xref: /linux/kernel/power/energy_model.c (revision 3191df0a4882c827cac29925e80ecb1775b904bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Energy Model of devices
4  *
5  * Copyright (c) 2018-2021, Arm ltd.
6  * Written by: Quentin Perret, Arm ltd.
7  * Improvements provided by: Lukasz Luba, Arm ltd.
8  */
9 
10 #define pr_fmt(fmt) "energy_model: " fmt
11 
12 #include <linux/cpu.h>
13 #include <linux/cpufreq.h>
14 #include <linux/cpumask.h>
15 #include <linux/debugfs.h>
16 #include <linux/energy_model.h>
17 #include <linux/sched/topology.h>
18 #include <linux/slab.h>
19 
20 /*
21  * Mutex serializing the registrations of performance domains and letting
22  * callbacks defined by drivers sleep.
23  */
24 static DEFINE_MUTEX(em_pd_mutex);
25 
26 static void em_cpufreq_update_efficiencies(struct device *dev,
27 					   struct em_perf_state *table);
28 static void em_check_capacity_update(void);
29 static void em_update_workfn(struct work_struct *work);
30 static DECLARE_DELAYED_WORK(em_update_work, em_update_workfn);
31 
32 static bool _is_cpu_device(struct device *dev)
33 {
34 	return (dev->bus == &cpu_subsys);
35 }
36 
37 #ifdef CONFIG_DEBUG_FS
38 static struct dentry *rootdir;
39 
40 struct em_dbg_info {
41 	struct em_perf_domain *pd;
42 	int ps_id;
43 };
44 
45 #define DEFINE_EM_DBG_SHOW(name, fname)					\
46 static int em_debug_##fname##_show(struct seq_file *s, void *unused)	\
47 {									\
48 	struct em_dbg_info *em_dbg = s->private;			\
49 	struct em_perf_state *table;					\
50 	unsigned long val;						\
51 									\
52 	rcu_read_lock();						\
53 	table = em_perf_state_from_pd(em_dbg->pd);			\
54 	val = table[em_dbg->ps_id].name;				\
55 	rcu_read_unlock();						\
56 									\
57 	seq_printf(s, "%lu\n", val);					\
58 	return 0;							\
59 }									\
60 DEFINE_SHOW_ATTRIBUTE(em_debug_##fname)
61 
62 DEFINE_EM_DBG_SHOW(frequency, frequency);
63 DEFINE_EM_DBG_SHOW(power, power);
64 DEFINE_EM_DBG_SHOW(cost, cost);
65 DEFINE_EM_DBG_SHOW(performance, performance);
66 DEFINE_EM_DBG_SHOW(flags, inefficiency);
67 
68 static void em_debug_create_ps(struct em_perf_domain *em_pd,
69 			       struct em_dbg_info *em_dbg, int i,
70 			       struct dentry *pd)
71 {
72 	struct em_perf_state *table;
73 	unsigned long freq;
74 	struct dentry *d;
75 	char name[24];
76 
77 	em_dbg[i].pd = em_pd;
78 	em_dbg[i].ps_id = i;
79 
80 	rcu_read_lock();
81 	table = em_perf_state_from_pd(em_pd);
82 	freq = table[i].frequency;
83 	rcu_read_unlock();
84 
85 	snprintf(name, sizeof(name), "ps:%lu", freq);
86 
87 	/* Create per-ps directory */
88 	d = debugfs_create_dir(name, pd);
89 	debugfs_create_file("frequency", 0444, d, &em_dbg[i],
90 			    &em_debug_frequency_fops);
91 	debugfs_create_file("power", 0444, d, &em_dbg[i],
92 			    &em_debug_power_fops);
93 	debugfs_create_file("cost", 0444, d, &em_dbg[i],
94 			    &em_debug_cost_fops);
95 	debugfs_create_file("performance", 0444, d, &em_dbg[i],
96 			    &em_debug_performance_fops);
97 	debugfs_create_file("inefficient", 0444, d, &em_dbg[i],
98 			    &em_debug_inefficiency_fops);
99 }
100 
101 static int em_debug_cpus_show(struct seq_file *s, void *unused)
102 {
103 	seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private)));
104 
105 	return 0;
106 }
107 DEFINE_SHOW_ATTRIBUTE(em_debug_cpus);
