1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Pid namespaces 4 * 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for comments and help 9 * 10 */ 11 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 26 #include <uapi/linux/wait.h> 27 #include "pid_sysctl.h" 28 29 static DEFINE_MUTEX(pid_caches_mutex); 30 static struct kmem_cache *pid_ns_cachep; 31 /* Write once array, filled from the beginning. */ 32 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 33 34 /* 35 * creates the kmem cache to allocate pids from. 36 * @level: pid namespace level 37 */ 38 39 static struct kmem_cache *create_pid_cachep(unsigned int level) 40 { 41 /* Level 0 is init_pid_ns.pid_cachep */ 42 struct kmem_cache **pkc = &pid_cache[level - 1]; 43 struct kmem_cache *kc; 44 char name[4 + 10 + 1]; 45 unsigned int len; 46 47 kc = READ_ONCE(*pkc); 48 if (kc) 49 return kc; 50 51 snprintf(name, sizeof(name), "pid_%u", level + 1); 52 len = struct_size_t(struct pid, numbers, level + 1); 53 mutex_lock(&pid_caches_mutex); 54 /* Name collision forces to do allocation under mutex. */ 55 if (!*pkc) 56 *pkc = kmem_cache_create(name, len, 0, 57 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 58 mutex_unlock(&pid_caches_mutex); 59 /* current can fail, but someone else can succeed. */ 60 return READ_ONCE(*pkc); 61 } 62 63 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 64 { 65 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 66 } 67 68 static void dec_pid_namespaces(struct ucounts *ucounts) 69 { 70 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 71 } 72 73 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 74 struct pid_namespace *parent_pid_ns) 75 { 76 struct pid_namespace *ns; 77 unsigned int level = parent_pid_ns->level + 1; 78 struct ucounts *ucounts; 79 int err; 80 81 err = -EINVAL; 82 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 83 goto out; 84 85 err = -ENOSPC; 86 if (level > MAX_PID_NS_LEVEL) 87 goto out; 88 ucounts = inc_pid_namespaces(user_ns); 89 if (!ucounts) 90 goto out; 91 92 err = -ENOMEM; 93 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 94 if (ns == NULL) 95 goto out_dec; 96 97 idr_init(&ns->idr); 98 99 ns->pid_cachep = create_pid_cachep(level); 100 if (ns->pid_cachep == NULL) 101 goto out_free_idr; 102 103 err = ns_alloc_inum(&ns->ns); 104 if (err) 105 goto out_free_idr; 106 ns->ns.ops = &pidns_operations; 107 108 refcount_set(&ns->ns.count, 1); 109 ns->level = level; 110 ns->parent = get_pid_ns(parent_pid_ns); 111 ns->user_ns = get_user_ns(user_ns); 112 ns->ucounts = ucounts; 113 ns->pid_allocated = PIDNS_ADDING; 114 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 115 ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns); 116 #endif 117 return ns; 118 119 out_free_idr: 120 idr_destroy(&ns->idr); 121 kmem_cache_free(pid_ns_cachep, ns); 122 out_dec: 123 dec_pid_namespaces(ucounts); 124 out: 125 return ERR_PTR(err); 126 } 127 128 static void delayed_free_pidns(struct rcu_head *p) 129 { 130 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 131 132 dec_pid_namespaces(ns->ucounts); 133 put_user_ns(ns->user_ns); 134 135 kmem_cache_free(pid_ns_cachep, ns); 136 } 137 138 static void destroy_pid_namespace(struct pid_namespace *ns) 139 { 140 ns_free_inum(&ns->ns); 141 142 idr_destroy(&ns->idr); 143 call_rcu(&ns->rcu, delayed_free_pidns); 144 } 145 146 struct pid_namespace *copy_pid_ns(unsigned long flags, 147 struct user_namespace *user_ns, struct pid_namespace *old_ns) 148 { 149 if (!(flags & CLONE_NEWPID)) 150 return get_pid_ns(old_ns); 151 if (task_active_pid_ns(current) != old_ns) 152 return ERR_PTR(-EINVAL); 153 return create_pid_namespace(user_ns, old_ns); 154 } 155 156 void put_pid_ns(struct pid_namespace *ns) 157 { 158 struct pid_namespace *parent; 159 160 while (ns != &init_pid_ns) { 161 parent = ns->parent; 162 if (!refcount_dec_and_test(&ns->ns.count)) 163 break; 164 destroy_pid_namespace(ns); 165 ns = parent; 166 } 167 } 168 EXPORT_SYMBOL_GPL(put_pid_ns); 169 170 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 171 { 172 int nr; 173 int rc; 174 struct task_struct *task, *me = current; 175 int init_pids = thread_group_leader(me) ? 