xref: /linux/kernel/pid_namespace.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_ns.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21 
22 struct pid_cache {
23 	int nr_ids;
24 	char name[16];
25 	struct kmem_cache *cachep;
26 	struct list_head list;
27 };
28 
29 static LIST_HEAD(pid_caches_lh);
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
32 
33 /*
34  * creates the kmem cache to allocate pids from.
35  * @nr_ids: the number of numerical ids this pid will have to carry
36  */
37 
38 static struct kmem_cache *create_pid_cachep(int nr_ids)
39 {
40 	struct pid_cache *pcache;
41 	struct kmem_cache *cachep;
42 
43 	mutex_lock(&pid_caches_mutex);
44 	list_for_each_entry(pcache, &pid_caches_lh, list)
45 		if (pcache->nr_ids == nr_ids)
46 			goto out;
47 
48 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 	if (pcache == NULL)
50 		goto err_alloc;
51 
52 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 	cachep = kmem_cache_create(pcache->name,
54 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 			0, SLAB_HWCACHE_ALIGN, NULL);
56 	if (cachep == NULL)
57 		goto err_cachep;
58 
59 	pcache->nr_ids = nr_ids;
60 	pcache->cachep = cachep;
61 	list_add(&pcache->list, &pid_caches_lh);
62 out:
63 	mutex_unlock(&pid_caches_mutex);
64 	return pcache->cachep;
65 
66 err_cachep:
67 	kfree(pcache);
68 err_alloc:
69 	mutex_unlock(&pid_caches_mutex);
70 	return NULL;
71 }
72 
73 static void proc_cleanup_work(struct work_struct *work)
74 {
75 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 	pid_ns_release_proc(ns);
77 }
78 
79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80 #define MAX_PID_NS_LEVEL 32
81 
82 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
83 	struct pid_namespace *parent_pid_ns)
84 {
85 	struct pid_namespace *ns;
86 	unsigned int level = parent_pid_ns->level + 1;
87 	int i;
88 	int err;
89 
90 	if (level > MAX_PID_NS_LEVEL) {
91 		err = -EINVAL;
92 		goto out;
93 	}
94 
95 	err = -ENOMEM;
96 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
97 	if (ns == NULL)
98 		goto out;
99 
100 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
101 	if (!ns->pidmap[0].page)
102 		goto out_free;
103 
104 	ns->pid_cachep = create_pid_cachep(level + 1);
105 	if (ns->pid_cachep == NULL)
106 		goto out_free_map;
107 
108 	err = proc_alloc_inum(&ns->proc_inum);
109 	if (err)
110 		goto out_free_map;
111 
112 	kref_init(&ns->kref);
113 	ns->level = level;
114 	ns->parent = get_pid_ns(parent_pid_ns);
115 	ns->user_ns = get_user_ns(user_ns);
116 	ns->nr_hashed = PIDNS_HASH_ADDING;
117 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
118 
119 	set_bit(0, ns->pidmap[0].page);
120 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
121 
122 	for (i = 1; i < PIDMAP_ENTRIES; i++)
123 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
124 
125 	return ns;
126 
127 out_free_map:
128 	kfree(ns->pidmap[0].page);
129 out_free:
130 	kmem_cache_free(pid_ns_cachep, ns);
131 out:
132 	return ERR_PTR(err);
133 }
134 
135 static void delayed_free_pidns(struct rcu_head *p)
136 {
137 	kmem_cache_free(pid_ns_cachep,
138 			container_of(p, struct pid_namespace, rcu));
139 }
140 
141 static void destroy_pid_namespace(struct pid_namespace *ns)
142 {
143 	int i;
144 
145 	proc_free_inum(ns->proc_inum);
146 	for (i = 0; i < PIDMAP_ENTRIES; i++)
147 		kfree(ns->pidmap[i].page);
148 	put_user_ns(ns->user_ns);
149 	call_rcu(&ns->rcu, delayed_free_pidns);
150 }
151 
152 struct pid_namespace *copy_pid_ns(unsigned long flags,
153 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
154 {
155 	if (!(flags & CLONE_NEWPID))
156 		return get_pid_ns(old_ns);
157 	if (task_active_pid_ns(current) != old_ns)
158 		return ERR_PTR(-EINVAL);
159 	return create_pid_namespace(user_ns, old_ns);
160 }
161 
162 static void free_pid_ns(struct kref *kref)
163 {
164 	struct pid_namespace *ns;
165 
166 	ns = container_of(kref, struct pid_namespace, kref);
167 	destroy_pid_namespace(ns);
168 }
169 
170 void put_pid_ns(struct pid_namespace *ns)
171 {
172 	struct pid_namespace *parent;
173 
174 	while (ns != &init_pid_ns) {
175 		parent = ns->parent;
176 		if (!kref_put(&ns->kref, free_pid_ns))
177 			break;
178 		ns = parent;
179 	}
180 }
181 EXPORT_SYMBOL_GPL(put_pid_ns);
182 
183 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
184 {
185 	int nr;
186 	int rc;
187 	struct task_struct *task, *me = current;
188 	int init_pids = thread_group_leader(me) ? 1 : 2;
189 
190 	/* Don't allow any more processes into the pid namespace */
191 	disable_pid_allocation(pid_ns);
192 
193 	/*
194 	 * Ignore SIGCHLD causing any terminated children to autoreap.
