from 'wakeup_count' and store
406  * the read value.  Then, after carrying out its own preparations for the system
407  * transition to a sleep state, it should write the stored value to
408  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
409  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
410  * is allowed to write to 'state', but the transition will be aborted if there
411  * are any wakeup events detected after 'wakeup_count' was written to.
412  */
413 
414 static ssize_t wakeup_count_show(struct kobject *kobj,
415 				struct kobj_attribute *attr,
416 				char *buf)
417 {
418 	unsigned int val;
419 
420 	return pm_get_wakeup_count(&val, true) ?
421 		sprintf(buf, "%u\n", val) : -EINTR;
422 }
423 
424 static ssize_t wakeup_count_store(struct kobject *kobj,
425 				struct kobj_attribute *attr,
426 				const char *buf, size_t n)
427 {
428 	unsigned int val;
429 	int error;
430 
431 	error = pm_autosleep_lock();
432 	if (error)
433 		return error;
434 
435 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
436 		error = -EBUSY;
437 		goto out;
438 	}
439 
440 	error = -EINVAL;
441 	if (sscanf(buf, "%u", &val) == 1) {
442 		if (pm_save_wakeup_count(val))
443 			error = n;
444 		else
445 			pm_print_active_wakeup_sources();
446 	}
447 
448  out:
449 	pm_autosleep_unlock();
450 	return error;
451 }
452 
453 power_attr(wakeup_count);
454 
455 #ifdef CONFIG_PM_AUTOSLEEP
456 static ssize_t autosleep_show(struct kobject *kobj,
457 			      struct kobj_attribute *attr,
458 			      char *buf)
459 {
460 	suspend_state_t state = pm_autosleep_state();
461 
462 	if (state == PM_SUSPEND_ON)
463 		return sprintf(buf, "off\n");
464 
465 #ifdef CONFIG_SUSPEND
466 	if (state < PM_SUSPEND_MAX)
467 		return sprintf(buf, "%s\n", pm_states[state] ?
468 					pm_states[state] : "error");
469 #endif
470 #ifdef CONFIG_HIBERNATION
471 	return sprintf(buf, "disk\n");
472 #else
473 	return sprintf(buf, "error");
474 #endif
475 }
476 
477 static ssize_t autosleep_store(struct kobject *kobj,
478 			       struct kobj_attribute *attr,
479 			       const char *buf, size_t n)
480 {
481 	suspend_state_t state = decode_state(buf, n);
482 	int error;
483 
484 	if (state == PM_SUSPEND_ON
485 	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
486 		return -EINVAL;
487 
488 	error = pm_autosleep_set_state(state);
489 	return error ? error : n;
490 }
491 
492 power_attr(autosleep);
493 #endif /* CONFIG_PM_AUTOSLEEP */
494 
495 #ifdef CONFIG_PM_WAKELOCKS
496 static ssize_t wake_lock_show(struct kobject *kobj,
497 			      struct kobj_attribute *attr,
498 			      char *buf)
499 {
500 	return pm_show_wakelocks(buf, true);
501 }
502 
503 static ssize_t wake_lock_store(struct kobject *kobj,
504 			       struct kobj_attribute *attr,
505 			       const char *buf, size_t n)
506 {
507 	int error = pm_wake_lock(buf);
508 	return error ? error : n;
509 }
510 
511 power_attr(wake_lock);
512 
513 static ssize_t wake_unlock_show(struct kobject *kobj,
514 				struct kobj_attribute *attr,
515 				char *buf)
516 {
517 	return pm_show_wakelocks(buf, false);
518 }
519 
520 static ssize_t wake_unlock_store(struct kobject *kobj,
521 				 struct kobj_attribute *attr,
522 				 const char *buf, size_t n)
523 {
