xref: /linux/kernel/power/main.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * kernel/power/main.c - PM subsystem core functionality.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  */
10 
11 #include <linux/export.h>
12 #include <linux/kobject.h>
13 #include <linux/string.h>
14 #include <linux/resume-trace.h>
15 #include <linux/workqueue.h>
16 #include <linux/debugfs.h>
17 #include <linux/seq_file.h>
18 
19 #include "power.h"
20 
21 DEFINE_MUTEX(pm_mutex);
22 
23 #ifdef CONFIG_PM_SLEEP
24 
25 /* Routines for PM-transition notifications */
26 
27 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
28 
29 int register_pm_notifier(struct notifier_block *nb)
30 {
31 	return blocking_notifier_chain_register(&pm_chain_head, nb);
32 }
33 EXPORT_SYMBOL_GPL(register_pm_notifier);
34 
35 int unregister_pm_notifier(struct notifier_block *nb)
36 {
37 	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
38 }
39 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
40 
41 int pm_notifier_call_chain(unsigned long val)
42 {
43 	int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
44 
45 	return notifier_to_errno(ret);
46 }
47 
48 /* If set, devices may be suspended and resumed asynchronously. */
49 int pm_async_enabled = 1;
50 
51 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
52 			     char *buf)
53 {
54 	return sprintf(buf, "%d\n", pm_async_enabled);
55 }
56 
57 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
58 			      const char *buf, size_t n)
59 {
60 	unsigned long val;
61 
62 	if (strict_strtoul(buf, 10, &val))
63 		return -EINVAL;
64 
65 	if (val > 1)
66 		return -EINVAL;
67 
68 	pm_async_enabled = val;
69 	return n;
70 }
71 
72 power_attr(pm_async);
73 
74 #ifdef CONFIG_PM_DEBUG
75 int pm_test_level = TEST_NONE;
76 
77 static const char * const pm_tests[__TEST_AFTER_LAST] = {
78 	[TEST_NONE] = "none",
79 	[TEST_CORE] = "core",
80 	[TEST_CPUS] = "processors",
81 	[TEST_PLATFORM] = "platform",
82 	[TEST_DEVICES] = "devices",
83 	[TEST_FREEZER] = "freezer",
84 };
85 
86 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
87 				char *buf)
88 {
89 	char *s = buf;
90 	int level;
91 
92 	for (level = TEST_FIRST; level <= TEST_MAX; level++)
93 		if (pm_tests[level]) {
94 			if (level == pm_test_level)
95 				s += sprintf(s, "[%s] ", pm_tests[level]);
96 			else
97 				s += sprintf(s, "%s ", pm_tests[level]);
98 		}
99 
100 	if (s != buf)
101 		/* convert the last space to a newline */
102 		*(s-1) = '\n';
103 
104 	return (s - buf);
105 }
106 
107 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
108 				const char *buf, size_t n)
109 {
110 	const char * const *s;
111 	int level;
112 	char *p;
113 	int len;
114 	int error = -EINVAL;
115 
116 	p = memchr(buf, '\n', n);
117 	len = p ? p - buf : n;
118 
119 	lock_system_sleep();
120 
121 	level = TEST_FIRST;
122 	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
123 		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
124 			pm_test_level = level;
125 			error = 0;
126 			break;
127 		}
128 
129 	unlock_system_sleep();
130 
131 	return error ? error : n;
132 }
133 
134 power_attr(pm_test);
135 #endif /* CONFIG_PM_DEBUG */
136 
137 #ifdef CONFIG_DEBUG_FS
138 static char *suspend_step_name(enum suspend_stat_step step)
139 {
140 	switch (step) {
141 	case SUSPEND_FREEZE:
142 		return "freeze";
143 	case SUSPEND_PREPARE:
144 		return "prepare";
145 	case SUSPEND_SUSPEND:
146 		return "suspend";
147 	case SUSPEND_SUSPEND_NOIRQ:
148 		return "suspend_noirq";
149 	case SUSPEND_RESUME_NOIRQ:
150 		return "resume_noirq";
151 	case SUSPEND_RESUME:
152 		return "resume";
153 	default:
154 		return "";
155 	}
156 }
157 
158 static int suspend_stats_show(struct seq_file *s, void *unused)
159 {
160 	int i, index, last_dev, last_errno, last_step;
161 
162 	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
163 	last_dev %= REC_FAILED_NUM;
164 	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
165 	last_errno %= REC_FAILED_NUM;
166 	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
167 	last_step %= REC_FAILED_NUM;
168 	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
169 			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
170 			"success", suspend_stats.success,
171 			"fail", suspend_stats.fail,
172 			"failed_freeze", suspend_stats.failed_freeze,
173 			"failed_prepare", suspend_stats.failed_prepare,
174 			"failed_suspend", suspend_stats.failed_suspend,
