1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Pid namespaces 4 * 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for comments and help 9 * 10 */ 11 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 26 27 static DEFINE_MUTEX(pid_caches_mutex); 28 static struct kmem_cache *pid_ns_cachep; 29 /* Write once array, filled from the beginning. */ 30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 31 32 /* 33 * creates the kmem cache to allocate pids from. 34 * @level: pid namespace level 35 */ 36 37 static struct kmem_cache *create_pid_cachep(unsigned int level) 38 { 39 /* Level 0 is init_pid_ns.pid_cachep */ 40 struct kmem_cache **pkc = &pid_cache[level - 1]; 41 struct kmem_cache *kc; 42 char name[4 + 10 + 1]; 43 unsigned int len; 44 45 kc = READ_ONCE(*pkc); 46 if (kc) 47 return kc; 48 49 snprintf(name, sizeof(name), "pid_%u", level + 1); 50 len = sizeof(struct pid) + level * sizeof(struct upid); 51 mutex_lock(&pid_caches_mutex); 52 /* Name collision forces to do allocation under mutex. */ 53 if (!*pkc) 54 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0); 55 mutex_unlock(&pid_caches_mutex); 56 /* current can fail, but someone else can succeed. */ 57 return READ_ONCE(*pkc); 58 } 59 60 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 61 { 62 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 63 } 64 65 static void dec_pid_namespaces(struct ucounts *ucounts) 66 { 67 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 68 } 69 70 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 71 struct pid_namespace *parent_pid_ns) 72 { 73 struct pid_namespace *ns; 74 unsigned int level = parent_pid_ns->level + 1; 75 struct ucounts *ucounts; 76 int err; 77 78 err = -EINVAL; 79 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 80 goto out; 81 82 err = -ENOSPC; 83 if (level > MAX_PID_NS_LEVEL) 84 goto out; 85 ucounts = inc_pid_namespaces(user_ns); 86 if (!ucounts) 87 goto out; 88 89 err = -ENOMEM; 90 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 91 if (ns == NULL) 92 goto out_dec; 93 94 idr_init(&ns->idr); 95 96 ns->pid_cachep = create_pid_cachep(level); 97 if (ns->pid_cachep == NULL) 98 goto out_free_idr; 99 100 err = ns_alloc_inum(&ns->ns); 101 if (err) 102 goto out_free_idr; 103 ns->ns.ops = &pidns_operations; 104 105 refcount_set(&ns->ns.count, 1); 106 ns->level = level; 107 ns->parent = get_pid_ns(parent_pid_ns); 108 ns->user_ns = get_user_ns(user_ns); 109 ns->ucounts = ucounts; 110 ns->pid_allocated = PIDNS_ADDING; 111 112 return ns; 113 114 out_free_idr: 115 idr_destroy(&ns->idr); 116 kmem_cache_free(pid_ns_cachep, ns); 117 out_dec: 118 dec_pid_namespaces(ucounts); 119 out: 120 return ERR_PTR(err); 121 } 122 123 static void delayed_free_pidns(struct rcu_head *p) 124 { 125 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 126 127 dec_pid_namespaces(ns->ucounts); 128 put_user_ns(ns->user_ns); 129 130 kmem_cache_free(pid_ns_cachep, ns); 131 } 132 133 static void destroy_pid_namespace(struct pid_namespace *ns) 134 { 135 ns_free_inum(&ns->ns); 136 137 idr_destroy(&ns->idr); 138 call_rcu(&ns->rcu, delayed_free_pidns); 139 } 140 141 struct pid_namespace *copy_pid_ns(unsigned long flags, 142 struct user_namespace *user_ns, struct pid_namespace *old_ns) 143 { 144 if (!(flags & CLONE_NEWPID)) 145 return get_pid_ns(old_ns); 146 if (task_active_pid_ns(current) != old_ns) 147 return ERR_PTR(-EINVAL); 148 return create_pid_namespace(user_ns, old_ns); 149 } 150 151 void put_pid_ns(struct pid_namespace *ns) 152 { 153 struct pid_namespace *parent; 154 155 while (ns != &init_pid_ns) { 156 parent = ns->parent; 157 if (!refcount_dec_and_test(&ns->ns.count)) 158 break; 159 destroy_pid_namespace(ns); 160 ns = parent; 161 } 162 } 163 EXPORT_SYMBOL_GPL(put_pid_ns); 164 165 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 166 { 167 int nr; 168 int rc; 169 struct task_struct *task, *me = current; 170 int init_pids = thread_group_leader(me) ? 