xref: /linux/kernel/power/main.c (revision 13d68a16430312fc21990f48326366eb73891202)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/power/main.c - PM subsystem core functionality.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kobject.h>
12 #include <linux/string.h>
13 #include <linux/pm-trace.h>
14 #include <linux/workqueue.h>
15 #include <linux/debugfs.h>
16 #include <linux/seq_file.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/pm_runtime.h>
20 
21 #include "power.h"
22 
23 #ifdef CONFIG_PM_SLEEP
24 /*
25  * The following functions are used by the suspend/hibernate code to temporarily
26  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
27  * while devices are suspended.  To avoid races with the suspend/hibernate code,
28  * they should always be called with system_transition_mutex held
29  * (gfp_allowed_mask also should only be modified with system_transition_mutex
30  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
31  * with that modification).
32  */
33 static gfp_t saved_gfp_mask;
34 
35 void pm_restore_gfp_mask(void)
36 {
37 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
38 	if (saved_gfp_mask) {
39 		gfp_allowed_mask = saved_gfp_mask;
40 		saved_gfp_mask = 0;
41 	}
42 }
43 
44 void pm_restrict_gfp_mask(void)
45 {
46 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
47 	WARN_ON(saved_gfp_mask);
48 	saved_gfp_mask = gfp_allowed_mask;
49 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
50 }
51 
52 unsigned int lock_system_sleep(void)
53 {
54 	unsigned int flags = current->flags;
55 	current->flags |= PF_NOFREEZE;
56 	mutex_lock(&system_transition_mutex);
57 	return flags;
58 }
59 EXPORT_SYMBOL_GPL(lock_system_sleep);
60 
61 void unlock_system_sleep(unsigned int flags)
62 {
63 	if (!(flags & PF_NOFREEZE))
64 		current->flags &= ~PF_NOFREEZE;
65 	mutex_unlock(&system_transition_mutex);
66 }
67 EXPORT_SYMBOL_GPL(unlock_system_sleep);
68 
69 void ksys_sync_helper(void)
70 {
71 	ktime_t start;
72 	long elapsed_msecs;
73 
74 	start = ktime_get();
75 	ksys_sync();
76 	elapsed_msecs = ktime_to_ms(ktime_sub(ktime_get(), start));
77 	pr_info("Filesystems sync: %ld.%03ld seconds\n",
78 		elapsed_msecs / MSEC_PER_SEC, elapsed_msecs % MSEC_PER_SEC);
79 }
80 EXPORT_SYMBOL_GPL(ksys_sync_helper);
81 
82 /* Routines for PM-transition notifications */
83 
84 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
85 
86 int register_pm_notifier(struct notifier_block *nb)
87 {
88 	return blocking_notifier_chain_register(&pm_chain_head, nb);
89 }
90 EXPORT_SYMBOL_GPL(register_pm_notifier);
91 
92 int unregister_pm_notifier(struct notifier_block *nb)
93 {
94 	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
95 }
96 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
97 
98 int pm_notifier_call_chain_robust(unsigned long val_up, unsigned long val_down)
99 {
100 	int ret;
101 
102 	ret = blocking_notifier_call_chain_robust(&pm_chain_head, val_up, val_down, NULL);
103 
104 	return notifier_to_errno(ret);
105 }
106 
107 int pm_notifier_call_chain(unsigned long val)
108 {
109 	return blocking_notifier_call_chain(&pm_chain_head, val, NULL);
110 }
111 
112 /* If set, devices may be suspended and resumed asynchronously. */
113 int pm_async_enabled = 1;
114 
115 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
116 			     char *buf)
117 {
118 	return sysfs_emit(buf, "%d\n", pm_async_enabled);
119 }
120 
121 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
122 			      const char *buf, size_t n)
123 {
124 	unsigned long val;
125 
126 	if (kstrtoul(buf, 10, &val))
127 		return -EINVAL;
128 
129 	if (val > 1)
130 		return -EINVAL;
131 
132 	pm_async_enabled = val;
133 	return n;
134 }
135 
136 power_attr(pm_async);
137 
138 #ifdef CONFIG_SUSPEND
