1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/cred.h> 16 #include <linux/err.h> 17 #include <linux/acct.h> 18 #include <linux/slab.h> 19 #include <linux/proc_ns.h> 20 #include <linux/reboot.h> 21 #include <linux/export.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/signal.h> 24 25 struct pid_cache { 26 int nr_ids; 27 char name[16]; 28 struct kmem_cache *cachep; 29 struct list_head list; 30 }; 31 32 static LIST_HEAD(pid_caches_lh); 33 static DEFINE_MUTEX(pid_caches_mutex); 34 static struct kmem_cache *pid_ns_cachep; 35 36 /* 37 * creates the kmem cache to allocate pids from. 38 * @nr_ids: the number of numerical ids this pid will have to carry 39 */ 40 41 static struct kmem_cache *create_pid_cachep(int nr_ids) 42 { 43 struct pid_cache *pcache; 44 struct kmem_cache *cachep; 45 46 mutex_lock(&pid_caches_mutex); 47 list_for_each_entry(pcache, &pid_caches_lh, list) 48 if (pcache->nr_ids == nr_ids) 49 goto out; 50 51 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 52 if (pcache == NULL) 53 goto err_alloc; 54 55 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 56 cachep = kmem_cache_create(pcache->name, 57 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 58 0, SLAB_HWCACHE_ALIGN, NULL); 59 if (cachep == NULL) 60 goto err_cachep; 61 62 pcache->nr_ids = nr_ids; 63 pcache->cachep = cachep; 64 list_add(&pcache->list, &pid_caches_lh); 65 out: 66 mutex_unlock(&pid_caches_mutex); 67 return pcache->cachep; 68 69 err_cachep: 70 kfree(pcache); 71 err_alloc: 72 mutex_unlock(&pid_caches_mutex); 73 return NULL; 74 } 75 76 static void proc_cleanup_work(struct work_struct *work) 77 { 78 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 79 pid_ns_release_proc(ns); 80 } 81 82 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 83 #define MAX_PID_NS_LEVEL 32 84 85 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 86 { 87 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 88 } 89 90 static void dec_pid_namespaces(struct ucounts *ucounts) 91 { 92 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 93 } 94 95 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 96 struct pid_namespace *parent_pid_ns) 97 { 98 struct pid_namespace *ns; 99 unsigned int level = parent_pid_ns->level + 1; 100 struct ucounts *ucounts; 101 int i; 102 int err; 103 104 err = -ENOSPC; 105 if (level > MAX_PID_NS_LEVEL) 106 goto out; 107 ucounts = inc_pid_namespaces(user_ns); 108 if (!ucounts) 109 goto out; 110 111 err = -ENOMEM; 112 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 113 if (ns == NULL) 114 goto out_dec; 115 116 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 117 if (!ns->pidmap[0].page) 118 goto out_free; 119 120 ns->pid_cachep = create_pid_cachep(level + 1); 121 if (ns->pid_cachep == NULL) 122 goto out_free_map; 123 124 err = ns_alloc_inum(&ns->ns); 125 if (err) 126 goto out_free_map; 127 ns->ns.ops = &pidns_operations; 128 129 kref_init(&ns->kref); 130 ns->level = level; 131 ns->parent = get_pid_ns(parent_pid_ns); 132 ns->user_ns = get_user_ns(user_ns); 133 ns->ucounts = ucounts; 134 ns->nr_hashed = PIDNS_HASH_ADDING; 135 INIT_WORK(&ns->proc_work, proc_cleanup_work); 136 137 set_bit(0, ns->pidmap[0].page); 138 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 139 140 for (i = 1; i < PIDMAP_ENTRIES; i++) 141 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 142 143 return ns; 144 145 out_free_map: 146 kfree(ns->pidmap[0].page); 147 out_free: 148 kmem_cache_free(pid_ns_cachep, ns); 149 out_dec: 150 dec_pid_namespaces(ucounts); 151 out: 152 return ERR_PTR(err); 153 } 154 155 static void delayed_free_pidns(struct rcu_head *p) 156 { 157 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 158 159 dec_pid_namespaces(ns->ucounts); 160 put_user_ns(ns->user_ns); 161 162 kmem_cache_free(pid_ns_cachep, ns); 163 } 164 165 static void destroy_pid_namespace(struct pid_namespace *ns) 166 { 167 int i; 168 169 ns_free_inum(&ns->ns); 170 for (i = 0; i < PIDMAP_ENTRIES; i++) 171 kfree(ns->pidmap[i].page); 172 call_rcu(&ns->rcu, delayed_free_pidns); 173 } 174 175 struct pid_namespace *copy_pid_ns(unsigned long flags, 176 struct user_namespace *user_ns, struct pid_namespace *old_ns) 177 { 178 if (!