xref: /linux/kernel/pid_namespace.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21 
22 #define BITS_PER_PAGE		(PAGE_SIZE*8)
23 
24 struct pid_cache {
25 	int nr_ids;
26 	char name[16];
27 	struct kmem_cache *cachep;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(pid_caches_lh);
32 static DEFINE_MUTEX(pid_caches_mutex);
33 static struct kmem_cache *pid_ns_cachep;
34 
35 /*
36  * creates the kmem cache to allocate pids from.
37  * @nr_ids: the number of numerical ids this pid will have to carry
38  */
39 
40 static struct kmem_cache *create_pid_cachep(int nr_ids)
41 {
42 	struct pid_cache *pcache;
43 	struct kmem_cache *cachep;
44 
45 	mutex_lock(&pid_caches_mutex);
46 	list_for_each_entry(pcache, &pid_caches_lh, list)
47 		if (pcache->nr_ids == nr_ids)
48 			goto out;
49 
50 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
51 	if (pcache == NULL)
52 		goto err_alloc;
53 
54 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
55 	cachep = kmem_cache_create(pcache->name,
56 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
57 			0, SLAB_HWCACHE_ALIGN, NULL);
58 	if (cachep == NULL)
59 		goto err_cachep;
60 
61 	pcache->nr_ids = nr_ids;
62 	pcache->cachep = cachep;
63 	list_add(&pcache->list, &pid_caches_lh);
64 out:
65 	mutex_unlock(&pid_caches_mutex);
66 	return pcache->cachep;
67 
68 err_cachep:
69 	kfree(pcache);
70 err_alloc:
71 	mutex_unlock(&pid_caches_mutex);
72 	return NULL;
73 }
74 
75 static void proc_cleanup_work(struct work_struct *work)
76 {
77 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
78 	pid_ns_release_proc(ns);
79 }
80 
81 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
82 #define MAX_PID_NS_LEVEL 32
83 
84 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
85 	struct pid_namespace *parent_pid_ns)
86 {
87 	struct pid_namespace *ns;
88 	unsigned int level = parent_pid_ns->level + 1;
89 	int i;
90 	int err;
91 
92 	if (level > MAX_PID_NS_LEVEL) {
93 		err = -EINVAL;
94 		goto out;
95 	}
96 
97 	err = -ENOMEM;
98 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
99 	if (ns == NULL)
100 		goto out;
101 
102 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
103 	if (!ns->pidmap[0].page)
104 		goto out_free;
105 
106 	ns->pid_cachep = create_pid_cachep(level + 1);
107 	if (ns->pid_cachep == NULL)
108 		goto out_free_map;
109 
110 	err = proc_alloc_inum(&ns->proc_inum);
111 	if (err)
112 		goto out_free_map;
113 
114 	kref_init(&ns->kref);
115 	ns->level = level;
116 	ns->parent = get_pid_ns(parent_pid_ns);
117 	ns->user_ns = get_user_ns(user_ns);
118 	ns->nr_hashed = PIDNS_HASH_ADDING;
119 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
120 
121 	set_bit(0, ns->pidmap[0].page);
122 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
123 
124 	for (i = 1; i < PIDMAP_ENTRIES; i++)
125 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
126 
127 	return ns;
128 
129 out_free_map:
130 	kfree(ns->pidmap[0].page);
131 out_free:
132 	kmem_cache_free(pid_ns_cachep, ns);
133 out:
134 	return ERR_PTR(err);
135 }
136 
137 static void destroy_pid_namespace(struct pid_namespace *ns)
138 {
139 	int i;
140 
141 	proc_free_inum(ns->proc_inum);
142 	for (i = 0; i < PIDMAP_ENTRIES; i++)
143 		kfree(ns->pidmap[i].page);
144 	put_user_ns(ns->user_ns);
145 	kmem_cache_free(pid_ns_cachep, ns);
146 }
147 
148 struct pid_namespace *copy_pid_ns(unsigned long flags,
149 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
150 {
151 	if (!(flags & CLONE_NEWPID))
152 		return get_pid_ns(old_ns);
153 	if (task_active_pid_ns(current) != old_ns)
154 		return ERR_PTR(-EINVAL);
155 	return create_pid_namespace(user_ns, old_ns);
156 }
157 
158 static void free_pid_ns(struct kref *kref)
159 {
160 	struct pid_namespace *ns;
161 
162 	ns = container_of(kref, struct pid_namespace, kref);
163 	destroy_pid_namespace(ns);
164 }
165 
166 void put_pid_ns(struct pid_namespace *ns)
167 {
168 	struct pid_namespace *parent;
169 
170 	while (ns != &init_pid_ns) {
171 		parent = ns->parent;
172 		if (!kref_put(&ns->kref, free_pid_ns))
173 			break;
174 		ns = parent;
175 	}
176 }
177 EXPORT_SYMBOL_GPL(put_pid_ns);
178 
179 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
180 {
181 	int nr;
182 	int rc;
183 	struct task_struct *task, *me = current;
184 	int init_pids = thread_group_leader(me) ? 1 : 2;
185 
186 	/* Don't allow any more processes into the pid namespace */
187 	disable_pid_allocation(pid_ns);
188 
189 	/* Ignore SIGCHLD causing any terminated children to autoreap */
190 	spin_lock_irq(&me->sighand->siglock);
191 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
192 	spin_unlock_irq(&me->sighand->siglock);
193 
194 	/*
195 	 * The last thread in the cgroup-init thread group is terminating.
196 	 * Find remaining pid_ts in the namespace, signal and wait for them
197 	 * to exit.