139 static ssize_t mem_sleep_show(struct kobject *kobj, struct kobj_attribute *attr,
140 			      char *buf)
141 {
142 	ssize_t count = 0;
143 	suspend_state_t i;
144 
145 	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++) {
146 		if (i >= PM_SUSPEND_MEM && cxl_mem_active())
147 			continue;
148 		if (mem_sleep_states[i]) {
149 			const char *label = mem_sleep_states[i];
150 
151 			if (mem_sleep_current == i)
152 				count += sysfs_emit_at(buf, count, "[%s] ", label);
153 			else
154 				count += sysfs_emit_at(buf, count, "%s ", label);
155 		}
156 	}
157 
158 	/* Convert the last space to a newline if needed. */
159 	if (count > 0)
160 		buf[count - 1] = '\n';
161 
162 	return count;
163 }
164 
165 static suspend_state_t decode_suspend_state(const char *buf, size_t n)
166 {
167 	suspend_state_t state;
168 	char *p;
169 	int len;
170 
171 	p = memchr(buf, '\n', n);
172 	len = p ? p - buf : n;
173 
174 	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
175 		const char *label = mem_sleep_states[state];
176 
177 		if (label && len == strlen(label) && !strncmp(buf, label, len))
178 			return state;
179 	}
180 
181 	return PM_SUSPEND_ON;
182 }
183 
184 static ssize_t mem_sleep_store(struct kobject *kobj, struct kobj_attribute *attr,
185 			       const char *buf, size_t n)
186 {
187 	suspend_state_t state;
188 	int error;
189 
190 	error = pm_autosleep_lock();
191 	if (error)
192 		return error;
193 
194 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
195 		error = -EBUSY;
196 		goto out;
197 	}
198 
199 	state = decode_suspend_state(buf, n);
200 	if (state < PM_SUSPEND_MAX && state > PM_SUSPEND_ON)
201 		mem_sleep_current = state;
202 	else
203 		error = -EINVAL;
204 
205  out:
206 	pm_autosleep_unlock();
207 	return error ? error : n;
208 }
209 
210 power_attr(mem_sleep);
211 
212 /*
213  * sync_on_suspend: invoke ksys_sync_helper() before suspend.
214  *
215  * show() returns whether ksys_sync_helper() is invoked before suspend.
216  * store() accepts 0 or 1.  0 disables ksys_sync_helper() and 1 enables it.
217  */
218 bool sync_on_suspend_enabled = !IS_ENABLED(CONFIG_SUSPEND_SKIP_SYNC);
219 
220 static ssize_t sync_on_suspend_show(struct kobject *kobj,
221 				   struct kobj_attribute *attr, char *buf)
222 {
223 	return sysfs_emit(buf, "%d\n", sync_on_suspend_enabled);
224 }
225 
226 static ssize_t sync_on_suspend_store(struct kobject *kobj,
227 				    struct kobj_attribute *attr,
228 				    const char *buf, size_t n)
229 {
230 	unsigned long val;
231 
232 	if (kstrtoul(buf, 10, &val))
233 		return -EINVAL;
234 
235 	if (val > 1)
236 		return -EINVAL;
237 
238 	sync_on_suspend_enabled = !!val;
239 	return n;
240 }
241 
242 power_attr(sync_on_suspend);
243 #endif /* CONFIG_SUSPEND */
244 
245 #ifdef CONFIG_PM_SLEEP_DEBUG
246 int pm_test_level = TEST_NONE;
247 
248 static const char * const pm_tests[__TEST_AFTER_LAST] = {
249 	[TEST_NONE] = "none",
250 	[TEST_CORE] = "core",
251 	[TEST_CPUS] = "processors",
252 	[TEST_PLATFORM] = "platform",
253 	[TEST_DEVICES] = "devices",
254 	[TEST_FREEZER] = "freezer",
255 };
256 
257 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
258 				char *buf)
259 {
260 	ssize_t count = 0;
261 	int level;
262 
263 	for (level = TEST_FIRST; level <= TEST_MAX; level++)
264 		if (pm_tests[level]) {
265 			if (level == pm_test_level)
266 				count += sysfs_emit_at(buf, count, "[%s] ", pm_tests[level]);
267 			else
268 				count += sysfs_emit_at(buf, count, "%s ", pm_tests[level]);
269 		}
270 
271 	/* Convert the last space to a newline if needed. */
272 	if (count > 0)
273 		buf[count - 1] = '\n';
274 
275 	return count;
276 }
277 
278 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
279 				const char *buf, size_t n)
280 {
281 	unsigned int sleep_flags;