(flags & CLONE_NEWPID)) 179 return get_pid_ns(old_ns); 180 if (task_active_pid_ns(current) != old_ns) 181 return ERR_PTR(-EINVAL); 182 return create_pid_namespace(user_ns, old_ns); 183 } 184 185 static void free_pid_ns(struct kref *kref) 186 { 187 struct pid_namespace *ns; 188 189 ns = container_of(kref, struct pid_namespace, kref); 190 destroy_pid_namespace(ns); 191 } 192 193 void put_pid_ns(struct pid_namespace *ns) 194 { 195 struct pid_namespace *parent; 196 197 while (ns != &init_pid_ns) { 198 parent = ns->parent; 199 if (!kref_put(&ns->kref, free_pid_ns)) 200 break; 201 ns = parent; 202 } 203 } 204 EXPORT_SYMBOL_GPL(put_pid_ns); 205 206 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 207 { 208 int nr; 209 int rc; 210 struct task_struct *task, *me = current; 211 int init_pids = thread_group_leader(me) ? 1 : 2; 212 213 /* Don't allow any more processes into the pid namespace */ 214 disable_pid_allocation(pid_ns); 215 216 /* 217 * Ignore SIGCHLD causing any terminated children to autoreap. 218 * This speeds up the namespace shutdown, plus see the comment 219 * below. 220 */ 221 spin_lock_irq(&me->sighand->siglock); 222 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 223 spin_unlock_irq(&me->sighand->siglock); 224 225 /* 226 * The last thread in the cgroup-init thread group is terminating. 227 * Find remaining pid_ts in the namespace, signal and wait for them 228 * to exit. 229 * 230 * Note: This signals each threads in the namespace - even those that 231 * belong to the same thread group, To avoid this, we would have 232 * to walk the entire tasklist looking a processes in this 233 * namespace, but that could be unnecessarily expensive if the 234 * pid namespace has just a few processes. Or we need to 235 * maintain a tasklist for each pid namespace. 236 * 237 */ 238 read_lock(&tasklist_lock); 239 nr = next_pidmap(pid_ns, 1); 240 while (nr > 0) { 241 rcu_read_lock(); 242 243 task = pid_task(find_vpid(nr), PIDTYPE_PID); 244 if (task && !__fatal_signal_pending(task)) 245 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 246 247 rcu_read_unlock(); 248 249 nr = next_pidmap(pid_ns, nr); 250 } 251 read_unlock(&tasklist_lock); 252 253 /* 254 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 255 * sys_wait4() will also block until our children traced from the 256 * parent namespace are detached and become EXIT_DEAD. 257 */ 258 do { 259 clear_thread_flag(TIF_SIGPENDING); 260 rc = sys_wait4(-1, NULL, __WALL, NULL); 261 } while (rc != -ECHILD); 262 263 /* 264 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 265 * really care, we could reparent them to the global init. We could 266 * exit and reap ->child_reaper even if it is not the last thread in 267 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), 268 * pid_ns can not go away until proc_kill_sb() drops the reference. 269 * 270 * But this ns can also have other tasks injected by setns()+fork(). 271 * Again, ignoring the user visible semantics we do not really need 272 * to wait until they are all reaped, but they can be reparented to 273 * us and thus we need to ensure that pid->child_reaper stays valid 274 * until they all go away. See free_pid()->wake_up_process(). 275 * 276 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 277 * if reparented. 278 */ 279 for (;;) { 280 set_current_state(TASK_UNINTERRUPTIBLE); 281 if (pid_ns->nr_hashed == init_pids) 282 break; 283 schedule(); 284 } 285 __set_current_state(TASK_RUNNING); 286 287 if (pid_ns->reboot) 288 current->signal->group_exit_code = pid_ns->reboot; 289 290 acct_exit_ns(pid_ns); 291 return; 292 } 293 294 #ifdef CONFIG_CHECKPOINT_RESTORE 295 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 296 void __user *buffer, size_t *lenp, loff_t *ppos) 297 { 298 struct pid_namespace *pid_ns = task_active_pid_ns(current); 299 struct ctl_table tmp = *table; 300 301 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 302 return -EPERM; 303 304 /* 305 * Writing directly to ns' last_pid field is OK, since this field 306 * is volatile in a living namespace anyway and a code writing to 307 * it should synchronize its usage with external means. 