1 : 2; 171 struct pid *pid; 172 173 /* Don't allow any more processes into the pid namespace */ 174 disable_pid_allocation(pid_ns); 175 176 /* 177 * Ignore SIGCHLD causing any terminated children to autoreap. 178 * This speeds up the namespace shutdown, plus see the comment 179 * below. 180 */ 181 spin_lock_irq(&me->sighand->siglock); 182 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 183 spin_unlock_irq(&me->sighand->siglock); 184 185 /* 186 * The last thread in the cgroup-init thread group is terminating. 187 * Find remaining pid_ts in the namespace, signal and wait for them 188 * to exit. 189 * 190 * Note: This signals each threads in the namespace - even those that 191 * belong to the same thread group, To avoid this, we would have 192 * to walk the entire tasklist looking a processes in this 193 * namespace, but that could be unnecessarily expensive if the 194 * pid namespace has just a few processes. Or we need to 195 * maintain a tasklist for each pid namespace. 196 * 197 */ 198 rcu_read_lock(); 199 read_lock(&tasklist_lock); 200 nr = 2; 201 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 202 task = pid_task(pid, PIDTYPE_PID); 203 if (task && !__fatal_signal_pending(task)) 204 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 205 } 206 read_unlock(&tasklist_lock); 207 rcu_read_unlock(); 208 209 /* 210 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 211 * kernel_wait4() will also block until our children traced from the 212 * parent namespace are detached and become EXIT_DEAD. 213 */ 214 do { 215 clear_thread_flag(TIF_SIGPENDING); 216 rc = kernel_wait4(-1, NULL, __WALL, NULL); 217 } while (rc != -ECHILD); 218 219 /* 220 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 221 * process whose parents processes are outside of the pid 222 * namespace. Such processes are created with setns()+fork(). 223 * 224 * If those EXIT_ZOMBIE processes are not reaped by their 225 * parents before their parents exit, they will be reparented 226 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 227 * stay valid until they all go away. 228 * 229 * The code relies on the pid_ns->child_reaper ignoring 230 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 231 * autoreaped if reparented. 232 * 233 * Semantically it is also desirable to wait for EXIT_ZOMBIE 234 * processes before allowing the child_reaper to be reaped, as 235 * that gives the invariant that when the init process of a 236 * pid namespace is reaped all of the processes in the pid 237 * namespace are gone. 238 * 239 * Once all of the other tasks are gone from the pid_namespace 240 * free_pid() will awaken this task. 241 */ 242 for (;;) { 243 set_current_state(TASK_INTERRUPTIBLE); 244 if (pid_ns->pid_allocated == init_pids) 245 break; 246 schedule(); 247 } 248 __set_current_state(TASK_RUNNING); 249 250 if (pid_ns->reboot) 251 current->signal->group_exit_code = pid_ns->reboot; 252 253 acct_exit_ns(pid_ns); 254 return; 255 } 256 257 #ifdef CONFIG_CHECKPOINT_RESTORE 258 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 259 void *buffer, size_t *lenp, loff_t *ppos) 260 { 261 struct pid_namespace *pid_ns = task_active_pid_ns(current); 262 struct ctl_table tmp = *table; 263 int ret, next; 264 265 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) 266 return -EPERM; 267 268 /* 269 * Writing directly to ns' last_pid field is OK, since this field 270 * is volatile in a living namespace anyway and a code writing to 271 * it should synchronize its usage with external means. 272 */ 273 274 next = idr_get_cursor(&pid_ns->idr) - 1; 275 276 tmp.data = &next; 277 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 278 if (!ret && write) 279 idr_set_cursor(&pid_ns->idr, next + 1); 280 281 return ret; 282 } 283 284 extern int pid_max; 285 static struct ctl_table pid_ns_ctl_table[] = { 286 { 287 .procname = "ns_last_pid", 288 .maxlen = sizeof(int), 289 .mode = 0666, /* permissions are checked in the handler */ 290 .proc_handler = pid_ns_ctl_handler, 291 .extra1 = SYSCTL_ZERO, 292 .extra2 = &pid_max, 293 }, 294 { } 295 }; 296 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 