1 : 2; 176 struct pid *pid; 177 178 /* Don't allow any more processes into the pid namespace */ 179 disable_pid_allocation(pid_ns); 180 181 /* 182 * Ignore SIGCHLD causing any terminated children to autoreap. 183 * This speeds up the namespace shutdown, plus see the comment 184 * below. 185 */ 186 spin_lock_irq(&me->sighand->siglock); 187 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 188 spin_unlock_irq(&me->sighand->siglock); 189 190 /* 191 * The last thread in the cgroup-init thread group is terminating. 192 * Find remaining pid_ts in the namespace, signal and wait for them 193 * to exit. 194 * 195 * Note: This signals each threads in the namespace - even those that 196 * belong to the same thread group, To avoid this, we would have 197 * to walk the entire tasklist looking a processes in this 198 * namespace, but that could be unnecessarily expensive if the 199 * pid namespace has just a few processes. Or we need to 200 * maintain a tasklist for each pid namespace. 201 * 202 */ 203 rcu_read_lock(); 204 read_lock(&tasklist_lock); 205 nr = 2; 206 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 207 task = pid_task(pid, PIDTYPE_PID); 208 if (task && !__fatal_signal_pending(task)) 209 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 210 } 211 read_unlock(&tasklist_lock); 212 rcu_read_unlock(); 213 214 /* 215 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 216 * kernel_wait4() will also block until our children traced from the 217 * parent namespace are detached and become EXIT_DEAD. 218 */ 219 do { 220 clear_thread_flag(TIF_SIGPENDING); 221 rc = kernel_wait4(-1, NULL, __WALL, NULL); 222 } while (rc != -ECHILD); 223 224 /* 225 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 226 * process whose parents processes are outside of the pid 227 * namespace. Such processes are created with setns()+fork(). 228 * 229 * If those EXIT_ZOMBIE processes are not reaped by their 230 * parents before their parents exit, they will be reparented 231 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 232 * stay valid until they all go away. 233 * 234 * The code relies on the pid_ns->child_reaper ignoring 235 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 236 * autoreaped if reparented. 237 * 238 * Semantically it is also desirable to wait for EXIT_ZOMBIE 239 * processes before allowing the child_reaper to be reaped, as 240 * that gives the invariant that when the init process of a 241 * pid namespace is reaped all of the processes in the pid 242 * namespace are gone. 243 * 244 * Once all of the other tasks are gone from the pid_namespace 245 * free_pid() will awaken this task. 246 */ 247 for (;;) { 248 set_current_state(TASK_INTERRUPTIBLE); 249 if (pid_ns->pid_allocated == init_pids) 250 break; 251 /* 252 * Release tasks_rcu_exit_srcu to avoid following deadlock: 253 * 254 * 1) TASK A unshare(CLONE_NEWPID) 255 * 2) TASK A fork() twice -> TASK B (child reaper for new ns) 256 * and TASK C 257 * 3) TASK B exits, kills TASK C, waits for TASK A to reap it 258 * 4) TASK A calls synchronize_rcu_tasks() 259 * -> synchronize_srcu(tasks_rcu_exit_srcu) 260 * 5) *DEADLOCK* 261 * 262 * It is considered safe to release tasks_rcu_exit_srcu here 263 * because we assume the current task can not be concurrently 264 * reaped at this point. 265 */ 266 exit_tasks_rcu_stop(); 267 schedule(); 268 exit_tasks_rcu_start(); 269 } 270 __set_current_state(TASK_RUNNING); 271 272 if (pid_ns->reboot) 273 current->signal->group_exit_code = pid_ns->reboot; 274 275 acct_exit_ns(pid_ns); 276 return; 277 } 278 279 #ifdef CONFIG_CHECKPOINT_RESTORE 280 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 281 void *buffer, size_t *lenp, loff_t *ppos) 282 { 283 struct pid_namespace *pid_ns = task_active_pid_ns(current); 284 struct ctl_table tmp = *table; 285 int ret, next; 286 287 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) 288 return -EPERM; 289 290 next = idr_get_cursor(&pid_ns->idr) - 1; 291 292 tmp.data = &next; 293 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 294 if (!ret && write) 295 idr_set_cursor(&pid_ns->idr, next + 1); 296 297 return ret; 298 } 299 300 extern int pid_max; 301 static struct ctl_table pid_ns_ctl_table[] = { 302 { 303 .procname = "ns_last_pid", 304 .maxlen = sizeof(int), 305 .mode = 