308 */ 309 310 tmp.data = &pid_ns->last_pid; 311 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 312 } 313 314 extern int pid_max; 315 static int zero = 0; 316 static struct ctl_table pid_ns_ctl_table[] = { 317 { 318 .procname = "ns_last_pid", 319 .maxlen = sizeof(int), 320 .mode = 0666, /* permissions are checked in the handler */ 321 .proc_handler = pid_ns_ctl_handler, 322 .extra1 = &zero, 323 .extra2 = &pid_max, 324 }, 325 { } 326 }; 327 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 328 #endif /* CONFIG_CHECKPOINT_RESTORE */ 329 330 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 331 { 332 if (pid_ns == &init_pid_ns) 333 return 0; 334 335 switch (cmd) { 336 case LINUX_REBOOT_CMD_RESTART2: 337 case LINUX_REBOOT_CMD_RESTART: 338 pid_ns->reboot = SIGHUP; 339 break; 340 341 case LINUX_REBOOT_CMD_POWER_OFF: 342 case LINUX_REBOOT_CMD_HALT: 343 pid_ns->reboot = SIGINT; 344 break; 345 default: 346 return -EINVAL; 347 } 348 349 read_lock(&tasklist_lock); 350 force_sig(SIGKILL, pid_ns->child_reaper); 351 read_unlock(&tasklist_lock); 352 353 do_exit(0); 354 355 /* Not reached */ 356 return 0; 357 } 358 359 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 360 { 361 return container_of(ns, struct pid_namespace, ns); 362 } 363 364 static struct ns_common *pidns_get(struct task_struct *task) 365 { 366 struct pid_namespace *ns; 367 368 rcu_read_lock(); 369 ns = task_active_pid_ns(task); 370 if (ns) 371 get_pid_ns(ns); 372 rcu_read_unlock(); 373 374 return ns ? &ns->ns : NULL; 375 } 376 377 static void pidns_put(struct ns_common *ns) 378 { 379 put_pid_ns(to_pid_ns(ns)); 380 } 381 382 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 383 { 384 struct pid_namespace *active = task_active_pid_ns(current); 385 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 386 387 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 388 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 389 return -EPERM; 390 391 /* 392 * Only allow entering the current active pid namespace 393 * or a child of the current active pid namespace. 394 * 395 * This is required for fork to return a usable pid value and 396 * this maintains the property that processes and their 397 * children can not escape their current pid namespace. 398 */ 399 if (new->level < active->level) 400 return -EINVAL; 401 402 ancestor = new; 403 while (ancestor->level > active->level) 404 ancestor = ancestor->parent; 405 if (ancestor != active) 406 return -EINVAL; 407 408 put_pid_ns(nsproxy->pid_ns_for_children); 409 nsproxy->pid_ns_for_children = get_pid_ns(new); 410 return 0; 411 } 412 413 static struct ns_common *pidns_get_parent(struct ns_common *ns) 414 { 415 struct pid_namespace *active = task_active_pid_ns(current); 416 struct pid_namespace *pid_ns, *p; 417 418 /* See if the parent is in the current namespace */ 419 pid_ns = p = to_pid_ns(ns)->parent; 420 for (;;) { 421 if (!p) 422 return ERR_PTR(-EPERM); 423 if (p == active) 424 break; 425 p = p->parent; 426 } 427 428 return &get_pid_ns(pid_ns)->ns; 429 } 430 431 static struct user_namespace *pidns_owner(struct ns_common *ns) 432 { 433 return to_pid_ns(ns)->user_ns; 434 } 435 436 const struct proc_ns_operations pidns_operations = { 437 .name = "pid", 438 .type = CLONE_NEWPID, 439 .get = pidns_get, 440 .put = pidns_put, 441 .install = pidns_install, 442 .owner = pidns_owner, 443 .get_parent = pidns_get_parent, 444 }; 445 446 static __init int pid_namespaces_init(void) 447 { 448 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 449 450 #ifdef CONFIG_CHECKPOINT_RESTORE 451 register_sysctl_paths(kern_path, pid_ns_ctl_table); 452 #endif 453 return 0; 454 } 455 456 __initcall(pid_namespaces_init); 457