1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Pid namespaces 4 * 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for comments and help 9 * 10 */ 11 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 26 #include <uapi/linux/wait.h> 27 #include "pid_sysctl.h" 28 29 static DEFINE_MUTEX(pid_caches_mutex); 30 static struct kmem_cache *pid_ns_cachep; 31 /* Write once array, filled from the beginning. */ 32 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 33 34 /* 35 * creates the kmem cache to allocate pids from. 36 * @level: pid namespace level 37 */ 38 39 static struct kmem_cache *create_pid_cachep(unsigned int level) 40 { 41 /* Level 0 is init_pid_ns.pid_cachep */ 42 struct kmem_cache **pkc = &pid_cache[level - 1]; 43 struct kmem_cache *kc; 44 char name[4 + 10 + 1]; 45 unsigned int len; 46 47 kc = READ_ONCE(*pkc); 48 if (kc) 49 return kc; 50 51 snprintf(name, sizeof(name), "pid_%u", level + 1); 52 len = struct_size_t(struct pid, numbers, level + 1); 53 mutex_lock(&pid_caches_mutex); 54 /* Name collision forces to do allocation under mutex. */ 55 if (!*pkc) 56 *pkc = kmem_cache_create(name, len, 0, 57 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 58 mutex_unlock(&pid_caches_mutex); 59 /* current can fail, but someone else can succeed. */ 60 return READ_ONCE(*pkc); 61 } 62 63 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 64 { 65 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 66 } 67 68 static void dec_pid_namespaces(struct ucounts *ucounts) 69 { 70 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 71 } 72 73 static void destroy_pid_namespace_work(struct work_struct *work); 74 75 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 76 struct pid_namespace *parent_pid_ns) 77 { 78 struct pid_namespace *ns; 79 unsigned int level = parent_pid_ns->level + 1; 80 struct ucounts *ucounts; 81 int err; 82 83 err = -EINVAL; 84 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 85 goto out; 86 87 err = -ENOSPC; 88 if (level > MAX_PID_NS_LEVEL) 89 goto out; 90 ucounts = inc_pid_namespaces(user_ns); 91 if (!ucounts) 92 goto out; 93 94 err = -ENOMEM; 95 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 96 if (ns == NULL) 97 goto out_dec; 98 99 idr_init(&ns->idr); 100 101 ns->pid_cachep = create_pid_cachep(level); 102 if (ns->pid_cachep == NULL) 103 goto out_free_idr; 104 105 err = ns_alloc_inum(&ns->ns); 106 if (err) 107 goto out_free_idr; 108 ns->ns.ops = &pidns_operations; 109 110 ns->pid_max = parent_pid_ns->pid_max; 111 err = register_pidns_sysctls(ns); 112 if (err) 113 goto out_free_inum; 114 115 refcount_set(&ns->ns.count, 1); 116 ns->level = level; 117 ns->parent = get_pid_ns(parent_pid_ns); 118 ns->user_ns = get_user_ns(user_ns); 119 ns->ucounts = ucounts; 120 ns->pid_allocated = PIDNS_ADDING; 121 INIT_WORK(&ns->work, destroy_pid_namespace_work); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 124 ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns); 125 #endif 126 127 return ns; 128 129 out_free_inum: 130 ns_free_inum(&ns->ns); 131 out_free_idr: 132 idr_destroy(&ns->idr); 133 kmem_cache_free(pid_ns_cachep, ns); 134 out_dec: 135 dec_pid_namespaces(ucounts); 136 out: 137 return ERR_PTR(err); 138 } 139 140 static void delayed_free_pidns(struct rcu_head *p) 141 { 142 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 143 144 dec_pid_namespaces(ns->ucounts); 145 put_user_ns(ns->user_ns); 146 147 kmem_cache_free(pid_ns_cachep, ns); 148 } 149 150 static void destroy_pid_namespace(struct pid_namespace *ns) 151 { 152 unregister_pidns_sysctls(ns); 153 154 ns_free_inum(&ns->ns); 155 156 idr_destroy(&ns->idr); 157 call_rcu(&ns->rcu, delayed_free_pidns); 158 } 159 160 static void destroy_pid_namespace_work(struct work_struct *work) 161 { 162 struct pid_namespace *ns = 163 container_of(work, struct pid_namespace, work); 164 165 do { 166 struct pid_namespace *parent; 167 168 parent = ns->parent; 169 destroy_pid_namespace(ns); 170 ns = parent; 171 } while (ns != &init_pid_ns && refcount_dec_and_test(&ns->ns.count)); 172 } 173 174 struct pid_namespace *copy_pid_ns(unsigned long flags, 175 struct user_namespace *user_ns, struct pid_namespace *old_ns) 176 { 177 if (!