282 	const char * const *s;
283 	int error = -EINVAL;
284 	int level;
285 	char *p;
286 	int len;
287 
288 	p = memchr(buf, '\n', n);
289 	len = p ? p - buf : n;
290 
291 	sleep_flags = lock_system_sleep();
292 
293 	level = TEST_FIRST;
294 	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
295 		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
296 			pm_test_level = level;
297 			error = 0;
298 			break;
299 		}
300 
301 	unlock_system_sleep(sleep_flags);
302 
303 	return error ? error : n;
304 }
305 
306 power_attr(pm_test);
307 #endif /* CONFIG_PM_SLEEP_DEBUG */
308 
309 #define SUSPEND_NR_STEPS	SUSPEND_RESUME
310 #define REC_FAILED_NUM		2
311 
312 struct suspend_stats {
313 	unsigned int step_failures[SUSPEND_NR_STEPS];
314 	unsigned int success;
315 	unsigned int fail;
316 	int last_failed_dev;
317 	char failed_devs[REC_FAILED_NUM][40];
318 	int last_failed_errno;
319 	int errno[REC_FAILED_NUM];
320 	int last_failed_step;
321 	u64 last_hw_sleep;
322 	u64 total_hw_sleep;
323 	u64 max_hw_sleep;
324 	enum suspend_stat_step failed_steps[REC_FAILED_NUM];
325 };
326 
327 static struct suspend_stats suspend_stats;
328 static DEFINE_MUTEX(suspend_stats_lock);
329 
330 void dpm_save_failed_dev(const char *name)
331 {
332 	mutex_lock(&suspend_stats_lock);
333 
334 	strscpy(suspend_stats.failed_devs[suspend_stats.last_failed_dev],
335 		name, sizeof(suspend_stats.failed_devs[0]));
336 	suspend_stats.last_failed_dev++;
337 	suspend_stats.last_failed_dev %= REC_FAILED_NUM;
338 
339 	mutex_unlock(&suspend_stats_lock);
340 }
341 
342 void dpm_save_failed_step(enum suspend_stat_step step)
343 {
344 	suspend_stats.step_failures[step-1]++;
345 	suspend_stats.failed_steps[suspend_stats.last_failed_step] = step;
346 	suspend_stats.last_failed_step++;
347 	suspend_stats.last_failed_step %= REC_FAILED_NUM;
348 }
349 
350 void dpm_save_errno(int err)
351 {
352 	if (!err) {
353 		suspend_stats.success++;
354 		return;
355 	}
356 
357 	suspend_stats.fail++;
358 
359 	suspend_stats.errno[suspend_stats.last_failed_errno] = err;
360 	suspend_stats.last_failed_errno++;
361 	suspend_stats.last_failed_errno %= REC_FAILED_NUM;
362 }
363 
364 void pm_report_hw_sleep_time(u64 t)
365 {
366 	suspend_stats.last_hw_sleep = t;
367 	suspend_stats.total_hw_sleep += t;
368 }
369 EXPORT_SYMBOL_GPL(pm_report_hw_sleep_time);
370 
371 void pm_report_max_hw_sleep(u64 t)
372 {
373 	suspend_stats.max_hw_sleep = t;
374 }
375 EXPORT_SYMBOL_GPL(pm_report_max_hw_sleep);
376 
377 static const char * const suspend_step_names[] = {
378 	[SUSPEND_WORKING] = "",
379 	[SUSPEND_FREEZE] = "freeze",
380 	[SUSPEND_PREPARE] = "prepare",
381 	[SUSPEND_SUSPEND] = "suspend",
382 	[SUSPEND_SUSPEND_LATE] = "suspend_late",
383 	[SUSPEND_SUSPEND_NOIRQ] = "suspend_noirq",
384 	[SUSPEND_RESUME_NOIRQ] = "resume_noirq",
385 	[SUSPEND_RESUME_EARLY] = "resume_early",
386 	[SUSPEND_RESUME] = "resume",
387 };
388 
389 #define suspend_attr(_name, format_str)				\
390 static ssize_t _name##_show(struct kobject *kobj,		\
391 		struct kobj_attribute *attr, char *buf)		\
392 {								\
393 	return sysfs_emit(buf, format_str, suspend_stats._name);\
394 }								\
395 static struct kobj_attribute _name = __ATTR_RO(_name)
396 
397 suspend_attr(success, "%u\n");
398 suspend_attr(fail, "%u\n");
399 suspend_attr(last_hw_sleep, "%llu\n");
400 suspend_attr(total_hw_sleep, "%llu\n");
401 suspend_attr(max_hw_sleep, "%llu\n");
402 
403 #define suspend_step_attr(_name, step)		\
404 static ssize_t _name##_show(struct kobject *kobj,		\
405 		struct kobj_attribute *attr, char *buf)		\
406 {								\
407 	return sysfs_emit(buf, "%u\n",				\
408 		       suspend_stats.step_failures[step-1]);	\
409 }								\
410 static struct kobj_attribute _name = __ATTR_RO(_name)
411 