0666, /* permissions are checked in the handler */ 306 .proc_handler = pid_ns_ctl_handler, 307 .extra1 = SYSCTL_ZERO, 308 .extra2 = &pid_max, 309 }, 310 { } 311 }; 312 #endif /* CONFIG_CHECKPOINT_RESTORE */ 313 314 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 315 { 316 if (pid_ns == &init_pid_ns) 317 return 0; 318 319 switch (cmd) { 320 case LINUX_REBOOT_CMD_RESTART2: 321 case LINUX_REBOOT_CMD_RESTART: 322 pid_ns->reboot = SIGHUP; 323 break; 324 325 case LINUX_REBOOT_CMD_POWER_OFF: 326 case LINUX_REBOOT_CMD_HALT: 327 pid_ns->reboot = SIGINT; 328 break; 329 default: 330 return -EINVAL; 331 } 332 333 read_lock(&tasklist_lock); 334 send_sig(SIGKILL, pid_ns->child_reaper, 1); 335 read_unlock(&tasklist_lock); 336 337 do_exit(0); 338 339 /* Not reached */ 340 return 0; 341 } 342 343 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 344 { 345 return container_of(ns, struct pid_namespace, ns); 346 } 347 348 static struct ns_common *pidns_get(struct task_struct *task) 349 { 350 struct pid_namespace *ns; 351 352 rcu_read_lock(); 353 ns = task_active_pid_ns(task); 354 if (ns) 355 get_pid_ns(ns); 356 rcu_read_unlock(); 357 358 return ns ? &ns->ns : NULL; 359 } 360 361 static struct ns_common *pidns_for_children_get(struct task_struct *task) 362 { 363 struct pid_namespace *ns = NULL; 364 365 task_lock(task); 366 if (task->nsproxy) { 367 ns = task->nsproxy->pid_ns_for_children; 368 get_pid_ns(ns); 369 } 370 task_unlock(task); 371 372 if (ns) { 373 read_lock(&tasklist_lock); 374 if (!ns->child_reaper) { 375 put_pid_ns(ns); 376 ns = NULL; 377 } 378 read_unlock(&tasklist_lock); 379 } 380 381 return ns ? &ns->ns : NULL; 382 } 383 384 static void pidns_put(struct ns_common *ns) 385 { 386 put_pid_ns(to_pid_ns(ns)); 387 } 388 389 static int pidns_install(struct nsset *nsset, struct ns_common *ns) 390 { 391 struct nsproxy *nsproxy = nsset->nsproxy; 392 struct pid_namespace *active = task_active_pid_ns(current); 393 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 394 395 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 396 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 397 return -EPERM; 398 399 /* 400 * Only allow entering the current active pid namespace 401 * or a child of the current active pid namespace. 402 * 403 * This is required for fork to return a usable pid value and 404 * this maintains the property that processes and their 405 * children can not escape their current pid namespace. 406 */ 407 if (new->level < active->level) 408 return -EINVAL; 409 410 ancestor = new; 411 while (ancestor->level > active->level) 412 ancestor = ancestor->parent; 413 if (ancestor != active) 414 return -EINVAL; 415 416 put_pid_ns(nsproxy->pid_ns_for_children); 417 nsproxy->pid_ns_for_children = get_pid_ns(new); 418 return 0; 419 } 420 421 static struct ns_common *pidns_get_parent(struct ns_common *ns) 422 { 423 struct pid_namespace *active = task_active_pid_ns(current); 424 struct pid_namespace *pid_ns, *p; 425 426 /* See if the parent is in the current namespace */ 427 pid_ns = p = to_pid_ns(ns)->parent; 428 for (;;) { 429 if (!p) 430 return ERR_PTR(-EPERM); 431 if (p == active) 432 break; 433 p = p->parent; 434 } 435 436 return &get_pid_ns(pid_ns)->ns; 437 } 438 439 static struct user_namespace *pidns_owner(struct ns_common *ns) 440 { 441 return to_pid_ns(ns)->user_ns; 442 } 443 444 const struct proc_ns_operations pidns_operations = { 445 .name = "pid", 446 .type = CLONE_NEWPID, 447 .get = pidns_get, 448 .put = pidns_put, 449 .install = pidns_install, 450 .owner = pidns_owner, 451 .get_parent = pidns_get_parent, 452 }; 453 454 const struct proc_ns_operations pidns_for_children_operations = { 455 .name = "pid_for_children", 456 .real_ns_name = "pid", 457 .type = CLONE_NEWPID, 458 .get = pidns_for_children_get, 459 .put = pidns_put, 460 .install = pidns_install, 461 .owner = pidns_owner, 462 .get_parent = pidns_get_parent, 463 }; 464 465 static __init int pid_namespaces_init(void) 466 { 467 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT); 468 469 #ifdef CONFIG_CHECKPOINT_RESTORE 470 register_sysctl_init("kernel", pid_ns_ctl_table); 471 #endif 472 473 register_pid_ns_sysctl_table_vm(); 474 return 0; 475 } 476 477 __initcall(pid_namespaces_init); 478