1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Pid namespaces 4 * 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for comments and help 9 * 10 */ 11 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 26 27 static DEFINE_MUTEX(pid_caches_mutex); 28 static struct kmem_cache *pid_ns_cachep; 29 /* Write once array, filled from the beginning. */ 30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 31 32 /* 33 * creates the kmem cache to allocate pids from. 34 * @level: pid namespace level 35 */ 36 37 static struct kmem_cache *create_pid_cachep(unsigned int level) 38 { 39 /* Level 0 is init_pid_ns.pid_cachep */ 40 struct kmem_cache **pkc = &pid_cache[level - 1]; 41 struct kmem_cache *kc; 42 char name[4 + 10 + 1]; 43 unsigned int len; 44 45 kc = READ_ONCE(*pkc); 46 if (kc) 47 return kc; 48 49 snprintf(name, sizeof(name), "pid_%u", level + 1); 50 len = sizeof(struct pid) + level * sizeof(struct upid); 51 mutex_lock(&pid_caches_mutex); 52 /* Name collision forces to do allocation under mutex. */ 53 if (!*pkc) 54 *pkc = kmem_cache_create(name, len, 0, 55 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 56 mutex_unlock(&pid_caches_mutex); 57 /* current can fail, but someone else can succeed. */ 58 return READ_ONCE(*pkc); 59 } 60 61 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 62 { 63 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 64 } 65 66 static void dec_pid_namespaces(struct ucounts *ucounts) 67 { 68 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 69 } 70 71 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 72 struct pid_namespace *parent_pid_ns) 73 { 74 struct pid_namespace *ns; 75 unsigned int level = parent_pid_ns->level + 1; 76 struct ucounts *ucounts; 77 int err; 78 79 err = -EINVAL; 80 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 81 goto out; 82 83 err = -ENOSPC; 84 if (level > MAX_PID_NS_LEVEL) 85 goto out; 86 ucounts = inc_pid_namespaces(user_ns); 87 if (!ucounts) 88 goto out; 89 90 err = -ENOMEM; 91 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 92 if (ns == NULL) 93 goto out_dec; 94 95 idr_init(&ns->idr); 96 97 ns->pid_cachep = create_pid_cachep(level); 98 if (ns->pid_cachep == NULL) 99 goto out_free_idr; 100 101 err = ns_alloc_inum(&ns->ns); 102 if (err) 103 goto out_free_idr; 104 ns->ns.ops = &pidns_operations; 105 106 refcount_set(&ns->ns.count, 1); 107 ns->level = level; 108 ns->parent = get_pid_ns(parent_pid_ns); 109 ns->user_ns = get_user_ns(user_ns); 110 ns->ucounts = ucounts; 111 ns->pid_allocated = PIDNS_ADDING; 112 113 return ns; 114 115 out_free_idr: 116 idr_destroy(&ns->idr); 117 kmem_cache_free(pid_ns_cachep, ns); 118 out_dec: 119 dec_pid_namespaces(ucounts); 120 out: 121 return ERR_PTR(err); 122 } 123 124 static void delayed_free_pidns(struct rcu_head *p) 125 { 126 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 127 128 dec_pid_namespaces(ns->ucounts); 129 put_user_ns(ns->user_ns); 130 131 kmem_cache_free(pid_ns_cachep, ns); 132 } 133 134 static void destroy_pid_namespace(struct pid_namespace *ns) 135 { 136 ns_free_inum(&ns->ns); 137 138 idr_destroy(&ns->idr); 139 call_rcu(&ns->rcu, delayed_free_pidns); 140 } 141 142 struct pid_namespace *copy_pid_ns(unsigned long flags, 143 struct user_namespace *user_ns, struct pid_namespace *old_ns) 144 { 145 if (!(flags & CLONE_NEWPID)) 146 return get_pid_ns(old_ns); 147 if (task_active_pid_ns(current) != old_ns) 148 return ERR_PTR(-EINVAL); 149 return create_pid_namespace(user_ns, old_ns); 150 } 151 152 void put_pid_ns(struct pid_namespace *ns) 153 { 154 struct pid_namespace *parent; 155 156 while (ns != &init_pid_ns) { 157 parent = ns->parent; 158 if (!refcount_dec_and_test(&ns->ns.count)) 159 break; 160 destroy_pid_namespace(ns); 161 ns = parent; 162 } 163 } 164 EXPORT_SYMBOL_GPL(put_pid_ns); 165 166 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 167 { 168 int nr; 169 int rc; 170 struct task_struct *task, *me = current; 171 int init_pids = thread_group_leader(me) ? 1 : 2; 172 struct pid *pid; 173 174 /* Don't allow any more processes into the pid namespace */ 175 disable_pid_allocation(pid_ns); 176 177 /* 178 * Ignore SIGCHLD causing any terminated children to autoreap. 179 * This speeds up the namespace shutdown, plus see the comment 180 * below. 