1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/cred.h> 16 #include <linux/err.h> 17 #include <linux/acct.h> 18 #include <linux/slab.h> 19 #include <linux/proc_ns.h> 20 #include <linux/reboot.h> 21 #include <linux/export.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/signal.h> 24 #include <linux/idr.h> 25 26 struct pid_cache { 27 int nr_ids; 28 char name[16]; 29 struct kmem_cache *cachep; 30 struct list_head list; 31 }; 32 33 static LIST_HEAD(pid_caches_lh); 34 static DEFINE_MUTEX(pid_caches_mutex); 35 static struct kmem_cache *pid_ns_cachep; 36 37 /* 38 * creates the kmem cache to allocate pids from. 39 * @nr_ids: the number of numerical ids this pid will have to carry 40 */ 41 42 static struct kmem_cache *create_pid_cachep(int nr_ids) 43 { 44 struct pid_cache *pcache; 45 struct kmem_cache *cachep; 46 47 mutex_lock(&pid_caches_mutex); 48 list_for_each_entry(pcache, &pid_caches_lh, list) 49 if (pcache->nr_ids == nr_ids) 50 goto out; 51 52 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 53 if (pcache == NULL) 54 goto err_alloc; 55 56 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 57 cachep = kmem_cache_create(pcache->name, 58 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 59 0, SLAB_HWCACHE_ALIGN, NULL); 60 if (cachep == NULL) 61 goto err_cachep; 62 63 pcache->nr_ids = nr_ids; 64 pcache->cachep = cachep; 65 list_add(&pcache->list, &pid_caches_lh); 66 out: 67 mutex_unlock(&pid_caches_mutex); 68 return pcache->cachep; 69 70 err_cachep: 71 kfree(pcache); 72 err_alloc: 73 mutex_unlock(&pid_caches_mutex); 74 return NULL; 75 } 76 77 static void proc_cleanup_work(struct work_struct *work) 78 { 79 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 80 pid_ns_release_proc(ns); 81 } 82 83 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 84 #define MAX_PID_NS_LEVEL 32 85 86 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 87 { 88 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 89 } 90 91 static void dec_pid_namespaces(struct ucounts *ucounts) 92 { 93 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 94 } 95 96 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 97 struct pid_namespace *parent_pid_ns) 98 { 99 struct pid_namespace *ns; 100 unsigned int level = parent_pid_ns->level + 1; 101 struct ucounts *ucounts; 102 int err; 103 104 err = -EINVAL; 105 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 106 goto out; 107 108 err = -ENOSPC; 109 if (level > MAX_PID_NS_LEVEL) 110 goto out; 111 ucounts = inc_pid_namespaces(user_ns); 112 if (!ucounts) 113 goto out; 114 115 err = -ENOMEM; 116 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 117 if (ns == NULL) 118 goto out_dec; 119 120 idr_init(&ns->idr); 121 122 ns->pid_cachep = create_pid_cachep(level + 1); 123 if (ns->pid_cachep == NULL) 124 goto out_free_idr; 125 126 err = ns_alloc_inum(&ns->ns); 127 if (err) 128 goto out_free_idr; 129 ns->ns.ops = &pidns_operations; 130 131 kref_init(&ns->kref); 132 ns->level = level; 133 ns->parent = get_pid_ns(parent_pid_ns); 134 ns->user_ns = get_user_ns(user_ns); 135 ns->ucounts = ucounts; 136 ns->pid_allocated = PIDNS_ADDING; 137 INIT_WORK(&ns->proc_work, proc_cleanup_work); 138 139 return ns; 140 141 out_free_idr: 142 idr_destroy(&ns->idr); 143 kmem_cache_free(pid_ns_cachep, ns); 144 out_dec: 145 dec_pid_namespaces(ucounts); 146 out: 147 return ERR_PTR(err); 148 } 149 150 static void delayed_free_pidns(struct rcu_head *p) 151 { 152 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 153 154 dec_pid_namespaces(ns->ucounts); 155 put_user_ns(ns->user_ns); 156 157 kmem_cache_free(pid_ns_cachep, ns); 158 } 159 160 static void destroy_pid_namespace(struct pid_namespace *ns) 161 { 162 ns_free_inum(&ns->ns); 163 164 idr_destroy(&ns->idr); 165 call_rcu(&ns->rcu, delayed_free_pidns); 166 } 167 168 struct pid_namespace *copy_pid_ns(unsigned long flags, 169 struct user_namespace *user_ns, struct pid_namespace *old_ns) 170 { 171 if (!