198 	 *
199 	 * Note:  This signals each threads in the namespace - even those that
200 	 * 	  belong to the same thread group, To avoid this, we would have
201 	 * 	  to walk the entire tasklist looking a processes in this
202 	 * 	  namespace, but that could be unnecessarily expensive if the
203 	 * 	  pid namespace has just a few processes. Or we need to
204 	 * 	  maintain a tasklist for each pid namespace.
205 	 *
206 	 */
207 	read_lock(&tasklist_lock);
208 	nr = next_pidmap(pid_ns, 1);
209 	while (nr > 0) {
210 		rcu_read_lock();
211 
212 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
213 		if (task && !__fatal_signal_pending(task))
214 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
215 
216 		rcu_read_unlock();
217 
218 		nr = next_pidmap(pid_ns, nr);
219 	}
220 	read_unlock(&tasklist_lock);
221 
222 	/* Firstly reap the EXIT_ZOMBIE children we may have. */
223 	do {
224 		clear_thread_flag(TIF_SIGPENDING);
225 		rc = sys_wait4(-1, NULL, __WALL, NULL);
226 	} while (rc != -ECHILD);
227 
228 	/*
229 	 * sys_wait4() above can't reap the TASK_DEAD children.
230 	 * Make sure they all go away, see free_pid().
231 	 */
232 	for (;;) {
233 		set_current_state(TASK_UNINTERRUPTIBLE);
234 		if (pid_ns->nr_hashed == init_pids)
235 			break;
236 		schedule();
237 	}
238 	__set_current_state(TASK_RUNNING);
239 
240 	if (pid_ns->reboot)
241 		current->signal->group_exit_code = pid_ns->reboot;
242 
243 	acct_exit_ns(pid_ns);
244 	return;
245 }
246 
247 #ifdef CONFIG_CHECKPOINT_RESTORE
248 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
249 		void __user *buffer, size_t *lenp, loff_t *ppos)
250 {
251 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
252 	struct ctl_table tmp = *table;
253 
254 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
255 		return -EPERM;
256 
257 	/*
258 	 * Writing directly to ns' last_pid field is OK, since this field
259 	 * is volatile in a living namespace anyway and a code writing to
260 	 * it should synchronize its usage with external means.
261 	 */
262 
263 	tmp.data = &pid_ns->last_pid;
264 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
265 }
266 
267 extern int pid_max;
268 static int zero = 0;
269 static struct ctl_table pid_ns_ctl_table[] = {
270 	{
271 		.procname = "ns_last_pid",
272 		.maxlen = sizeof(int),
273 		.mode = 0666, /* permissions are checked in the handler */
274 		.proc_handler = pid_ns_ctl_handler,
275 		.extra1 = &zero,
276 		.extra2 = &pid_max,
277 	},
278 	{ }
279 };
280 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
281 #endif	/* CONFIG_CHECKPOINT_RESTORE */
282 
283 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
284 {
285 	if (pid_ns == &init_pid_ns)
286 		return 0;
287 
288 	switch (cmd) {
289 	case LINUX_REBOOT_CMD_RESTART2:
290 	case LINUX_REBOOT_CMD_RESTART:
291 		pid_ns->reboot = SIGHUP;
292 		break;
293 
294 	case LINUX_REBOOT_CMD_POWER_OFF:
295 	case LINUX_REBOOT_CMD_HALT:
296 		pid_ns->reboot = SIGINT;
297 		break;
298 	default:
299 		return -EINVAL;
300 	}
301 
302 	read_lock(&tasklist_lock);
303 	force_sig(SIGKILL, pid_ns->child_reaper);
304 	read_unlock(&tasklist_lock);
305 
306 	do_exit(0);
307 
308 	/* Not reached */
309 	return 0;
310 }
311 
312 static void *pidns_get(struct task_struct *task)
313 {
314 	struct pid_namespace *ns;
315 
316 	rcu_read_lock();
317 	ns = get_pid_ns(task_active_pid_ns(task));
318 	rcu_read_unlock();
319 
320 	return ns;
321 }
322 
323 static void pidns_put(void *ns)
324 {
325 	put_pid_ns(ns);
326 }
327 
328 static int pidns_install(struct nsproxy *nsproxy, void *ns)
329 {
330 	struct pid_namespace *active = task_active_pid_ns(current);
331 	struct pid_namespace *ancestor, *new = ns;
332 
333 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
334 	    !nsown_capable(CAP_SYS_ADMIN))
335 		return -EPERM;
336 
337 	/*
338 	 * Only allow entering the current active pid namespace
339 	 * or a child of the current active pid namespace.
340 	 *
341 	 * This is required for fork to return a usable pid value and
342 	 * this maintains the property that processes and their
343 	 * children can not escape their current pid namespace.
344 	 */
345 	if (new->level < active->level)
346 		return -EINVAL;
347 
348 	ancestor = new;
349 	while (ancestor->level > active->level)
350 		ancestor = ancestor->parent;
351 	if (ancestor != active)
352 		return -EINVAL;
353 
354 	put_pid_ns(nsproxy->pid_ns);
355 	nsproxy->pid_ns = get_pid_ns(new);
356 	return 0;
357 }
358 
359 static unsigned int pidns_inum(void *ns)
360 {
361 	struct pid_namespace *pid_ns = ns;
362 	return pid_ns->proc_inum;
363 }
364 
365 const struct proc_ns_operations pidns_operations = {
366 	.name		= "pid",
367 	.type		= CLONE_NEWPID,
368 	.get		= pidns_get,
369 	.put		= pidns_put,
370 	.install	= pidns_install,
371 	.inum		= pidns_inum,
372 };
373 
374 static __init int pid_namespaces_init(void)
375 {
376 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
377 
378 #ifdef CONFIG_CHECKPOINT_RESTORE
379 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
380 #endif
381 	return 0;
382 }
383 
384 __initcall(pid_namespaces_init);
385