175 			"failed_suspend_late",
176 				suspend_stats.failed_suspend_late,
177 			"failed_suspend_noirq",
178 				suspend_stats.failed_suspend_noirq,
179 			"failed_resume", suspend_stats.failed_resume,
180 			"failed_resume_early",
181 				suspend_stats.failed_resume_early,
182 			"failed_resume_noirq",
183 				suspend_stats.failed_resume_noirq);
184 	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
185 			suspend_stats.failed_devs[last_dev]);
186 	for (i = 1; i < REC_FAILED_NUM; i++) {
187 		index = last_dev + REC_FAILED_NUM - i;
188 		index %= REC_FAILED_NUM;
189 		seq_printf(s, "\t\t\t%-s\n",
190 			suspend_stats.failed_devs[index]);
191 	}
192 	seq_printf(s,	"  last_failed_errno:\t%-d\n",
193 			suspend_stats.errno[last_errno]);
194 	for (i = 1; i < REC_FAILED_NUM; i++) {
195 		index = last_errno + REC_FAILED_NUM - i;
196 		index %= REC_FAILED_NUM;
197 		seq_printf(s, "\t\t\t%-d\n",
198 			suspend_stats.errno[index]);
199 	}
200 	seq_printf(s,	"  last_failed_step:\t%-s\n",
201 			suspend_step_name(
202 				suspend_stats.failed_steps[last_step]));
203 	for (i = 1; i < REC_FAILED_NUM; i++) {
204 		index = last_step + REC_FAILED_NUM - i;
205 		index %= REC_FAILED_NUM;
206 		seq_printf(s, "\t\t\t%-s\n",
207 			suspend_step_name(
208 				suspend_stats.failed_steps[index]));
209 	}
210 
211 	return 0;
212 }
213 
214 static int suspend_stats_open(struct inode *inode, struct file *file)
215 {
216 	return single_open(file, suspend_stats_show, NULL);
217 }
218 
219 static const struct file_operations suspend_stats_operations = {
220 	.open           = suspend_stats_open,
221 	.read           = seq_read,
222 	.llseek         = seq_lseek,
223 	.release        = single_release,
224 };
225 
226 static int __init pm_debugfs_init(void)
227 {
228 	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
229 			NULL, NULL, &suspend_stats_operations);
230 	return 0;
231 }
232 
233 late_initcall(pm_debugfs_init);
234 #endif /* CONFIG_DEBUG_FS */
235 
236 #endif /* CONFIG_PM_SLEEP */
237 
238 struct kobject *power_kobj;
239 
240 /**
241  *	state - control system power state.
242  *
243  *	show() returns what states are supported, which is hard-coded to
244  *	'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
245  *	'disk' (Suspend-to-Disk).
246  *
247  *	store() accepts one of those strings, translates it into the
248  *	proper enumerated value, and initiates a suspend transition.
249  */
250 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
251 			  char *buf)
252 {
253 	char *s = buf;
254 #ifdef CONFIG_SUSPEND
255 	int i;
256 
257 	for (i = 0; i < PM_SUSPEND_MAX; i++) {
258 		if (pm_states[i] && valid_state(i))
259 			s += sprintf(s,"%s ", pm_states[i]);
260 	}
261 #endif
262 #ifdef CONFIG_HIBERNATION
263 	s += sprintf(s, "%s\n", "disk");
264 #else
265 	if (s != buf)
266 		/* convert the last space to a newline */
267 		*(s-1) = '\n';
268 #endif
269 	return (s - buf);
270 }
271 
272 static suspend_state_t decode_state(const char *buf, size_t n)
273 {
274 #ifdef CONFIG_SUSPEND
275 	suspend_state_t state = PM_SUSPEND_STANDBY;
276 	const char * const *s;
277 #endif
278 	char *p;
279 	int len;
280 
281 	p = memchr(buf, '\n', n);
282 	len = p ? p - buf : n;
283 
284 	/* Check hibernation first. */
285 	if (len == 4 && !strncmp(buf, "disk", len))
286 		return PM_SUSPEND_MAX;
287 
288 #ifdef CONFIG_SUSPEND
289 	for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++)
290 		if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
291 			return state;
292 #endif
293 
294 	return PM_SUSPEND_ON;
295 }
296 
297 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
298 			   const char *buf, size_t n)
299 {
300 	suspend_state_t state;
301 	int error;
302 
303 	error = pm_autosleep_lock();
304 	if (error)
305 		return error;
306 
307 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
308 		error = -EBUSY;
309 		goto out;
310 	}
311 
312 	state = decode_state(buf, n);
313 	if (state < PM_SUSPEND_MAX)
314 		error = pm_suspend(state);
315 	else if (state == PM_SUSPEND_MAX)
316 		error = hibernate();
317 	else
318 		error = -EINVAL;
319 
320  out:
321 	pm_autosleep_unlock();
322 	return error ? error : n;
323 }
324 
325 power_attr(state);
326 
327 #ifdef CONFIG_PM_SLEEP
328 /*
329  * The 'wakeup_count' attribute, along with the functions defined in
330  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
331  * handled in a non-racy way.