181 */ 182 spin_lock_irq(&me->sighand->siglock); 183 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 184 spin_unlock_irq(&me->sighand->siglock); 185 186 /* 187 * The last thread in the cgroup-init thread group is terminating. 188 * Find remaining pid_ts in the namespace, signal and wait for them 189 * to exit. 190 * 191 * Note: This signals each threads in the namespace - even those that 192 * belong to the same thread group, To avoid this, we would have 193 * to walk the entire tasklist looking a processes in this 194 * namespace, but that could be unnecessarily expensive if the 195 * pid namespace has just a few processes. Or we need to 196 * maintain a tasklist for each pid namespace. 197 * 198 */ 199 rcu_read_lock(); 200 read_lock(&tasklist_lock); 201 nr = 2; 202 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 203 task = pid_task(pid, PIDTYPE_PID); 204 if (task && !__fatal_signal_pending(task)) 205 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 206 } 207 read_unlock(&tasklist_lock); 208 rcu_read_unlock(); 209 210 /* 211 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 212 * kernel_wait4() will also block until our children traced from the 213 * parent namespace are detached and become EXIT_DEAD. 214 */ 215 do { 216 clear_thread_flag(TIF_SIGPENDING); 217 rc = kernel_wait4(-1, NULL, __WALL, NULL); 218 } while (rc != -ECHILD); 219 220 /* 221 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 222 * process whose parents processes are outside of the pid 223 * namespace. Such processes are created with setns()+fork(). 224 * 225 * If those EXIT_ZOMBIE processes are not reaped by their 226 * parents before their parents exit, they will be reparented 227 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 228 * stay valid until they all go away. 229 * 230 * The code relies on the pid_ns->child_reaper ignoring 231 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 232 * autoreaped if reparented. 233 * 234 * Semantically it is also desirable to wait for EXIT_ZOMBIE 235 * processes before allowing the child_reaper to be reaped, as 236 * that gives the invariant that when the init process of a 237 * pid namespace is reaped all of the processes in the pid 238 * namespace are gone. 239 * 240 * Once all of the other tasks are gone from the pid_namespace 241 * free_pid() will awaken this task. 242 */ 243 for (;;) { 244 set_current_state(TASK_INTERRUPTIBLE); 245 if (pid_ns->pid_allocated == init_pids) 246 break; 247 /* 248 * Release tasks_rcu_exit_srcu to avoid following deadlock: 249 * 250 * 1) TASK A unshare(CLONE_NEWPID) 251 * 2) TASK A fork() twice -> TASK B (child reaper for new ns) 252 * and TASK C 253 * 3) TASK B exits, kills TASK C, waits for TASK A to reap it 254 * 4) TASK A calls synchronize_rcu_tasks() 255 * -> synchronize_srcu(tasks_rcu_exit_srcu) 256 * 5) *DEADLOCK* 257 * 258 * It is considered safe to release tasks_rcu_exit_srcu here 259 * because we assume the current task can not be concurrently 260 * reaped at this point. 261 */ 262 exit_tasks_rcu_stop(); 263 schedule(); 264 exit_tasks_rcu_start(); 265 } 266 __set_current_state(TASK_RUNNING); 267 268 if (pid_ns->reboot) 269 current->signal->group_exit_code = pid_ns->reboot; 270 271 acct_exit_ns(pid_ns); 272 return; 273 } 274 275 #ifdef CONFIG_CHECKPOINT_RESTORE 276 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 277 void *buffer, size_t *lenp, loff_t *ppos) 278 { 279 struct pid_namespace *pid_ns = task_active_pid_ns(current); 280 struct ctl_table tmp = *table; 281 int ret, next; 282 283 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) 284 return -EPERM; 285 286 /* 287 * Writing directly to ns' last_pid field is OK, since this field 288 * is volatile in a living namespace anyway and a code writing to 289 * it should synchronize its usage with external means. 