412 suspend_step_attr(failed_freeze, SUSPEND_FREEZE);
413 suspend_step_attr(failed_prepare, SUSPEND_PREPARE);
414 suspend_step_attr(failed_suspend, SUSPEND_SUSPEND);
415 suspend_step_attr(failed_suspend_late, SUSPEND_SUSPEND_LATE);
416 suspend_step_attr(failed_suspend_noirq, SUSPEND_SUSPEND_NOIRQ);
417 suspend_step_attr(failed_resume, SUSPEND_RESUME);
418 suspend_step_attr(failed_resume_early, SUSPEND_RESUME_EARLY);
419 suspend_step_attr(failed_resume_noirq, SUSPEND_RESUME_NOIRQ);
420 
421 static ssize_t last_failed_dev_show(struct kobject *kobj,
422 		struct kobj_attribute *attr, char *buf)
423 {
424 	int index;
425 	char *last_failed_dev = NULL;
426 
427 	index = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
428 	index %= REC_FAILED_NUM;
429 	last_failed_dev = suspend_stats.failed_devs[index];
430 
431 	return sysfs_emit(buf, "%s\n", last_failed_dev);
432 }
433 static struct kobj_attribute last_failed_dev = __ATTR_RO(last_failed_dev);
434 
435 static ssize_t last_failed_errno_show(struct kobject *kobj,
436 		struct kobj_attribute *attr, char *buf)
437 {
438 	int index;
439 	int last_failed_errno;
440 
441 	index = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
442 	index %= REC_FAILED_NUM;
443 	last_failed_errno = suspend_stats.errno[index];
444 
445 	return sysfs_emit(buf, "%d\n", last_failed_errno);
446 }
447 static struct kobj_attribute last_failed_errno = __ATTR_RO(last_failed_errno);
448 
449 static ssize_t last_failed_step_show(struct kobject *kobj,
450 		struct kobj_attribute *attr, char *buf)
451 {
452 	enum suspend_stat_step step;
453 	int index;
454 
455 	index = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
456 	index %= REC_FAILED_NUM;
457 	step = suspend_stats.failed_steps[index];
458 
459 	return sysfs_emit(buf, "%s\n", suspend_step_names[step]);
460 }
461 static struct kobj_attribute last_failed_step = __ATTR_RO(last_failed_step);
462 
463 static struct attribute *suspend_attrs[] = {
464 	&success.attr,
465 	&fail.attr,
466 	&failed_freeze.attr,
467 	&failed_prepare.attr,
468 	&failed_suspend.attr,
469 	&failed_suspend_late.attr,
470 	&failed_suspend_noirq.attr,
471 	&failed_resume.attr,
472 	&failed_resume_early.attr,
473 	&failed_resume_noirq.attr,
474 	&last_failed_dev.attr,
475 	&last_failed_errno.attr,
476 	&last_failed_step.attr,
477 	&last_hw_sleep.attr,
478 	&total_hw_sleep.attr,
479 	&max_hw_sleep.attr,
480 	NULL,
481 };
482 
483 static umode_t suspend_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
484 {
485 	if (attr != &last_hw_sleep.attr &&
486 	    attr != &total_hw_sleep.attr &&
487 	    attr != &max_hw_sleep.attr)
488 		return 0444;
489 
490 #ifdef CONFIG_ACPI
491 	if (acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0)
492 		return 0444;
493 #endif
494 	return 0;
495 }
496 
497 static const struct attribute_group suspend_attr_group = {
498 	.name = "suspend_stats",
499 	.attrs = suspend_attrs,
500 	.is_visible = suspend_attr_is_visible,
501 };
502 
503 #ifdef CONFIG_DEBUG_FS
504 static int suspend_stats_show(struct seq_file *s, void *unused)
505 {
506 	int i, index, last_dev, last_errno, last_step;
507 	enum suspend_stat_step step;
508 
509 	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
510 	last_dev %= REC_FAILED_NUM;
511 	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
512 	last_errno %= REC_FAILED_NUM;
513 	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
514 	last_step %= REC_FAILED_NUM;
515 
516 	seq_printf(s, "success: %u\nfail: %u\n",
517 		   suspend_stats.success, suspend_stats.fail);
518 
519 	for (step = SUSPEND_FREEZE; step <= SUSPEND_NR_STEPS; step++)
520 		seq_printf(s, "failed_%s: %u\n", suspend_step_names[step],
521 			   suspend_stats.step_failures[step-1]);
522 
523 	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