108 
109 static int em_debug_flags_show(struct seq_file *s, void *unused)
110 {
111 	struct em_perf_domain *pd = s->private;
112 
113 	seq_printf(s, "%#lx\n", pd->flags);
114 
115 	return 0;
116 }
117 DEFINE_SHOW_ATTRIBUTE(em_debug_flags);
118 
119 static void em_debug_create_pd(struct device *dev)
120 {
121 	struct em_dbg_info *em_dbg;
122 	struct dentry *d;
123 	int i;
124 
125 	/* Create the directory of the performance domain */
126 	d = debugfs_create_dir(dev_name(dev), rootdir);
127 
128 	if (_is_cpu_device(dev))
129 		debugfs_create_file("cpus", 0444, d, dev->em_pd->cpus,
130 				    &em_debug_cpus_fops);
131 
132 	debugfs_create_file("flags", 0444, d, dev->em_pd,
133 			    &em_debug_flags_fops);
134 
135 	em_dbg = devm_kcalloc(dev, dev->em_pd->nr_perf_states,
136 			      sizeof(*em_dbg), GFP_KERNEL);
137 	if (!em_dbg)
138 		return;
139 
140 	/* Create a sub-directory for each performance state */
141 	for (i = 0; i < dev->em_pd->nr_perf_states; i++)
142 		em_debug_create_ps(dev->em_pd, em_dbg, i, d);
143 
144 }
145 
146 static void em_debug_remove_pd(struct device *dev)
147 {
148 	debugfs_lookup_and_remove(dev_name(dev), rootdir);
149 }
150 
151 static int __init em_debug_init(void)
152 {
153 	/* Create /sys/kernel/debug/energy_model directory */
154 	rootdir = debugfs_create_dir("energy_model", NULL);
155 
156 	return 0;
157 }
158 fs_initcall(em_debug_init);
159 #else /* CONFIG_DEBUG_FS */
160 static void em_debug_create_pd(struct device *dev) {}
161 static void em_debug_remove_pd(struct device *dev) {}
162 #endif
163 
164 static void em_release_table_kref(struct kref *kref)
165 {
166 	/* It was the last owner of this table so we can free */
167 	kfree_rcu(container_of(kref, struct em_perf_table, kref), rcu);
168 }
169 
170 /**
171  * em_table_free() - Handles safe free of the EM table when needed
172  * @table : EM table which is going to be freed
173  *
174  * No return values.
175  */
176 void em_table_free(struct em_perf_table *table)
177 {
178 	kref_put(&table->kref, em_release_table_kref);
179 }
180 
181 /**
182  * em_table_alloc() - Allocate a new EM table
183  * @pd		: EM performance domain for which this must be done
184  *
185  * Allocate a new EM table and initialize its kref to indicate that it
186  * has a user.
187  * Returns allocated table or NULL.
188  */
189 struct em_perf_table *em_table_alloc(struct em_perf_domain *pd)
190 {
191 	struct em_perf_table *table;
192 	int table_size;
193 
194 	table_size = sizeof(struct em_perf_state) * pd->nr_perf_states;
195 
196 	table = kzalloc(sizeof(*table) + table_size, GFP_KERNEL);
197 	if (!table)
198 		return NULL;
199 
200 	kref_init(&table->kref);
201 
202 	return table;
203 }
204 
205 static void em_init_performance(struct device *dev, struct em_perf_domain *pd,
206 				struct em_perf_state *table, int nr_states)
207 {
208 	u64 fmax, max_cap;
209 	int i, cpu;
210 
211 	/* This is needed only for CPUs and EAS skip other devices */
212 	if (!_is_cpu_device(dev))
213 		return;
214 
215 	cpu = cpumask_first(em_span_cpus(pd));
216 
217 	/*
218 	 * Calculate the performance value for each frequency with
219 	 * linear relationship. The final CPU capacity might not be ready at
220 	 * boot time, but the EM will be updated a bit later with correct one.