(flags & CLONE_NEWPID)) 178 return get_pid_ns(old_ns); 179 if (task_active_pid_ns(current) != old_ns) 180 return ERR_PTR(-EINVAL); 181 return create_pid_namespace(user_ns, old_ns); 182 } 183 184 void put_pid_ns(struct pid_namespace *ns) 185 { 186 if (ns && ns != &init_pid_ns && refcount_dec_and_test(&ns->ns.count)) 187 schedule_work(&ns->work); 188 } 189 EXPORT_SYMBOL_GPL(put_pid_ns); 190 191 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 192 { 193 int nr; 194 int rc; 195 struct task_struct *task, *me = current; 196 int init_pids = thread_group_leader(me) ? 1 : 2; 197 struct pid *pid; 198 199 /* Don't allow any more processes into the pid namespace */ 200 disable_pid_allocation(pid_ns); 201 202 /* 203 * Ignore SIGCHLD causing any terminated children to autoreap. 204 * This speeds up the namespace shutdown, plus see the comment 205 * below. 206 */ 207 spin_lock_irq(&me->sighand->siglock); 208 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 209 spin_unlock_irq(&me->sighand->siglock); 210 211 /* 212 * The last thread in the cgroup-init thread group is terminating. 213 * Find remaining pid_ts in the namespace, signal and wait for them 214 * to exit. 215 * 216 * Note: This signals each threads in the namespace - even those that 217 * belong to the same thread group, To avoid this, we would have 218 * to walk the entire tasklist looking a processes in this 219 * namespace, but that could be unnecessarily expensive if the 220 * pid namespace has just a few processes. Or we need to 221 * maintain a tasklist for each pid namespace. 222 * 223 */ 224 rcu_read_lock(); 225 read_lock(&tasklist_lock); 226 nr = 2; 227 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 228 task = pid_task(pid, PIDTYPE_PID); 229 if (task && !__fatal_signal_pending(task)) 230 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 231 } 232 read_unlock(&tasklist_lock); 233 rcu_read_unlock(); 234 235 /* 236 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 237 * kernel_wait4() will also block until our children traced from the 238 * parent namespace are detached and become EXIT_DEAD. 239 */ 240 do { 241 clear_thread_flag(TIF_SIGPENDING); 242 clear_thread_flag(TIF_NOTIFY_SIGNAL); 243 rc = kernel_wait4(-1, NULL, __WALL, NULL); 244 } while (rc != -ECHILD); 245 246 /* 247 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 248 * process whose parents processes are outside of the pid 249 * namespace. Such processes are created with setns()+fork(). 250 * 251 * If those EXIT_ZOMBIE processes are not reaped by their 252 * parents before their parents exit, they will be reparented 253 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 254 * stay valid until they all go away. 255 * 256 * The code relies on the pid_ns->child_reaper ignoring 257 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 258 * autoreaped if reparented. 259 * 260 * Semantically it is also desirable to wait for EXIT_ZOMBIE 261 * processes before allowing the child_reaper to be reaped, as 262 * that gives the invariant that when the init process of a 263 * pid namespace is reaped all of the processes in the pid 264 * namespace are gone. 265 * 266 * Once all of the other tasks are gone from the pid_namespace 267 * free_pid() will awaken this task. 268 */ 269 for (;;) { 270 set_current_state(TASK_INTERRUPTIBLE); 271 if (pid_ns->pid_allocated == init_pids) 272 break; 273 schedule(); 274 } 275 __set_current_state(TASK_RUNNING); 276 277 if (pid_ns->reboot) 278 current->signal->group_exit_code = pid_ns->reboot; 279 280 acct_exit_ns(pid_ns); 281 return; 282 } 283 284 #ifdef CONFIG_CHECKPOINT_RESTORE 285 static int pid_ns_ctl_handler(const struct ctl_table *table, int write, 286 void *buffer, size_t *lenp, loff_t *ppos) 287 { 288 struct pid_namespace *pid_ns = task_active_pid_ns(current); 289 struct ctl_table tmp = *table; 290 int ret, next; 291 292 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) 293 return -EPERM; 294 295 next = idr_get_cursor(&pid_ns->idr) - 1; 296 297 tmp.data = &next; 298 tmp.extra2 = &pid_ns->pid_max; 299 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 300 if (!ret && write) 301 idr_set_cursor(&pid_ns->idr, next + 1); 302 303 return ret; 304 } 305 306 static struct ctl_table pid_ns_ctl_table[] = { 307 { 308 .procname = "ns_last_pid", 309 .maxlen = sizeof(int), 