524 		   suspend_stats.failed_devs[last_dev]);
525 	for (i = 1; i < REC_FAILED_NUM; i++) {
526 		index = last_dev + REC_FAILED_NUM - i;
527 		index %= REC_FAILED_NUM;
528 		seq_printf(s, "\t\t\t%-s\n", suspend_stats.failed_devs[index]);
529 	}
530 	seq_printf(s,	"  last_failed_errno:\t%-d\n",
531 			suspend_stats.errno[last_errno]);
532 	for (i = 1; i < REC_FAILED_NUM; i++) {
533 		index = last_errno + REC_FAILED_NUM - i;
534 		index %= REC_FAILED_NUM;
535 		seq_printf(s, "\t\t\t%-d\n", suspend_stats.errno[index]);
536 	}
537 	seq_printf(s,	"  last_failed_step:\t%-s\n",
538 		   suspend_step_names[suspend_stats.failed_steps[last_step]]);
539 	for (i = 1; i < REC_FAILED_NUM; i++) {
540 		index = last_step + REC_FAILED_NUM - i;
541 		index %= REC_FAILED_NUM;
542 		seq_printf(s, "\t\t\t%-s\n",
543 			   suspend_step_names[suspend_stats.failed_steps[index]]);
544 	}
545 
546 	return 0;
547 }
548 DEFINE_SHOW_ATTRIBUTE(suspend_stats);
549 
550 static int __init pm_debugfs_init(void)
551 {
552 	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
553 			NULL, NULL, &suspend_stats_fops);
554 	return 0;
555 }
556 
557 late_initcall(pm_debugfs_init);
558 #endif /* CONFIG_DEBUG_FS */
559 
560 #endif /* CONFIG_PM_SLEEP */
561 
562 #ifdef CONFIG_PM_SLEEP_DEBUG
563 /*
564  * pm_print_times: print time taken by devices to suspend and resume.
565  *
566  * show() returns whether printing of suspend and resume times is enabled.
567  * store() accepts 0 or 1.  0 disables printing and 1 enables it.
568  */
569 bool pm_print_times_enabled;
570 
571 static ssize_t pm_print_times_show(struct kobject *kobj,
572 				   struct kobj_attribute *attr, char *buf)
573 {
574 	return sysfs_emit(buf, "%d\n", pm_print_times_enabled);
575 }
576 
577 static ssize_t pm_print_times_store(struct kobject *kobj,
578 				    struct kobj_attribute *attr,
579 				    const char *buf, size_t n)
580 {
581 	unsigned long val;
582 
583 	if (kstrtoul(buf, 10, &val))
584 		return -EINVAL;
585 
586 	if (val > 1)
587 		return -EINVAL;
588 
589 	pm_print_times_enabled = !!val;
590 	return n;
591 }
592 
593 power_attr(pm_print_times);
594 
595 static inline void pm_print_times_init(void)
596 {
597 	pm_print_times_enabled = !!initcall_debug;
598 }
599 
600 static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
601 					struct kobj_attribute *attr,
602 					char *buf)
603 {
604 	if (!pm_wakeup_irq())
605 		return -ENODATA;
606 
607 	return sysfs_emit(buf, "%u\n", pm_wakeup_irq());
608 }
609 
610 power_attr_ro(pm_wakeup_irq);
611 
612 bool pm_debug_messages_on __read_mostly;
613 
614 bool pm_debug_messages_should_print(void)
615 {
616 	return pm_debug_messages_on && pm_suspend_target_state != PM_SUSPEND_ON;
617 }
618 EXPORT_SYMBOL_GPL(pm_debug_messages_should_print);
619 
620 static ssize_t pm_debug_messages_show(struct kobject *kobj,
621 				      struct kobj_attribute *attr, char *buf)
622 {
623 	return sysfs_emit(buf, "%d\n", pm_debug_messages_on);
624 }
625 
626 static ssize_t pm_debug_messages_store(struct kobject *kobj,
627 				       struct kobj_attribute *attr,
628 				       const char *buf, size_t n)
629 {
630 	unsigned long val;
631 
632 	if (kstrtoul(buf, 10, &val))
633 		return -EINVAL;
634 
635 	if (val > 1)
636 		return -EINVAL;
637 
638 	pm_debug_messages_on = !!val;
639 	return n;
640 }
641 
642 power_attr(pm_debug_messages);
643 
644 static int __init pm_debug_messages_setup(char *str)
645 {
646 	pm_debug_messages_on = true;
647 	return 1;
648 }
649 __setup("pm_debug_messages", pm_debug_messages_setup);
650 
651 #else /* !CONFIG_PM_SLEEP_DEBUG */
652 static inline void pm_print_times_init(void) {}
653 #endif /* CONFIG_PM_SLEEP_DEBUG */
654 
655 struct kobject *power_kobj;
656 
657 /*
658  * state - control system sleep states.