221 	 */
222 	fmax = (u64) table[nr_states - 1].frequency;
223 	max_cap = (u64) arch_scale_cpu_capacity(cpu);
224 	for (i = 0; i < nr_states; i++)
225 		table[i].performance = div64_u64(max_cap * table[i].frequency,
226 						 fmax);
227 }
228 
229 static int em_compute_costs(struct device *dev, struct em_perf_state *table,
230 			    const struct em_data_callback *cb, int nr_states,
231 			    unsigned long flags)
232 {
233 	unsigned long prev_cost = ULONG_MAX;
234 	int i, ret;
235 
236 	/* This is needed only for CPUs and EAS skip other devices */
237 	if (!_is_cpu_device(dev))
238 		return 0;
239 
240 	/* Compute the cost of each performance state. */
241 	for (i = nr_states - 1; i >= 0; i--) {
242 		unsigned long power_res, cost;
243 
244 		if ((flags & EM_PERF_DOMAIN_ARTIFICIAL) && cb->get_cost) {
245 			ret = cb->get_cost(dev, table[i].frequency, &cost);
246 			if (ret || !cost || cost > EM_MAX_POWER) {
247 				dev_err(dev, "EM: invalid cost %lu %d\n",
248 					cost, ret);
249 				return -EINVAL;
250 			}
251 		} else {
252 			/* increase resolution of 'cost' precision */
253 			power_res = table[i].power * 10;
254 			cost = power_res / table[i].performance;
255 		}
256 
257 		table[i].cost = cost;
258 
259 		if (table[i].cost >= prev_cost) {
260 			table[i].flags = EM_PERF_STATE_INEFFICIENT;
261 			dev_dbg(dev, "EM: OPP:%lu is inefficient\n",
262 				table[i].frequency);
263 		} else {
264 			prev_cost = table[i].cost;
265 		}
266 	}
267 
268 	return 0;
269 }
270 
271 /**
272  * em_dev_compute_costs() - Calculate cost values for new runtime EM table
273  * @dev		: Device for which the EM table is to be updated
274  * @table	: The new EM table that is going to get the costs calculated
275  * @nr_states	: Number of performance states
276  *
277  * Calculate the em_perf_state::cost values for new runtime EM table. The
278  * values are used for EAS during task placement. It also calculates and sets
279  * the efficiency flag for each performance state. When the function finish
280  * successfully the EM table is ready to be updated and used by EAS.
281  *
282  * Return 0 on success or a proper error in case of failure.
283  */
284 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
285 			 int nr_states)
286 {
287 	return em_compute_costs(dev, table, NULL, nr_states, 0);
288 }
289 
290 /**
291  * em_dev_update_perf_domain() - Update runtime EM table for a device
292  * @dev		: Device for which the EM is to be updated
293  * @new_table	: The new EM table that is going to be used from now
294  *
295  * Update EM runtime modifiable table for the @dev using the provided @table.
296  *
297  * This function uses a mutex to serialize writers, so it must not be called
298  * from a non-sleeping context.
299  *
300  * Return 0 on success or an error code on failure.
301  */
302 int em_dev_update_perf_domain(struct device *dev,
303 			      struct em_perf_table *new_table)
304 {
305 	struct em_perf_table *old_table;
306 	struct em_perf_domain *pd;
307 
308 	if (!dev)
309 		return -EINVAL;
310 
311 	/* Serialize update/unregister or concurrent updates */
312 	mutex_lock(&em_pd_mutex);
313 
314 	if (!dev->em_pd) {
315 		mutex_unlock(&em_pd_mutex);
316 		return -EINVAL;
317 	}
318 	pd = dev->em_pd;
319 
320 	kref_get(&new_table->kref);
321 
322 	old_table = rcu_dereference_protected(pd->em_table,
323 					      lockdep_is_held(&em_pd_mutex));
324 	rcu_assign_pointer(pd->em_table, new_table);
325 
326 	em_cpufreq_update_efficiencies(dev, new_table->state);
327 
328 	em_table_free(old_table);
329 
330 	mutex_unlock(&em_pd_mutex);
331 	return 0;
332 }
333 EXPORT_SYMBOL_GPL(em_dev_update_perf_domain);
334 
335 static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd,
336 				struct em_perf_state *table,
337 				const struct em_data_callback *cb,
338 				unsigned long flags)
339 {
340 	unsigned long power, freq, prev_freq = 0;
341 	int nr_states = pd->nr_perf_states;
342 	int i, ret;
343 
344 	/* Build the list of performance states for this performance domain */
345 	for (i = 0, freq = 0; i < nr_states; i++, freq++) {
346 		/*
347 		 * active_power() is a driver callback which ceils 'freq' to
348 		 * lowest performance state of 'dev' above 'freq' and updates
349 		 * 'power' and 'freq' accordingly.