(flags & CLONE_NEWPID)) 172 return get_pid_ns(old_ns); 173 if (task_active_pid_ns(current) != old_ns) 174 return ERR_PTR(-EINVAL); 175 return create_pid_namespace(user_ns, old_ns); 176 } 177 178 static void free_pid_ns(struct kref *kref) 179 { 180 struct pid_namespace *ns; 181 182 ns = container_of(kref, struct pid_namespace, kref); 183 destroy_pid_namespace(ns); 184 } 185 186 void put_pid_ns(struct pid_namespace *ns) 187 { 188 struct pid_namespace *parent; 189 190 while (ns != &init_pid_ns) { 191 parent = ns->parent; 192 if (!kref_put(&ns->kref, free_pid_ns)) 193 break; 194 ns = parent; 195 } 196 } 197 EXPORT_SYMBOL_GPL(put_pid_ns); 198 199 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 200 { 201 int nr; 202 int rc; 203 struct task_struct *task, *me = current; 204 int init_pids = thread_group_leader(me) ? 1 : 2; 205 struct pid *pid; 206 207 /* Don't allow any more processes into the pid namespace */ 208 disable_pid_allocation(pid_ns); 209 210 /* 211 * Ignore SIGCHLD causing any terminated children to autoreap. 212 * This speeds up the namespace shutdown, plus see the comment 213 * below. 214 */ 215 spin_lock_irq(&me->sighand->siglock); 216 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 217 spin_unlock_irq(&me->sighand->siglock); 218 219 /* 220 * The last thread in the cgroup-init thread group is terminating. 221 * Find remaining pid_ts in the namespace, signal and wait for them 222 * to exit. 223 * 224 * Note: This signals each threads in the namespace - even those that 225 * belong to the same thread group, To avoid this, we would have 226 * to walk the entire tasklist looking a processes in this 227 * namespace, but that could be unnecessarily expensive if the 228 * pid namespace has just a few processes. Or we need to 229 * maintain a tasklist for each pid namespace. 230 * 231 */ 232 rcu_read_lock(); 233 read_lock(&tasklist_lock); 234 nr = 2; 235 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 236 task = pid_task(pid, PIDTYPE_PID); 237 if (task && !__fatal_signal_pending(task)) 238 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 239 } 240 read_unlock(&tasklist_lock); 241 rcu_read_unlock(); 242 243 /* 244 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 245 * sys_wait4() will also block until our children traced from the 246 * parent namespace are detached and become EXIT_DEAD. 247 */ 248 do { 249 clear_thread_flag(TIF_SIGPENDING); 250 rc = sys_wait4(-1, NULL, __WALL, NULL); 251 } while (rc != -ECHILD); 252 253 /* 254 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 255 * really care, we could reparent them to the global init. We could 256 * exit and reap ->child_reaper even if it is not the last thread in 257 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(), 258 * pid_ns can not go away until proc_kill_sb() drops the reference. 259 * 260 * But this ns can also have other tasks injected by setns()+fork(). 261 * Again, ignoring the user visible semantics we do not really need 262 * to wait until they are all reaped, but they can be reparented to 263 * us and thus we need to ensure that pid->child_reaper stays valid 264 * until they all go away. See free_pid()->wake_up_process(). 265 * 266 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 267 * if reparented. 268 */ 269 for (;;) { 270 set_current_state(TASK_INTERRUPTIBLE); 271 if (pid_ns->pid_allocated == init_pids) 272 break; 273 schedule(); 274 } 275 __set_current_state(TASK_RUNNING); 276 277 if (pid_ns->reboot) 278 current->signal->group_exit_code = pid_ns->reboot; 279 280 acct_exit_ns(pid_ns); 281 return; 282 } 283 284 #ifdef CONFIG_CHECKPOINT_RESTORE 285 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 286 void __user *buffer, size_t *lenp, loff_t *ppos) 287 { 288 struct pid_namespace *pid_ns = task_active_pid_ns(current); 289 struct ctl_table tmp = *table; 290 int ret, next; 291 292 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 293 return -EPERM; 294 295 /* 296 * Writing directly to ns' last_pid field is OK, since this field 297 * is volatile in a living namespace anyway and a code writing to 298 * it should synchronize its usage with external means. 