659  *
660  * show() returns available sleep state labels, which may be "mem", "standby",
661  * "freeze" and "disk" (hibernation).
662  * See Documentation/admin-guide/pm/sleep-states.rst for a description of
663  * what they mean.
664  *
665  * store() accepts one of those strings, translates it into the proper
666  * enumerated value, and initiates a suspend transition.
667  */
668 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
669 			  char *buf)
670 {
671 	ssize_t count = 0;
672 #ifdef CONFIG_SUSPEND
673 	suspend_state_t i;
674 
675 	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
676 		if (pm_states[i])
677 			count += sysfs_emit_at(buf, count, "%s ", pm_states[i]);
678 
679 #endif
680 	if (hibernation_available())
681 		count += sysfs_emit_at(buf, count, "disk ");
682 
683 	/* Convert the last space to a newline if needed. */
684 	if (count > 0)
685 		buf[count - 1] = '\n';
686 
687 	return count;
688 }
689 
690 static suspend_state_t decode_state(const char *buf, size_t n)
691 {
692 #ifdef CONFIG_SUSPEND
693 	suspend_state_t state;
694 #endif
695 	char *p;
696 	int len;
697 
698 	p = memchr(buf, '\n', n);
699 	len = p ? p - buf : n;
700 
701 	/* Check hibernation first. */
702 	if (len == 4 && str_has_prefix(buf, "disk"))
703 		return PM_SUSPEND_MAX;
704 
705 #ifdef CONFIG_SUSPEND
706 	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
707 		const char *label = pm_states[state];
708 
709 		if (label && len == strlen(label) && !strncmp(buf, label, len))
710 			return state;
711 	}
712 #endif
713 
714 	return PM_SUSPEND_ON;
715 }
716 
717 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
718 			   const char *buf, size_t n)
719 {
720 	suspend_state_t state;
721 	int error;
722 
723 	error = pm_autosleep_lock();
724 	if (error)
725 		return error;
726 
727 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
728 		error = -EBUSY;
729 		goto out;
730 	}
731 
732 	state = decode_state(buf, n);
733 	if (state < PM_SUSPEND_MAX) {
734 		if (state == PM_SUSPEND_MEM)
735 			state = mem_sleep_current;
736 
737 		error = pm_suspend(state);
738 	} else if (state == PM_SUSPEND_MAX) {
739 		error = hibernate();
740 	} else {
741 		error = -EINVAL;
742 	}
743 
744  out:
745 	pm_autosleep_unlock();
746 	return error ? error : n;
747 }
748 
749 power_attr(state);
750 
751 #ifdef CONFIG_PM_SLEEP
752 /*
753  * The 'wakeup_count' attribute, along with the functions defined in
754  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
755  * handled in a non-racy way.
756  *
757  * If a wakeup event occurs when the system is in a sleep state, it simply is
758  * woken up.  In turn, if an event that would wake the system up from a sleep
759  * state occurs when it is undergoing a transition to that sleep state, the
760  * transition should be aborted.  Moreover, if such an event occurs when the
761  * system is in the working state, an attempt to start a transition to the
762  * given sleep state should fail during certain period after the detection of
763  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
764  * these requirements, because a wakeup event may occur exactly when 'state'
765  * is being written to and may be delivered to user space right before it is
766  * frozen, so the event will remain only partially processed until the system is
767  * woken up by another event.  In particular, it won't cause the transition to
768  * a sleep state to be aborted.