350 		 */
351 		ret = cb->active_power(dev, &power, &freq);
352 		if (ret) {
353 			dev_err(dev, "EM: invalid perf. state: %d\n",
354 				ret);
355 			return -EINVAL;
356 		}
357 
358 		/*
359 		 * We expect the driver callback to increase the frequency for
360 		 * higher performance states.
361 		 */
362 		if (freq <= prev_freq) {
363 			dev_err(dev, "EM: non-increasing freq: %lu\n",
364 				freq);
365 			return -EINVAL;
366 		}
367 
368 		/*
369 		 * The power returned by active_state() is expected to be
370 		 * positive and be in range.
371 		 */
372 		if (!power || power > EM_MAX_POWER) {
373 			dev_err(dev, "EM: invalid power: %lu\n",
374 				power);
375 			return -EINVAL;
376 		}
377 
378 		table[i].power = power;
379 		table[i].frequency = prev_freq = freq;
380 	}
381 
382 	em_init_performance(dev, pd, table, nr_states);
383 
384 	ret = em_compute_costs(dev, table, cb, nr_states, flags);
385 	if (ret)
386 		return -EINVAL;
387 
388 	return 0;
389 }
390 
391 static int em_create_pd(struct device *dev, int nr_states,
392 			const struct em_data_callback *cb,
393 			const cpumask_t *cpus,
394 			unsigned long flags)
395 {
396 	struct em_perf_table *em_table;
397 	struct em_perf_domain *pd;
398 	struct device *cpu_dev;
399 	int cpu, ret, num_cpus;
400 
401 	if (_is_cpu_device(dev)) {
402 		num_cpus = cpumask_weight(cpus);
403 
404 		/* Prevent max possible energy calculation to not overflow */
405 		if (num_cpus > EM_MAX_NUM_CPUS) {
406 			dev_err(dev, "EM: too many CPUs, overflow possible\n");
407 			return -EINVAL;
408 		}
409 
410 		pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL);
411 		if (!pd)
412 			return -ENOMEM;
413 
414 		cpumask_copy(em_span_cpus(pd), cpus);
415 	} else {
416 		pd = kzalloc(sizeof(*pd), GFP_KERNEL);
417 		if (!pd)
418 			return -ENOMEM;
419 	}
420 
421 	pd->nr_perf_states = nr_states;
422 
423 	em_table = em_table_alloc(pd);
424 	if (!em_table)
425 		goto free_pd;
426 
427 	ret = em_create_perf_table(dev, pd, em_table->state, cb, flags);
428 	if (ret)
429 		goto free_pd_table;
430 
431 	rcu_assign_pointer(pd->em_table, em_table);
432 
433 	if (_is_cpu_device(dev))
434 		for_each_cpu(cpu, cpus) {
435 			cpu_dev = get_cpu_device(cpu);
436 			cpu_dev->em_pd = pd;
437 		}
438 
439 	dev->em_pd = pd;
440 
441 	return 0;
442 
443 free_pd_table:
444 	kfree(em_table);
445 free_pd:
446 	kfree(pd);
447 	return -EINVAL;
448 }
449 
450 static void
451 em_cpufreq_update_efficiencies(struct device *dev, struct em_perf_state *table)
452 {
453 	struct em_perf_domain *pd = dev->em_pd;
454 	struct cpufreq_policy *policy;
455 	int found = 0;
456 	int i, cpu;
457 
458 	if (!_is_cpu_device(dev))
459 		return;
460 
461 	/* Try to get a CPU which is active and in this PD */
462 	cpu = cpumask_first_and(em_span_cpus(pd), cpu_active_mask);
463 	if (cpu >= nr_cpu_ids) {
464 		dev_warn(dev, "EM: No online CPU for CPUFreq policy\n");
465 		return;
466 	}
467 
468 	policy = cpufreq_cpu_get(cpu);
469 	if (!policy) {
470 		dev_warn(dev, "EM: Access to CPUFreq policy failed\n");
471 		return;
472 	}
473 
474 	for (i = 0; i < pd->nr_perf_states; i++) {
475 		if (!(table[i].flags & EM_PERF_STATE_INEFFICIENT))
476 			continue;
477 
478 		if (!cpufreq_table_set_inefficient(policy, table[i].frequency))
479 			found++;
480 	}
481 
482 	cpufreq_cpu_put(policy);
483 
484 	if (!found)
485 		return;
486 
487 	/*
488 	 * Efficiencies have been installed in CPUFreq, inefficient frequencies
489 	 * will be skipped. The EM can do the same.
