xref: /linux/kernel/power/main.c (revision 757dea93e136b219af09d3cd56a81063fdbdef1a)
1 /*
2  * kernel/power/main.c - PM subsystem core functionality.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/suspend.h>
13 #include <linux/kobject.h>
14 #include <linux/string.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/pm.h>
19 #include <linux/console.h>
20 #include <linux/cpu.h>
21 #include <linux/resume-trace.h>
22 #include <linux/freezer.h>
23 #include <linux/vmstat.h>
24 
25 #include "power.h"
26 
27 /*This is just an arbitrary number */
28 #define FREE_PAGE_NUMBER (100)
29 
30 DEFINE_MUTEX(pm_mutex);
31 
32 struct pm_ops *pm_ops;
33 suspend_disk_method_t pm_disk_mode = PM_DISK_SHUTDOWN;
34 
35 /**
36  *	pm_set_ops - Set the global power method table.
37  *	@ops:	Pointer to ops structure.
38  */
39 
40 void pm_set_ops(struct pm_ops * ops)
41 {
42 	mutex_lock(&pm_mutex);
43 	pm_ops = ops;
44 	if (ops && ops->pm_disk_mode != PM_DISK_INVALID) {
45 		pm_disk_mode = ops->pm_disk_mode;
46 	} else
47 		pm_disk_mode = PM_DISK_SHUTDOWN;
48 	mutex_unlock(&pm_mutex);
49 }
50 
51 /**
52  * pm_valid_only_mem - generic memory-only valid callback
53  *
54  * pm_ops drivers that implement mem suspend only and only need
55  * to check for that in their .valid callback can use this instead
56  * of rolling their own .valid callback.
57  */
58 int pm_valid_only_mem(suspend_state_t state)
59 {
60 	return state == PM_SUSPEND_MEM;
61 }
62 
63 
64 static inline void pm_finish(suspend_state_t state)
65 {
66 	if (pm_ops->finish)
67 		pm_ops->finish(state);
68 }
69 
70 /**
71  *	suspend_prepare - Do prep work before entering low-power state.
72  *	@state:		State we're entering.
73  *
74  *	This is common code that is called for each state that we're
75  *	entering. Allocate a console, stop all processes, then make sure
76  *	the platform can enter the requested state.
77  */
78 
79 static int suspend_prepare(suspend_state_t state)
80 {
81 	int error;
82 	unsigned int free_pages;
83 
84 	if (!pm_ops || !pm_ops->enter)
85 		return -EPERM;
86 
87 	pm_prepare_console();
88 
89 	if (freeze_processes()) {
90 		error = -EAGAIN;
91 		goto Thaw;
92 	}
93 
94 	if ((free_pages = global_page_state(NR_FREE_PAGES))
95 			< FREE_PAGE_NUMBER) {
96 		pr_debug("PM: free some memory\n");
97 		shrink_all_memory(FREE_PAGE_NUMBER - free_pages);
98 		if (nr_free_pages() < FREE_PAGE_NUMBER) {
99 			error = -ENOMEM;
100 			printk(KERN_ERR "PM: No enough memory\n");
101 			goto Thaw;
102 		}
103 	}
104 
105 	if (pm_ops->prepare) {
106 		if ((error = pm_ops->prepare(state)))
107 			goto Thaw;
108 	}
109 
110 	suspend_console();
111 	error = device_suspend(PMSG_SUSPEND);
112 	if (error) {
113 		printk(KERN_ERR "Some devices failed to suspend\n");
114 		goto Resume_devices;
115 	}
116 	error = disable_nonboot_cpus();
117 	if (!error)
118 		return 0;
119 
120 	enable_nonboot_cpus();
121  Resume_devices:
122 	pm_finish(state);
123 	device_resume();
124 	resume_console();
125  Thaw:
126 	thaw_processes();
127 	pm_restore_console();
128 	return error;
129 }
130 
131 /* default implementation */
132 void __attribute__ ((weak)) arch_suspend_disable_irqs(void)
133 {
134 	local_irq_disable();
135 }
136 
137 /* default implementation */
138 void __attribute__ ((weak)) arch_suspend_enable_irqs(void)
139 {
140 	local_irq_enable();
141 }
142 
143 int suspend_enter(suspend_state_t state)
144 {
145 	int error = 0;
146 
147 	arch_suspend_disable_irqs();
148 	BUG_ON(!irqs_disabled());
149 
150 	if ((error = device_power_down(PMSG_SUSPEND))) {
151 		printk(KERN_ERR "Some devices failed to power down\n");
152 		goto Done;
153 	}
154 	error = pm_ops->enter(state);
155 	device_power_up();
156  Done:
157 	arch_suspend_enable_irqs();
158 	BUG_ON(irqs_disabled());
159 	return error;
160 }
161 
162 
163 /**
164  *	suspend_finish - Do final work before exiting suspend sequence.
165  *	@state:		State we're coming out of.
166  *
167  *	Call platform code to clean up, restart processes, and free the
168  *	console that we've allocated. This is not called for suspend-to-disk.
169  */
170 
171 static void suspend_finish(suspend_state_t state)
172 {
173 	enable_nonboot_cpus();
174 	pm_finish(state);
175 	device_resume();
176 	resume_console();
177 	thaw_processes();
178 	pm_restore_console();
179 }
180 
181 
182 
183 
184 static const char * const pm_states[PM_SUSPEND_MAX] = {
185 	[PM_SUSPEND_STANDBY]	= "standby",
186 	[PM_SUSPEND_MEM]	= "mem",
187 	[PM_SUSPEND_DISK]	= "disk",
188 };
189 
190 static inline int valid_state(suspend_state_t state)
191 {
192 	/* Suspend-to-disk does not really need low-level support.