332  *
333  * If a wakeup event occurs when the system is in a sleep state, it simply is
334  * woken up.  In turn, if an event that would wake the system up from a sleep
335  * state occurs when it is undergoing a transition to that sleep state, the
336  * transition should be aborted.  Moreover, if such an event occurs when the
337  * system is in the working state, an attempt to start a transition to the
338  * given sleep state should fail during certain period after the detection of
339  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
340  * these requirements, because a wakeup event may occur exactly when 'state'
341  * is being written to and may be delivered to user space right before it is
342  * frozen, so the event will remain only partially processed until the system is
343  * woken up by another event.  In particular, it won't cause the transition to
344  * a sleep state to be aborted.
345  *
346  * This difficulty may be overcome if user space uses 'wakeup_count' before
347  * writing to 'state'.  It first should read from 'wakeup_count' and store
348  * the read value.  Then, after carrying out its own preparations for the system
349  * transition to a sleep state, it should write the stored value to
350  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
351  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
352  * is allowed to write to 'state', but the transition will be aborted if there
353  * are any wakeup events detected after 'wakeup_count' was written to.
354  */
355 
356 static ssize_t wakeup_count_show(struct kobject *kobj,
357 				struct kobj_attribute *attr,
358 				char *buf)
359 {
360 	unsigned int val;
361 
362 	return pm_get_wakeup_count(&val, true) ?
363 		sprintf(buf, "%u\n", val) : -EINTR;
364 }
365 
366 static ssize_t wakeup_count_store(struct kobject *kobj,
367 				struct kobj_attribute *attr,
368 				const char *buf, size_t n)
369 {
370 	unsigned int val;
371 	int error;
372 
373 	error = pm_autosleep_lock();
374 	if (error)
375 		return error;
376 
377 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
378 		error = -EBUSY;
379 		goto out;
380 	}
381 
382 	error = -EINVAL;
383 	if (sscanf(buf, "%u", &val) == 1) {
384 		if (pm_save_wakeup_count(val))
385 			error = n;
386 	}
387 
388  out:
389 	pm_autosleep_unlock();
390 	return error;
391 }
392 
393 power_attr(wakeup_count);
394 
395 #ifdef CONFIG_PM_AUTOSLEEP
396 static ssize_t autosleep_show(struct kobject *kobj,
397 			      struct kobj_attribute *attr,
398 			      char *buf)
399 {
400 	suspend_state_t state = pm_autosleep_state();
401 
402 	if (state == PM_SUSPEND_ON)
403 		return sprintf(buf, "off\n");
404 
405 #ifdef CONFIG_SUSPEND
406 	if (state < PM_SUSPEND_MAX)
407 		return sprintf(buf, "%s\n", valid_state(state) ?