490 	 */
491 	pd->flags |= EM_PERF_DOMAIN_SKIP_INEFFICIENCIES;
492 }
493 
494 /**
495  * em_pd_get() - Return the performance domain for a device
496  * @dev : Device to find the performance domain for
497  *
498  * Returns the performance domain to which @dev belongs, or NULL if it doesn't
499  * exist.
500  */
501 struct em_perf_domain *em_pd_get(struct device *dev)
502 {
503 	if (IS_ERR_OR_NULL(dev))
504 		return NULL;
505 
506 	return dev->em_pd;
507 }
508 EXPORT_SYMBOL_GPL(em_pd_get);
509 
510 /**
511  * em_cpu_get() - Return the performance domain for a CPU
512  * @cpu : CPU to find the performance domain for
513  *
514  * Returns the performance domain to which @cpu belongs, or NULL if it doesn't
515  * exist.
516  */
517 struct em_perf_domain *em_cpu_get(int cpu)
518 {
519 	struct device *cpu_dev;
520 
521 	cpu_dev = get_cpu_device(cpu);
522 	if (!cpu_dev)
523 		return NULL;
524 
525 	return em_pd_get(cpu_dev);
526 }
527 EXPORT_SYMBOL_GPL(em_cpu_get);
528 
529 /**
530  * em_dev_register_perf_domain() - Register the Energy Model (EM) for a device
531  * @dev		: Device for which the EM is to register
532  * @nr_states	: Number of performance states to register
533  * @cb		: Callback functions providing the data of the Energy Model
534  * @cpus	: Pointer to cpumask_t, which in case of a CPU device is
535  *		obligatory. It can be taken from i.e. 'policy->cpus'. For other
536  *		type of devices this should be set to NULL.
537  * @microwatts	: Flag indicating that the power values are in micro-Watts or
538  *		in some other scale. It must be set properly.
539  *
540  * Create Energy Model tables for a performance domain using the callbacks
541  * defined in cb.
542  *
543  * The @microwatts is important to set with correct value. Some kernel
544  * sub-systems might rely on this flag and check if all devices in the EM are
545  * using the same scale.
546  *
547  * If multiple clients register the same performance domain, all but the first
548  * registration will be ignored.
549  *
550  * Return 0 on success
551  */
552 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
553 				const struct em_data_callback *cb,
554 				const cpumask_t *cpus, bool microwatts)
555 {
556 	int ret = em_dev_register_pd_no_update(dev, nr_states, cb, cpus, microwatts);
557 
558 	if (_is_cpu_device(dev))
559 		em_check_capacity_update();
560 
561 	return ret;
562 }
563 EXPORT_SYMBOL_GPL(em_dev_register_perf_domain);
564 
565 /**
566  * em_dev_register_pd_no_update() - Register a perf domain for a device
567  * @dev : Device to register the PD for
568  * @nr_states : Number of performance states in the new PD
569  * @cb : Callback functions for populating the energy model
570  * @cpus : CPUs to include in the new PD (mandatory if @dev is a CPU device)
571  * @microwatts : Whether or not the power values in the EM will be in uW
572  *
573  * Like em_dev_register_perf_domain(), but does not trigger a CPU capacity
574  * update after registering the PD, even if @dev is a CPU device.
575  */
576 int em_dev_register_pd_no_update(struct device *dev, unsigned int nr_states,
577 				 const struct em_data_callback *cb,
578 				 const cpumask_t *cpus, bool microwatts)
579 {
580 	struct em_perf_table *em_table;
581 	unsigned long cap, prev_cap = 0;
582 	unsigned long flags = 0;
583 	int cpu, ret;
584 
585 	if (!dev || !nr_states || !cb)
586 		return -EINVAL;
587 
588 	/*
589 	 * Use a mutex to serialize the registration of performance domains and
590 	 * let the driver-defined callback functions sleep.