769  *
770  * This difficulty may be overcome if user space uses 'wakeup_count' before
771  * writing to 'state'.  It first should read from 'wakeup_count' and store
772  * the read value.  Then, after carrying out its own preparations for the system
773  * transition to a sleep state, it should write the stored value to
774  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
775  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
776  * is allowed to write to 'state', but the transition will be aborted if there
777  * are any wakeup events detected after 'wakeup_count' was written to.
778  */
779 
780 static ssize_t wakeup_count_show(struct kobject *kobj,
781 				struct kobj_attribute *attr,
782 				char *buf)
783 {
784 	unsigned int val;
785 
786 	return pm_get_wakeup_count(&val, true) ?
787 		sysfs_emit(buf, "%u\n", val) : -EINTR;
788 }
789 
790 static ssize_t wakeup_count_store(struct kobject *kobj,
791 				struct kobj_attribute *attr,
792 				const char *buf, size_t n)
793 {
794 	unsigned int val;
795 	int error;
796 
797 	error = pm_autosleep_lock();
798 	if (error)
799 		return error;
800 
801 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
802 		error = -EBUSY;
803 		goto out;
804 	}
805 
806 	error = -EINVAL;
807 	if (sscanf(buf, "%u", &val) == 1) {
808 		if (pm_save_wakeup_count(val))
809 			error = n;
810 		else
811 			pm_print_active_wakeup_sources();
812 	}
813 
814  out:
815 	pm_autosleep_unlock();
816 	return error;
817 }
818 
819 power_attr(wakeup_count);
820 
821 #ifdef CONFIG_PM_AUTOSLEEP
822 static ssize_t autosleep_show(struct kobject *kobj,
823 			      struct kobj_attribute *attr,
824 			      char *buf)
825 {
826 	suspend_state_t state = pm_autosleep_state();
827 
828 	if (state == PM_SUSPEND_ON)
829 		return sysfs_emit(buf, "off\n");
830 
831 #ifdef CONFIG_SUSPEND
832 	if (state < PM_SUSPEND_MAX)
833 		return sysfs_emit(buf, "%s\n", pm_states[state] ?
834 					pm_states[state] : "error");
835 #endif
836 #ifdef CONFIG_HIBERNATION
837 	return sysfs_emit(buf, "disk\n");
838 #else
839 	return sysfs_emit(buf, "error\n");
840 #endif
841 }
842 
843 static ssize_t autosleep_store(struct kobject *kobj,
844 			       struct kobj_attribute *attr,
845 			       const char *buf, size_t n)
846 {
847 	suspend_state_t state = decode_state(buf, n);
848 	int error;
849 
850 	if (state == PM_SUSPEND_ON
851 	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
852 		return -EINVAL;
853 
854 	if (state == PM_SUSPEND_MEM)
855 		state = mem_sleep_current;
856 
857 	error = pm_autosleep_set_state(state);
858 	return error ? error : n;
859 }
860 
861 power_attr(autosleep);
862 #endif /* CONFIG_PM_AUTOSLEEP */
863 
864 #ifdef CONFIG_PM_WAKELOCKS
865 static ssize_t wake_lock_show(struct kobject *kobj,
866 			      struct kobj_attribute *attr,
867 			      char *buf)
868 {
869 	return pm_show_wakelocks(buf, true);
870 }
871 
872 static ssize_t wake_lock_store(struct kobject *kobj,
873 			       struct kobj_attribute *attr,
874 			       const char *buf, size_t n)
875 {
876 	int error = pm_wake_lock(buf);
877 	return error ? error : n;
878 }
879 
880 power_attr(wake_lock);
881 
882 static ssize_t wake_unlock_show(struct kobject *kobj,
883 				struct kobj_attribute *attr,
884 				char *buf)
885 {
886 	return pm_show_wakelocks(buf, false);
887 }
888 
889 static ssize_t wake_unlock_store(struct kobject *kobj,
890 				 struct kobj_attribute *attr,
891 				 const char *buf, size_t n)
892 {
893 	int error = pm_wake_unlock(buf);
894 	return error ? error : n;