290 */ 291 292 next = idr_get_cursor(&pid_ns->idr) - 1; 293 294 tmp.data = &next; 295 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 296 if (!ret && write) 297 idr_set_cursor(&pid_ns->idr, next + 1); 298 299 return ret; 300 } 301 302 extern int pid_max; 303 static struct ctl_table pid_ns_ctl_table[] = { 304 { 305 .procname = "ns_last_pid", 306 .maxlen = sizeof(int), 307 .mode = 0666, /* permissions are checked in the handler */ 308 .proc_handler = pid_ns_ctl_handler, 309 .extra1 = SYSCTL_ZERO, 310 .extra2 = &pid_max, 311 }, 312 { } 313 }; 314 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 315 #endif /* CONFIG_CHECKPOINT_RESTORE */ 316 317 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 318 { 319 if (pid_ns == &init_pid_ns) 320 return 0; 321 322 switch (cmd) { 323 case LINUX_REBOOT_CMD_RESTART2: 324 case LINUX_REBOOT_CMD_RESTART: 325 pid_ns->reboot = SIGHUP; 326 break; 327 328 case LINUX_REBOOT_CMD_POWER_OFF: 329 case LINUX_REBOOT_CMD_HALT: 330 pid_ns->reboot = SIGINT; 331 break; 332 default: 333 return -EINVAL; 334 } 335 336 read_lock(&tasklist_lock); 337 send_sig(SIGKILL, pid_ns->child_reaper, 1); 338 read_unlock(&tasklist_lock); 339 340 do_exit(0); 341 342 /* Not reached */ 343 return 0; 344 } 345 346 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 347 { 348 return container_of(ns, struct pid_namespace, ns); 349 } 350 351 static struct ns_common *pidns_get(struct task_struct *task) 352 { 353 struct pid_namespace *ns; 354 355 rcu_read_lock(); 356 ns = task_active_pid_ns(task); 357 if (ns) 358 get_pid_ns(ns); 359 rcu_read_unlock(); 360 361 return ns ? &ns->ns : NULL; 362 } 363 364 static struct ns_common *pidns_for_children_get(struct task_struct *task) 365 { 366 struct pid_namespace *ns = NULL; 367 368 task_lock(task); 369 if (task->nsproxy) { 370 ns = task->nsproxy->pid_ns_for_children; 371 get_pid_ns(ns); 372 } 373 task_unlock(task); 374 375 if (ns) { 376 read_lock(&tasklist_lock); 377 if (!ns->child_reaper) { 378 put_pid_ns(ns); 379 ns = NULL; 380 } 381 read_unlock(&tasklist_lock); 382 } 383 384 return ns ? &ns->ns : NULL; 385 } 386 387 static void pidns_put(struct ns_common *ns) 388 { 389 put_pid_ns(to_pid_ns(ns)); 390 } 391 392 static int pidns_install(struct nsset *nsset, struct ns_common *ns) 393 { 394 struct nsproxy *nsproxy = nsset->nsproxy; 395 struct pid_namespace *active = task_active_pid_ns(current); 396 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 397 398 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 399 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 400 return -EPERM; 401 402 /* 403 * Only allow entering the current active pid namespace 404 * or a child of the current active pid namespace. 405 * 406 * This is required for fork to return a usable pid value and 407 * this maintains the property that processes and their 408 * children can not escape their current pid namespace. 409 */ 410 if (new->level < active->level) 411 return -EINVAL; 412 413 ancestor = new; 414 while (ancestor->level > active->level) 415 ancestor = ancestor->parent; 416 if (ancestor != active) 417 return -EINVAL; 418 419 put_pid_ns(nsproxy->pid_ns_for_children); 420 nsproxy->pid_ns_for_children = get_pid_ns(new); 421 return 0; 422 } 423 424 static struct ns_common *pidns_get_parent(struct ns_common *ns) 425 { 426 struct pid_namespace *active = task_active_pid_ns(current); 427 struct pid_namespace *pid_ns, *p; 428 429 /* See if the parent is in the current namespace */ 430 pid_ns = p = to_pid_ns(ns)->parent; 431 for (;;) { 432 if (!p) 433 return ERR_PTR(-EPERM); 434 if (p == active) 435 break; 436 p = p->parent; 437 } 438 439 return &get_pid_ns(pid_ns)->ns; 440 } 441 442 static struct user_namespace *pidns_owner(struct ns_common *ns) 443 { 444 return to_pid_ns(ns)->user_ns; 445 } 446 447 const struct proc_ns_operations pidns_operations = { 448 .name = "pid", 449 .type = CLONE_NEWPID, 450 .get = pidns_get, 451 .put = pidns_put, 452 .install = pidns_install, 453 .owner = pidns_owner, 454 .get_parent = pidns_get_parent, 455 }; 456 457 const struct proc_ns_operations pidns_for_children_operations = { 458 .name = "pid_for_children", 459 .real_ns_name = "pid", 460 .type = CLONE_NEWPID, 461 .get = pidns_for_children_get, 462 .put = pidns_put, 463 .install = pidns_install, 464 .owner = pidns_owner, 465 .get_parent = pidns_get_parent, 466 }; 467 468 static __init int pid_namespaces_init(void) 469 { 470 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT); 471 472 #ifdef CONFIG_CHECKPOINT_RESTORE 473 register_sysctl_paths(kern_path, pid_ns_ctl_table); 474 #endif 475 return 0; 476 } 477 478 __initcall(pid_namespaces_init); 479