408 						pm_states[state] : "error");
409 #endif
410 #ifdef CONFIG_HIBERNATION
411 	return sprintf(buf, "disk\n");
412 #else
413 	return sprintf(buf, "error");
414 #endif
415 }
416 
417 static ssize_t autosleep_store(struct kobject *kobj,
418 			       struct kobj_attribute *attr,
419 			       const char *buf, size_t n)
420 {
421 	suspend_state_t state = decode_state(buf, n);
422 	int error;
423 
424 	if (state == PM_SUSPEND_ON
425 	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
426 		return -EINVAL;
427 
428 	error = pm_autosleep_set_state(state);
429 	return error ? error : n;
430 }
431 
432 power_attr(autosleep);
433 #endif /* CONFIG_PM_AUTOSLEEP */
434 
435 #ifdef CONFIG_PM_WAKELOCKS
436 static ssize_t wake_lock_show(struct kobject *kobj,
437 			      struct kobj_attribute *attr,
438 			      char *buf)
439 {
440 	return pm_show_wakelocks(buf, true);
441 }
442 
443 static ssize_t wake_lock_store(struct kobject *kobj,
444 			       struct kobj_attribute *attr,
445 			       const char *buf, size_t n)
446 {
447 	int error = pm_wake_lock(buf);
448 	return error ? error : n;
449 }
450 
451 power_attr(wake_lock);
452 
453 static ssize_t wake_unlock_show(struct kobject *kobj,
454 				struct kobj_attribute *attr,
455 				char *buf)
456 {
457 	return pm_show_wakelocks(buf, false);
458 }
459 
460 static ssize_t wake_unlock_store(struct kobject *kobj,
461 				 struct kobj_attribute *attr,
462 				 const char *buf, size_t n)
463 {
464 	int error = pm_wake_unlock(buf);
465 	return error ? error : n;
466 }
467 
468 power_attr(wake_unlock);
469 
470 #endif /* CONFIG_PM_WAKELOCKS */
471 #endif /* CONFIG_PM_SLEEP */
472 
473 #ifdef CONFIG_PM_TRACE
474 int pm_trace_enabled;
475 
476 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
477 			     char *buf)
478 {
479 	return sprintf(buf, "%d\n", pm_trace_enabled);
480 }
481 
482 static ssize_t
483 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
484 	       const char *buf, size_t n)
485 {
486 	int val;
487 
488 	if (sscanf(buf, "%d", &val) == 1) {
489 		pm_trace_enabled = !!val;
490 		return n;
491 	}
492 	return -EINVAL;
493 }
494 
495 power_attr(pm_trace);
496 
497 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
498 				       struct kobj_attribute *attr,
499 				       char *buf)
500 {
501 	return show_trace_dev_match(buf, PAGE_SIZE);
502 }
503 
504 static ssize_t
505 pm_trace_dev_match_store(struct kobject *kobj, struct kobj_attribute *attr,
506 			 const char *buf, size_t n)
507 {
508 	return -EINVAL;
509 }
510 
511 power_attr(pm_trace_dev_match);
512 
513 #endif /* CONFIG_PM_TRACE */
514 
515 static struct attribute * g[] = {
516 	&state_attr.attr,
517 #ifdef CONFIG_PM_TRACE
518 	&pm_trace_attr.attr,
519 	&pm_trace_dev_match_attr.attr,
520 #endif
521 #ifdef CONFIG_PM_SLEEP
522 	&pm_async_attr.attr,
523 	&wakeup_count_attr.attr,
524 #ifdef CONFIG_PM_AUTOSLEEP
525 	&autosleep_attr.attr,
526 #endif
527 #ifdef CONFIG_PM_WAKELOCKS
528 	&wake_lock_attr.attr,
529 	&wake_unlock_attr.attr,
530 #endif
531 #ifdef CONFIG_PM_DEBUG
532 	&pm_test_attr.attr,
533 #endif
534 #endif
535 	NULL,
536 };
537 
538 static struct attribute_group attr_group = {
539 	.attrs = g,
540 };
541 
542 #ifdef CONFIG_PM_RUNTIME
543 struct workqueue_struct *pm_wq;
544 EXPORT_SYMBOL_GPL(pm_wq);
545 
546 static int __init pm_start_workqueue(void)
547 {
548 	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
549 
550 	return pm_wq ? 0 : -ENOMEM;
551 }
552 #else
553 static inline int pm_start_workqueue(void) { return 0; }
554 #endif
555 
556 static int __init pm_init(void)
557 {
558 	int error = pm_start_workqueue();
559 	if (error)
560 		return error;
561 	hibernate_image_size_init();
562 	hibernate_reserved_size_init();
563 	power_kobj = kobject_create_and_add("power", NULL);
564 	if (!power_kobj)
565 		return -ENOMEM;
566 	error = sysfs_create_group(power_kobj, &attr_group);
567 	if (error)
568 		return error;
569 	return pm_autosleep_init();
570 }
571 
572 core_initcall(pm_init);
573