895 }
896 
897 power_attr(wake_unlock);
898 
899 #endif /* CONFIG_PM_WAKELOCKS */
900 #endif /* CONFIG_PM_SLEEP */
901 
902 #ifdef CONFIG_PM_TRACE
903 int pm_trace_enabled;
904 
905 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
906 			     char *buf)
907 {
908 	return sysfs_emit(buf, "%d\n", pm_trace_enabled);
909 }
910 
911 static ssize_t
912 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
913 	       const char *buf, size_t n)
914 {
915 	int val;
916 
917 	if (sscanf(buf, "%d", &val) == 1) {
918 		pm_trace_enabled = !!val;
919 		if (pm_trace_enabled) {
920 			pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
921 				"PM: Correct system time has to be restored manually after resume.\n");
922 		}
923 		return n;
924 	}
925 	return -EINVAL;
926 }
927 
928 power_attr(pm_trace);
929 
930 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
931 				       struct kobj_attribute *attr,
932 				       char *buf)
933 {
934 	return show_trace_dev_match(buf, PAGE_SIZE);
935 }
936 
937 power_attr_ro(pm_trace_dev_match);
938 
939 #endif /* CONFIG_PM_TRACE */
940 
941 #ifdef CONFIG_FREEZER
942 static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
943 				      struct kobj_attribute *attr, char *buf)
944 {
945 	return sysfs_emit(buf, "%u\n", freeze_timeout_msecs);
946 }
947 
948 static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
949 				       struct kobj_attribute *attr,
950 				       const char *buf, size_t n)
951 {
952 	unsigned long val;
953 
954 	if (kstrtoul(buf, 10, &val))
955 		return -EINVAL;
956 
957 	freeze_timeout_msecs = val;
958 	return n;
959 }
960 
961 power_attr(pm_freeze_timeout);
962 
963 #endif	/* CONFIG_FREEZER*/
964 
965 static struct attribute * g[] = {
966 	&state_attr.attr,
967 #ifdef CONFIG_PM_TRACE
968 	&pm_trace_attr.attr,
969 	&pm_trace_dev_match_attr.attr,
970 #endif
971 #ifdef CONFIG_PM_SLEEP
972 	&pm_async_attr.attr,
973 	&wakeup_count_attr.attr,
974 #ifdef CONFIG_SUSPEND
975 	&mem_sleep_attr.attr,
976 	&sync_on_suspend_attr.attr,
977 #endif
978 #ifdef CONFIG_PM_AUTOSLEEP
979 	&autosleep_attr.attr,
980 #endif
981 #ifdef CONFIG_PM_WAKELOCKS
982 	&wake_lock_attr.attr,
983 	&wake_unlock_attr.attr,
984 #endif
985 #ifdef CONFIG_PM_SLEEP_DEBUG
986 	&pm_test_attr.attr,
987 	&pm_print_times_attr.attr,
988 	&pm_wakeup_irq_attr.attr,
989 	&pm_debug_messages_attr.attr,
990 #endif
991 #endif
992 #ifdef CONFIG_FREEZER
993 	&pm_freeze_timeout_attr.attr,
994 #endif
995 	NULL,
996 };
997 
998 static const struct attribute_group attr_group = {
999 	.attrs = g,
1000 };
1001 
1002 static const struct attribute_group *attr_groups[] = {
1003 	&attr_group,
1004 #ifdef CONFIG_PM_SLEEP
1005 	&suspend_attr_group,
1006 #endif
1007 	NULL,
1008 };
1009 
1010 struct workqueue_struct *pm_wq;
1011 EXPORT_SYMBOL_GPL(pm_wq);
1012 
1013 static int __init pm_start_workqueue(void)
1014 {
1015 	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
1016 
1017 	return pm_wq ? 0 : -ENOMEM;
1018 }
1019 
1020 static int __init pm_init(void)
1021 {
1022 	int error = pm_start_workqueue();
1023 	if (error)
1024 		return error;
1025 	hibernate_image_size_init();
1026 	hibernate_reserved_size_init();
1027 	pm_states_init();
1028 	power_kobj = kobject_create_and_add("power", NULL);
1029 	if (!power_kobj)
1030 		return -ENOMEM;
1031 	error = sysfs_create_groups(power_kobj, attr_groups);
1032 	if (error)
1033 		return error;
1034 	pm_print_times_init();
1035 	return pm_autosleep_init();
1036 }
1037 
1038 core_initcall(pm_init);
1039