591 	 */
592 	mutex_lock(&em_pd_mutex);
593 
594 	if (dev->em_pd) {
595 		ret = -EEXIST;
596 		goto unlock;
597 	}
598 
599 	if (_is_cpu_device(dev)) {
600 		if (!cpus) {
601 			dev_err(dev, "EM: invalid CPU mask\n");
602 			ret = -EINVAL;
603 			goto unlock;
604 		}
605 
606 		for_each_cpu(cpu, cpus) {
607 			if (em_cpu_get(cpu)) {
608 				dev_err(dev, "EM: exists for CPU%d\n", cpu);
609 				ret = -EEXIST;
610 				goto unlock;
611 			}
612 			/*
613 			 * All CPUs of a domain must have the same
614 			 * micro-architecture since they all share the same
615 			 * table.
616 			 */
617 			cap = arch_scale_cpu_capacity(cpu);
618 			if (prev_cap && prev_cap != cap) {
619 				dev_err(dev, "EM: CPUs of %*pbl must have the same capacity\n",
620 					cpumask_pr_args(cpus));
621 
622 				ret = -EINVAL;
623 				goto unlock;
624 			}
625 			prev_cap = cap;
626 		}
627 	}
628 
629 	if (microwatts)
630 		flags |= EM_PERF_DOMAIN_MICROWATTS;
631 	else if (cb->get_cost)
632 		flags |= EM_PERF_DOMAIN_ARTIFICIAL;
633 
634 	/*
635 	 * EM only supports uW (exception is artificial EM).
636 	 * Therefore, check and force the drivers to provide
637 	 * power in uW.
638 	 */
639 	if (!microwatts && !(flags & EM_PERF_DOMAIN_ARTIFICIAL)) {
640 		dev_err(dev, "EM: only supports uW power values\n");
641 		ret = -EINVAL;
642 		goto unlock;
643 	}
644 
645 	ret = em_create_pd(dev, nr_states, cb, cpus, flags);
646 	if (ret)
647 		goto unlock;
648 
649 	dev->em_pd->flags |= flags;
650 	dev->em_pd->min_perf_state = 0;
651 	dev->em_pd->max_perf_state = nr_states - 1;
652 
653 	em_table = rcu_dereference_protected(dev->em_pd->em_table,
654 					     lockdep_is_held(&em_pd_mutex));
655 	em_cpufreq_update_efficiencies(dev, em_table->state);
656 
657 	em_debug_create_pd(dev);
658 	dev_info(dev, "EM: created perf domain\n");
659 
660 unlock:
661 	mutex_unlock(&em_pd_mutex);
662 
663 	return ret;
664 }
665 EXPORT_SYMBOL_GPL(em_dev_register_pd_no_update);
666 
667 /**
668  * em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device
669  * @dev		: Device for which the EM is registered
670  *
671  * Unregister the EM for the specified @dev (but not a CPU device).
672  */
673 void em_dev_unregister_perf_domain(struct device *dev)
674 {
675 	if (IS_ERR_OR_NULL(dev) || !dev->em_pd)
676 		return;
677 
678 	if (_is_cpu_device(dev))
679 		return;
680 
681 	/*
682 	 * The mutex separates all register/unregister requests and protects
683 	 * from potential clean-up/setup issues in the debugfs directories.
684 	 * The debugfs directory name is the same as device's name.
685 	 */
686 	mutex_lock(&em_pd_mutex);
687 	em_debug_remove_pd(dev);
688 
689 	em_table_free(rcu_dereference_protected(dev->em_pd->em_table,
690 						lockdep_is_held(&em_pd_mutex)));
691 
692 	kfree(dev->em_pd);
693 	dev->em_pd = NULL;
694 	mutex_unlock(&em_pd_mutex);
695 }
696 EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain);
697 
698 static struct em_perf_table *em_table_dup(struct em_perf_domain *pd)
699 {
700 	struct em_perf_table *em_table;
701 	struct em_perf_state *ps, *new_ps;
702 	int ps_size;
703 
704 	em_table = em_table_alloc(pd);
705 	if (!em_table)
706 		return NULL;
707 
708 	new_ps = em_table->state;
709 
710 	rcu_read_lock();
711 	ps = em_perf_state_from_pd(pd);
712 	/* Initialize data based on old table */
713 	ps_size = sizeof(struct em_perf_state) * pd->nr_perf_states;
714 	memcpy(new_ps, ps, ps_size);
715 
716 	rcu_read_unlock();
717 
718 	return em_table;
719 }
720 
721 static int em_recalc_and_update(struct device *dev, struct em_perf_domain *pd,
722 				struct em_perf_table *em_table)
723 {
724 	int ret;
725 
726 	if (!em_is_artificial(pd)) {
727 		ret = em_compute_costs(dev, em_table->state, NULL,
728 				       pd->nr_perf_states, pd->flags);
729 		if (ret)
730 			goto free_em_table;
731 	}
732 
733 	ret = em_dev_update_perf_domain(dev, em_table);
734 	if (ret)
735 		goto free_em_table;
736 
737 	/*
738 	 * This is one-time-update, so give up the ownership in this updater.