310 .mode = 0666, /* permissions are checked in the handler */ 311 .proc_handler = pid_ns_ctl_handler, 312 .extra1 = SYSCTL_ZERO, 313 .extra2 = &init_pid_ns.pid_max, 314 }, 315 }; 316 #endif /* CONFIG_CHECKPOINT_RESTORE */ 317 318 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 319 { 320 if (pid_ns == &init_pid_ns) 321 return 0; 322 323 switch (cmd) { 324 case LINUX_REBOOT_CMD_RESTART2: 325 case LINUX_REBOOT_CMD_RESTART: 326 pid_ns->reboot = SIGHUP; 327 break; 328 329 case LINUX_REBOOT_CMD_POWER_OFF: 330 case LINUX_REBOOT_CMD_HALT: 331 pid_ns->reboot = SIGINT; 332 break; 333 default: 334 return -EINVAL; 335 } 336 337 read_lock(&tasklist_lock); 338 send_sig(SIGKILL, pid_ns->child_reaper, 1); 339 read_unlock(&tasklist_lock); 340 341 do_exit(0); 342 343 /* Not reached */ 344 return 0; 345 } 346 347 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 348 { 349 return container_of(ns, struct pid_namespace, ns); 350 } 351 352 static struct ns_common *pidns_get(struct task_struct *task) 353 { 354 struct pid_namespace *ns; 355 356 rcu_read_lock(); 357 ns = task_active_pid_ns(task); 358 if (ns) 359 get_pid_ns(ns); 360 rcu_read_unlock(); 361 362 return ns ? &ns->ns : NULL; 363 } 364 365 static struct ns_common *pidns_for_children_get(struct task_struct *task) 366 { 367 struct pid_namespace *ns = NULL; 368 369 task_lock(task); 370 if (task->nsproxy) { 371 ns = task->nsproxy->pid_ns_for_children; 372 get_pid_ns(ns); 373 } 374 task_unlock(task); 375 376 if (ns) { 377 read_lock(&tasklist_lock); 378 if (!ns->child_reaper) { 379 put_pid_ns(ns); 380 ns = NULL; 381 } 382 read_unlock(&tasklist_lock); 383 } 384 385 return ns ? &ns->ns : NULL; 386 } 387 388 static void pidns_put(struct ns_common *ns) 389 { 390 put_pid_ns(to_pid_ns(ns)); 391 } 392 393 static int pidns_install(struct nsset *nsset, struct ns_common *ns) 394 { 395 struct nsproxy *nsproxy = nsset->nsproxy; 396 struct pid_namespace *active = task_active_pid_ns(current); 397 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 398 399 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 400 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 401 return -EPERM; 402 403 /* 404 * Only allow entering the current active pid namespace 405 * or a child of the current active pid namespace. 406 * 407 * This is required for fork to return a usable pid value and 408 * this maintains the property that processes and their 409 * children can not escape their current pid namespace. 410 */ 411 if (new->level < active->level) 412 return -EINVAL; 413 414 ancestor = new; 415 while (ancestor->level > active->level) 416 ancestor = ancestor->parent; 417 if (ancestor != active) 418 return -EINVAL; 419 420 put_pid_ns(nsproxy->pid_ns_for_children); 421 nsproxy->pid_ns_for_children = get_pid_ns(new); 422 return 0; 423 } 424 425 static struct ns_common *pidns_get_parent(struct ns_common *ns) 426 { 427 struct pid_namespace *active = task_active_pid_ns(current); 428 struct pid_namespace *pid_ns, *p; 429 430 /* See if the parent is in the current namespace */ 431 pid_ns = p = to_pid_ns(ns)->parent; 432 for (;;) { 433 if (!p) 434 return ERR_PTR(-EPERM); 435 if (p == active) 436 break; 437 p = p->parent; 438 } 439 440 return &get_pid_ns(pid_ns)->ns; 441 } 442 443 static struct user_namespace *pidns_owner(struct ns_common *ns) 444 { 445 return to_pid_ns(ns)->user_ns; 446 } 447 448 const struct proc_ns_operations pidns_operations = { 449 .name = "pid", 450 .type = CLONE_NEWPID, 451 .get = pidns_get, 452 .put = pidns_put, 453 .install = pidns_install, 454 .owner = pidns_owner, 455 .get_parent = pidns_get_parent, 456 }; 457 458 const struct proc_ns_operations pidns_for_children_operations = { 459 .name = "pid_for_children", 460 .real_ns_name = "pid", 461 .type = CLONE_NEWPID, 462 .get = pidns_for_children_get, 463 .put = pidns_put, 464 .install = pidns_install, 465 .owner = pidns_owner, 466 .get_parent = pidns_get_parent, 467 }; 468 469 static __init int pid_namespaces_init(void) 470 { 471 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT); 472 473 #ifdef CONFIG_CHECKPOINT_RESTORE 474 register_sysctl_init("kernel", pid_ns_ctl_table); 475 #endif 476 477 register_pid_ns_sysctl_table_vm(); 478 return 0; 479 } 480 481 __initcall(pid_namespaces_init); 482