524 	int error = pm_wake_unlock(buf);
525 	return error ? error : n;
526 }
527 
528 power_attr(wake_unlock);
529 
530 #endif /* CONFIG_PM_WAKELOCKS */
531 #endif /* CONFIG_PM_SLEEP */
532 
533 #ifdef CONFIG_PM_TRACE
534 int pm_trace_enabled;
535 
536 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
537 			     char *buf)
538 {
539 	return sprintf(buf, "%d\n", pm_trace_enabled);
540 }
541 
542 static ssize_t
543 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
544 	       const char *buf, size_t n)
545 {
546 	int val;
547 
548 	if (sscanf(buf, "%d", &val) == 1) {
549 		pm_trace_enabled = !!val;
550 		if (pm_trace_enabled) {
551 			pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
552 				"PM: Correct system time has to be restored manually after resume.\n");
553 		}
554 		return n;
555 	}
556 	return -EINVAL;
557 }
558 
559 power_attr(pm_trace);
560 
561 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
562 				       struct kobj_attribute *attr,
563 				       char *buf)
564 {
565 	return show_trace_dev_match(buf, PAGE_SIZE);
566 }
567 
568 power_attr_ro(pm_trace_dev_match);
569 
570 #endif /* CONFIG_PM_TRACE */
571 
572 #ifdef CONFIG_FREEZER
573 static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
574 				      struct kobj_attribute *attr, char *buf)
575 {
576 	return sprintf(buf, "%u\n", freeze_timeout_msecs);
577 }
578 
579 static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
580 				       struct kobj_attribute *attr,
581 				       const char *buf, size_t n)
582 {
583 	unsigned long val;
584 
585 	if (kstrtoul(buf, 10, &val))
586 		return -EINVAL;
587 
588 	freeze_timeout_msecs = val;
589 	return n;
590 }
591 
592 power_attr(pm_freeze_timeout);
593 
594 #endif	/* CONFIG_FREEZER*/
595 
596 static struct attribute * g[] = {
597 	&state_attr.attr,
598 #ifdef CONFIG_PM_TRACE
599 	&pm_trace_attr.attr,
600 	&pm_trace_dev_match_attr.attr,
601 #endif
602 #ifdef CONFIG_PM_SLEEP
603 	&pm_async_attr.attr,
604 	&wakeup_count_attr.attr,
605 #ifdef CONFIG_PM_AUTOSLEEP
606 	&autosleep_attr.attr,
607 #endif
608 #ifdef CONFIG_PM_WAKELOCKS
609 	&wake_lock_attr.attr,
610 	&wake_unlock_attr.attr,
611 #endif
612 #ifdef CONFIG_PM_DEBUG
613 	&pm_test_attr.attr,
614 #endif
615 #ifdef CONFIG_PM_SLEEP_DEBUG
616 	&pm_print_times_attr.attr,
617 	&pm_wakeup_irq_attr.attr,
618 #endif
619 #endif
620 #ifdef CONFIG_FREEZER
621 	&pm_freeze_timeout_attr.attr,
622 #endif
623 	NULL,
624 };
625 
626 static struct attribute_group attr_group = {
627 	.attrs = g,
628 };
629 
630 struct workqueue_struct *pm_wq;
631 EXPORT_SYMBOL_GPL(pm_wq);
632 
633 static int __init pm_start_workqueue(void)
634 {
635 	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
636 
637 	return pm_wq ? 0 : -ENOMEM;
638 }
639 
640 static int __init pm_init(void)
641 {
642 	int error = pm_start_workqueue();
643 	if (error)
644 		return error;
645 	hibernate_image_size_init();
646 	hibernate_reserved_size_init();
647 	pm_states_init();
648 	power_kobj = kobject_create_and_add("power", NULL);
649 	if (!power_kobj)
650 		return -ENOMEM;
651 	error = sysfs_create_group(power_kobj, &attr_group);
652 	if (error)
653 		return error;
654 	pm_print_times_init();
655 	return pm_autosleep_init();
656 }
657 
658 core_initcall(pm_init);
659