739 	 * The EM framework has incremented the usage counter and from now
740 	 * will keep the reference (then free the memory when needed).
741 	 */
742 free_em_table:
743 	em_table_free(em_table);
744 	return ret;
745 }
746 
747 /*
748  * Adjustment of CPU performance values after boot, when all CPUs capacites
749  * are correctly calculated.
750  */
751 static void em_adjust_new_capacity(unsigned int cpu, struct device *dev,
752 				   struct em_perf_domain *pd)
753 {
754 	unsigned long cpu_capacity = arch_scale_cpu_capacity(cpu);
755 	struct em_perf_table *em_table;
756 	struct em_perf_state *table;
757 	unsigned long em_max_perf;
758 
759 	rcu_read_lock();
760 	table = em_perf_state_from_pd(pd);
761 	em_max_perf = table[pd->nr_perf_states - 1].performance;
762 	rcu_read_unlock();
763 
764 	if (em_max_perf == cpu_capacity)
765 		return;
766 
767 	pr_debug("updating cpu%d cpu_cap=%lu old capacity=%lu\n", cpu,
768 		 cpu_capacity, em_max_perf);
769 
770 	em_table = em_table_dup(pd);
771 	if (!em_table) {
772 		dev_warn(dev, "EM: allocation failed\n");
773 		return;
774 	}
775 
776 	em_init_performance(dev, pd, em_table->state, pd->nr_perf_states);
777 
778 	em_recalc_and_update(dev, pd, em_table);
779 }
780 
781 /**
782  * em_adjust_cpu_capacity() - Adjust the EM for a CPU after a capacity update.
783  * @cpu: Target CPU.
784  *
785  * Adjust the existing EM for @cpu after a capacity update under the assumption
786  * that the capacity has been updated in the same way for all of the CPUs in
787  * the same perf domain.
788  */
789 void em_adjust_cpu_capacity(unsigned int cpu)
790 {
791 	struct device *dev = get_cpu_device(cpu);
792 	struct em_perf_domain *pd;
793 
794 	pd = em_pd_get(dev);
795 	if (pd)
796 		em_adjust_new_capacity(cpu, dev, pd);
797 }
798 
799 static void em_check_capacity_update(void)
800 {
801 	cpumask_var_t cpu_done_mask;
802 	int cpu;
803 
804 	if (!zalloc_cpumask_var(&cpu_done_mask, GFP_KERNEL)) {
805 		pr_warn("no free memory\n");
806 		return;
807 	}
808 
809 	/* Check if CPUs capacity has changed than update EM */
810 	for_each_possible_cpu(cpu) {
811 		struct cpufreq_policy *policy;
812 		struct em_perf_domain *pd;
813 		struct device *dev;
814 
815 		if (cpumask_test_cpu(cpu, cpu_done_mask))
816 			continue;
817 
818 		policy = cpufreq_cpu_get(cpu);
819 		if (!policy) {
820 			pr_debug("Accessing cpu%d policy failed\n", cpu);
821 			schedule_delayed_work(&em_update_work,
822 					      msecs_to_jiffies(1000));
823 			break;
824 		}
825 		cpufreq_cpu_put(policy);
826 
827 		dev = get_cpu_device(cpu);
828 		pd = em_pd_get(dev);
829 		if (!pd || em_is_artificial(pd))
830 			continue;
831 
832 		cpumask_or(cpu_done_mask, cpu_done_mask,
833 			   em_span_cpus(pd));
834 
835 		em_adjust_new_capacity(cpu, dev, pd);
836 	}
837 
838 	free_cpumask_var(cpu_done_mask);
839 }
840 
841 static void em_update_workfn(struct work_struct *work)
842 {
843 	em_check_capacity_update();
844 }
845 
846 /**
847  * em_dev_update_chip_binning() - Update Energy Model after the new voltage
848  *				information is present in the OPPs.