297 #endif /* CONFIG_CHECKPOINT_RESTORE */ 298 299 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 300 { 301 if (pid_ns == &init_pid_ns) 302 return 0; 303 304 switch (cmd) { 305 case LINUX_REBOOT_CMD_RESTART2: 306 case LINUX_REBOOT_CMD_RESTART: 307 pid_ns->reboot = SIGHUP; 308 break; 309 310 case LINUX_REBOOT_CMD_POWER_OFF: 311 case LINUX_REBOOT_CMD_HALT: 312 pid_ns->reboot = SIGINT; 313 break; 314 default: 315 return -EINVAL; 316 } 317 318 read_lock(&tasklist_lock); 319 send_sig(SIGKILL, pid_ns->child_reaper, 1); 320 read_unlock(&tasklist_lock); 321 322 do_exit(0); 323 324 /* Not reached */ 325 return 0; 326 } 327 328 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 329 { 330 return container_of(ns, struct pid_namespace, ns); 331 } 332 333 static struct ns_common *pidns_get(struct task_struct *task) 334 { 335 struct pid_namespace *ns; 336 337 rcu_read_lock(); 338 ns = task_active_pid_ns(task); 339 if (ns) 340 get_pid_ns(ns); 341 rcu_read_unlock(); 342 343 return ns ? &ns->ns : NULL; 344 } 345 346 static struct ns_common *pidns_for_children_get(struct task_struct *task) 347 { 348 struct pid_namespace *ns = NULL; 349 350 task_lock(task); 351 if (task->nsproxy) { 352 ns = task->nsproxy->pid_ns_for_children; 353 get_pid_ns(ns); 354 } 355 task_unlock(task); 356 357 if (ns) { 358 read_lock(&tasklist_lock); 359 if (!ns->child_reaper) { 360 put_pid_ns(ns); 361 ns = NULL; 362 } 363 read_unlock(&tasklist_lock); 364 } 365 366 return ns ? &ns->ns : NULL; 367 } 368 369 static void pidns_put(struct ns_common *ns) 370 { 371 put_pid_ns(to_pid_ns(ns)); 372 } 373 374 static int pidns_install(struct nsset *nsset, struct ns_common *ns) 375 { 376 struct nsproxy *nsproxy = nsset->nsproxy; 377 struct pid_namespace *active = task_active_pid_ns(current); 378 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 379 380 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 381 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 382 return -EPERM; 383 384 /* 385 * Only allow entering the current active pid namespace 386 * or a child of the current active pid namespace. 387 * 388 * This is required for fork to return a usable pid value and 389 * this maintains the property that processes and their 390 * children can not escape their current pid namespace. 391 */ 392 if (new->level < active->level) 393 return -EINVAL; 394 395 ancestor = new; 396 while (ancestor->level > active->level) 397 ancestor = ancestor->parent; 398 if (ancestor != active) 399 return -EINVAL; 400 401 put_pid_ns(nsproxy->pid_ns_for_children); 402 nsproxy->pid_ns_for_children = get_pid_ns(new); 403 return 0; 404 } 405 406 static struct ns_common *pidns_get_parent(struct ns_common *ns) 407 { 408 struct pid_namespace *active = task_active_pid_ns(current); 409 struct pid_namespace *pid_ns, *p; 410 411 /* See if the parent is in the current namespace */ 412 pid_ns = p = to_pid_ns(ns)->parent; 413 for (;;) { 414 if (!p) 415 return ERR_PTR(-EPERM); 416 if (p == active) 417 break; 418 p = p->parent; 419 } 420 421 return &get_pid_ns(pid_ns)->ns; 422 } 423 424 static struct user_namespace *pidns_owner(struct ns_common *ns) 425 { 426 return to_pid_ns(ns)->user_ns; 427 } 428 429 const struct proc_ns_operations pidns_operations = { 430 .name = "pid", 431 .type = CLONE_NEWPID, 432 .get = pidns_get, 433 .put = pidns_put, 434 .install = pidns_install, 435 .owner = pidns_owner, 436 .get_parent = pidns_get_parent, 437 }; 438 439 const struct proc_ns_operations pidns_for_children_operations = { 440 .name = "pid_for_children", 441 .real_ns_name = "pid", 442 .type = CLONE_NEWPID, 443 .get = pidns_for_children_get, 444 .put = pidns_put, 445 .install = pidns_install, 446 .owner = pidns_owner, 447 .get_parent = pidns_get_parent, 448 }; 449 450 static __init int pid_namespaces_init(void) 451 { 452 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 453 454 #ifdef CONFIG_CHECKPOINT_RESTORE 455 register_sysctl_paths(kern_path, pid_ns_ctl_table); 456 #endif 457 return 0; 458 } 459 460 __initcall(pid_namespaces_init); 461