193 	 * It can work with shutdown/reboot if needed. If it isn't
194 	 * configured, then it cannot be supported.
195 	 */
196 	if (state == PM_SUSPEND_DISK)
197 #ifdef CONFIG_SOFTWARE_SUSPEND
198 		return 1;
199 #else
200 		return 0;
201 #endif
202 
203 	/* all other states need lowlevel support and need to be
204 	 * valid to the lowlevel implementation, no valid callback
205 	 * implies that none are valid. */
206 	if (!pm_ops || !pm_ops->valid || !pm_ops->valid(state))
207 		return 0;
208 	return 1;
209 }
210 
211 
212 /**
213  *	enter_state - Do common work of entering low-power state.
214  *	@state:		pm_state structure for state we're entering.
215  *
216  *	Make sure we're the only ones trying to enter a sleep state. Fail
217  *	if someone has beat us to it, since we don't want anything weird to
218  *	happen when we wake up.
219  *	Then, do the setup for suspend, enter the state, and cleaup (after
220  *	we've woken up).
221  */
222 
223 static int enter_state(suspend_state_t state)
224 {
225 	int error;
226 
227 	if (!valid_state(state))
228 		return -ENODEV;
229 	if (!mutex_trylock(&pm_mutex))
230 		return -EBUSY;
231 
232 	if (state == PM_SUSPEND_DISK) {
233 		error = pm_suspend_disk();
234 		goto Unlock;
235 	}
236 
237 	pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]);
238 	if ((error = suspend_prepare(state)))
239 		goto Unlock;
240 
241 	pr_debug("PM: Entering %s sleep\n", pm_states[state]);
242 	error = suspend_enter(state);
243 
244 	pr_debug("PM: Finishing wakeup.\n");
245 	suspend_finish(state);
246  Unlock:
247 	mutex_unlock(&pm_mutex);
248 	return error;
249 }
250 
251 
252 /**
253  *	pm_suspend - Externally visible function for suspending system.
254  *	@state:		Enumarted value of state to enter.
255  *
256  *	Determine whether or not value is within range, get state
257  *	structure, and enter (above).
258  */
259 
260 int pm_suspend(suspend_state_t state)
261 {
262 	if (state > PM_SUSPEND_ON && state <= PM_SUSPEND_MAX)
263 		return enter_state(state);
264 	return -EINVAL;
265 }
266 
267 EXPORT_SYMBOL(pm_suspend);
268 
269 decl_subsys(power,NULL,NULL);
270 
271 
272 /**
273  *	state - control system power state.
274  *
275  *	show() returns what states are supported, which is hard-coded to
276  *	'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
277  *	'disk' (Suspend-to-Disk).
278  *
279  *	store() accepts one of those strings, translates it into the
280  *	proper enumerated value, and initiates a suspend transition.
281  */
282 
283 static ssize_t state_show(struct kset *kset, char *buf)
284 {
285 	int i;
286 	char * s = buf;
287 
288 	for (i = 0; i < PM_SUSPEND_MAX; i++) {
289 		if (pm_states[i] && valid_state(i))
290 			s += sprintf(s,"%s ", pm_states[i]);
291 	}
292 	s += sprintf(s,"\n");
293 	return (s - buf);
294 }
295 
296 static ssize_t state_store(struct kset *kset, const char *buf, size_t n)
297 {
298 	suspend_state_t state = PM_SUSPEND_STANDBY;
299 	const char * const *s;
300 	char *p;
301 	int error;
302 	int len;
303 
304 	p = memchr(buf, '\n', n);
305 	len = p ? p - buf : n;
306 
307 	for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
308 		if (*s && !strncmp(buf, *s, len))
309 			break;
310 	}
311 	if (state < PM_SUSPEND_MAX && *s)
312 		error = enter_state(state);
313 	else
314 		error = -EINVAL;
315 	return error ? error : n;
316 }
317 
318 power_attr(state);
319 
320 #ifdef CONFIG_PM_TRACE
321 int pm_trace_enabled;
322 
323 static ssize_t pm_trace_show(struct kset *kset, char *buf)
324 {
325 	return sprintf(buf, "%d\n", pm_trace_enabled);
326 }
327 
328 static ssize_t
329 pm_trace_store(struct kset *kset, const char *buf, size_t n)
330 {
331 	int val;
332 
333 	if (sscanf(buf, "%d", &val) == 1) {
334 		pm_trace_enabled = !!val;
335 		return n;
336 	}
337 	return -EINVAL;
338 }
339 
340 power_attr(pm_trace);
341 
342 static struct attribute * g[] = {
343 	&state_attr.attr,
344 	&pm_trace_attr.attr,
345 	NULL,
346 };
347 #else
348 static struct attribute * g[] = {
349 	&state_attr.attr,
350 	NULL,
351 };
352 #endif /* CONFIG_PM_TRACE */
353 
354 static struct attribute_group attr_group = {
355 	.attrs = g,
356 };
357 
358 
359 static int __init pm_init(void)
360 {
361 	int error = subsystem_register(&power_subsys);
362 	if (!error)
363 		error = sysfs_create_group(&power_subsys.kobj,&attr_group);
364 	return error;
365 }
366 
367 core_initcall(pm_init);
368