299 */ 300 301 next = idr_get_cursor(&pid_ns->idr) - 1; 302 303 tmp.data = &next; 304 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 305 if (!ret && write) 306 idr_set_cursor(&pid_ns->idr, next + 1); 307 308 return ret; 309 } 310 311 extern int pid_max; 312 static int zero = 0; 313 static struct ctl_table pid_ns_ctl_table[] = { 314 { 315 .procname = "ns_last_pid", 316 .maxlen = sizeof(int), 317 .mode = 0666, /* permissions are checked in the handler */ 318 .proc_handler = pid_ns_ctl_handler, 319 .extra1 = &zero, 320 .extra2 = &pid_max, 321 }, 322 { } 323 }; 324 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 325 #endif /* CONFIG_CHECKPOINT_RESTORE */ 326 327 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 328 { 329 if (pid_ns == &init_pid_ns) 330 return 0; 331 332 switch (cmd) { 333 case LINUX_REBOOT_CMD_RESTART2: 334 case LINUX_REBOOT_CMD_RESTART: 335 pid_ns->reboot = SIGHUP; 336 break; 337 338 case LINUX_REBOOT_CMD_POWER_OFF: 339 case LINUX_REBOOT_CMD_HALT: 340 pid_ns->reboot = SIGINT; 341 break; 342 default: 343 return -EINVAL; 344 } 345 346 read_lock(&tasklist_lock); 347 force_sig(SIGKILL, pid_ns->child_reaper); 348 read_unlock(&tasklist_lock); 349 350 do_exit(0); 351 352 /* Not reached */ 353 return 0; 354 } 355 356 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 357 { 358 return container_of(ns, struct pid_namespace, ns); 359 } 360 361 static struct ns_common *pidns_get(struct task_struct *task) 362 { 363 struct pid_namespace *ns; 364 365 rcu_read_lock(); 366 ns = task_active_pid_ns(task); 367 if (ns) 368 get_pid_ns(ns); 369 rcu_read_unlock(); 370 371 return ns ? &ns->ns : NULL; 372 } 373 374 static struct ns_common *pidns_for_children_get(struct task_struct *task) 375 { 376 struct pid_namespace *ns = NULL; 377 378 task_lock(task); 379 if (task->nsproxy) { 380 ns = task->nsproxy->pid_ns_for_children; 381 get_pid_ns(ns); 382 } 383 task_unlock(task); 384 385 if (ns) { 386 read_lock(&tasklist_lock); 387 if (!ns->child_reaper) { 388 put_pid_ns(ns); 389 ns = NULL; 390 } 391 read_unlock(&tasklist_lock); 392 } 393 394 return ns ? &ns->ns : NULL; 395 } 396 397 static void pidns_put(struct ns_common *ns) 398 { 399 put_pid_ns(to_pid_ns(ns)); 400 } 401 402 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 403 { 404 struct pid_namespace *active = task_active_pid_ns(current); 405 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 406 407 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 408 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 409 return -EPERM; 410 411 /* 412 * Only allow entering the current active pid namespace 413 * or a child of the current active pid namespace. 414 * 415 * This is required for fork to return a usable pid value and 416 * this maintains the property that processes and their 417 * children can not escape their current pid namespace. 418 */ 419 if (new->level < active->level) 420 return -EINVAL; 421 422 ancestor = new; 423 while (ancestor->level > active->level) 424 ancestor = ancestor->parent; 425 if (ancestor != active) 426 return -EINVAL; 427 428 put_pid_ns(nsproxy->pid_ns_for_children); 429 nsproxy->pid_ns_for_children = get_pid_ns(new); 430 return 0; 431 } 432 433 static struct ns_common *pidns_get_parent(struct ns_common *ns) 434 { 435 struct pid_namespace *active = task_active_pid_ns(current); 436 struct pid_namespace *pid_ns, *p; 437 438 /* See if the parent is in the current namespace */ 439 pid_ns = p = to_pid_ns(ns)->parent; 440 for (;;) { 441 if (!p) 442 return ERR_PTR(-EPERM); 443 if (p == active) 444 break; 445 p = p->parent; 446 } 447 448 return &get_pid_ns(pid_ns)->ns; 449 } 450 451 static struct user_namespace *pidns_owner(struct ns_common *ns) 452 { 453 return to_pid_ns(ns)->user_ns; 454 } 455 456 const struct proc_ns_operations pidns_operations = { 457 .name = "pid", 458 .type = CLONE_NEWPID, 459 .get = pidns_get, 460 .put = pidns_put, 461 .install = pidns_install, 462 .owner = pidns_owner, 463 .get_parent = pidns_get_parent, 464 }; 465 466 const struct proc_ns_operations pidns_for_children_operations = { 467 .name = "pid_for_children", 468 .real_ns_name = "pid", 469 .type = CLONE_NEWPID, 470 .get = pidns_for_children_get, 471 .put = pidns_put, 472 .install = pidns_install, 473 .owner = pidns_owner, 474 .get_parent = pidns_get_parent, 475 }; 476 477 static __init int pid_namespaces_init(void) 478 { 479 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 480 481 #ifdef CONFIG_CHECKPOINT_RESTORE 482 register_sysctl_paths(kern_path, pid_ns_ctl_table); 483 #endif 484 return 0; 485 } 486 487 __initcall(pid_namespaces_init); 488