849  * @dev		: Device for which the Energy Model has to be updated.
850  *
851  * This function allows to update easily the EM with new values available in
852  * the OPP framework and DT. It can be used after the chip has been properly
853  * verified by device drivers and the voltages adjusted for the 'chip binning'.
854  */
855 int em_dev_update_chip_binning(struct device *dev)
856 {
857 	struct em_perf_table *em_table;
858 	struct em_perf_domain *pd;
859 	int i, ret;
860 
861 	if (IS_ERR_OR_NULL(dev))
862 		return -EINVAL;
863 
864 	pd = em_pd_get(dev);
865 	if (!pd) {
866 		dev_warn(dev, "Couldn't find Energy Model\n");
867 		return -EINVAL;
868 	}
869 
870 	em_table = em_table_dup(pd);
871 	if (!em_table) {
872 		dev_warn(dev, "EM: allocation failed\n");
873 		return -ENOMEM;
874 	}
875 
876 	/* Update power values which might change due to new voltage in OPPs */
877 	for (i = 0; i < pd->nr_perf_states; i++) {
878 		unsigned long freq = em_table->state[i].frequency;
879 		unsigned long power;
880 
881 		ret = dev_pm_opp_calc_power(dev, &power, &freq);
882 		if (ret) {
883 			em_table_free(em_table);
884 			return ret;
885 		}
886 
887 		em_table->state[i].power = power;
888 	}
889 
890 	return em_recalc_and_update(dev, pd, em_table);
891 }
892 EXPORT_SYMBOL_GPL(em_dev_update_chip_binning);
893 
894 
895 /**
896  * em_update_performance_limits() - Update Energy Model with performance
897  *				limits information.
898  * @pd			: Performance Domain with EM that has to be updated.
899  * @freq_min_khz	: New minimum allowed frequency for this device.
900  * @freq_max_khz	: New maximum allowed frequency for this device.
901  *
902  * This function allows to update the EM with information about available
903  * performance levels. It takes the minimum and maximum frequency in kHz
904  * and does internal translation to performance levels.
905  * Returns 0 on success or -EINVAL when failed.
906  */
907 int em_update_performance_limits(struct em_perf_domain *pd,
908 		unsigned long freq_min_khz, unsigned long freq_max_khz)
909 {
910 	struct em_perf_state *table;
911 	int min_ps = -1;
912 	int max_ps = -1;
913 	int i;
914 
915 	if (!pd)
916 		return -EINVAL;
917 
918 	rcu_read_lock();
919 	table = em_perf_state_from_pd(pd);
920 
921 	for (i = 0; i < pd->nr_perf_states; i++) {
922 		if (freq_min_khz == table[i].frequency)
923 			min_ps = i;
924 		if (freq_max_khz == table[i].frequency)
925 			max_ps = i;
926 	}
927 	rcu_read_unlock();
928 
929 	/* Only update when both are found and sane */
930 	if (min_ps < 0 || max_ps < 0 || max_ps < min_ps)
931 		return -EINVAL;
932 
933 
934 	/* Guard simultaneous updates and make them atomic */
935 	mutex_lock(&em_pd_mutex);
936 	pd->min_perf_state = min_ps;
937 	pd->max_perf_state = max_ps;
938 	mutex_unlock(&em_pd_mutex);
939 
940 	return 0;
941 }
942 EXPORT_SYMBOL_GPL(em_update_performance_limits);
943 
944 static void rebuild_sd_workfn(struct work_struct *work)
945 {
946 	rebuild_sched_domains_energy();
947 }
948 
949 void em_rebuild_sched_domains(void)
950 {
951 	static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
952 
953 	/*
954 	 * When called from the cpufreq_register_driver() path, the
955 	 * cpu_hotplug_lock is already held, so use a work item to
956 	 * avoid nested locking in rebuild_sched_domains().
957 	 */
958 	schedule_work(&rebuild_sd_work);
959 }
960