195 	 * This speeds up the namespace shutdown, plus see the comment
196 	 * below.
197 	 */
198 	spin_lock_irq(&me->sighand->siglock);
199 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
200 	spin_unlock_irq(&me->sighand->siglock);
201 
202 	/*
203 	 * The last thread in the cgroup-init thread group is terminating.
204 	 * Find remaining pid_ts in the namespace, signal and wait for them
205 	 * to exit.
206 	 *
207 	 * Note:  This signals each threads in the namespace - even those that
208 	 * 	  belong to the same thread group, To avoid this, we would have
209 	 * 	  to walk the entire tasklist looking a processes in this
210 	 * 	  namespace, but that could be unnecessarily expensive if the
211 	 * 	  pid namespace has just a few processes. Or we need to
212 	 * 	  maintain a tasklist for each pid namespace.
213 	 *
214 	 */
215 	read_lock(&tasklist_lock);
216 	nr = next_pidmap(pid_ns, 1);
217 	while (nr > 0) {
218 		rcu_read_lock();
219 
220 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
221 		if (task && !__fatal_signal_pending(task))
222 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
223 
224 		rcu_read_unlock();
225 
226 		nr = next_pidmap(pid_ns, nr);
227 	}
228 	read_unlock(&tasklist_lock);
229 
230 	/*
231 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
232 	 * sys_wait4() will also block until our children traced from the
233 	 * parent namespace are detached and become EXIT_DEAD.
234 	 */
235 	do {
236 		clear_thread_flag(TIF_SIGPENDING);
237 		rc = sys_wait4(-1, NULL, __WALL, NULL);
238 	} while (rc != -ECHILD);
239 
240 	/*
241 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
242 	 * really care, we could reparent them to the global init. We could
243 	 * exit and reap ->child_reaper even if it is not the last thread in
244 	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
245 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
246 	 *
247 	 * But this ns can also have other tasks injected by setns()+fork().
248 	 * Again, ignoring the user visible semantics we do not really need
249 	 * to wait until they are all reaped, but they can be reparented to
250 	 * us and thus we need to ensure that pid->child_reaper stays valid
251 	 * until they all go away. See free_pid()->wake_up_process().
252 	 *
253 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
254 	 * if reparented.
255 	 */
256 	for (;;) {
257 		set_current_state(TASK_UNINTERRUPTIBLE);
258 		if (pid_ns->nr_hashed == init_pids)
259 			break;
260 		schedule();
261 	}
262 	__set_current_state(TASK_RUNNING);
263 
264 	if (pid_ns->reboot)
265 		current->signal->group_exit_code = pid_ns->reboot;
266 
267 	acct_exit_ns(pid_ns);
268 	return;
269 }
270 
271 #ifdef CONFIG_CHECKPOINT_RESTORE
272 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
273 		void __user *buffer, size_t *lenp, loff_t *ppos)
274 {
275 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
276 	struct ctl_table tmp = *table;
277 
278 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
279 		return -EPERM;
280 
281 	/*
282 	 * Writing directly to ns' last_pid field is OK, since this field
283 	 * is volatile in a living namespace anyway and a code writing to
284 	 * it should synchronize its usage with external means.
285 	 */
286 
287 	tmp.data = &pid_ns->last_pid;
288 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
289 }
290 
291 extern int pid_max;
292 static int zero = 0;
293 static struct ctl_table pid_ns_ctl_table[] = {
294 	{
295 		.procname = "ns_last_pid",
296 		.maxlen = sizeof(int),
297 		.mode = 0666, /* permissions are checked in the handler */
298 		.proc_handler = pid_ns_ctl_handler,
299 		.extra1 = &zero,
300 		.extra2 = &pid_max,
301 	},
302 	{ }
303 };
304 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
305 #endif	/* CONFIG_CHECKPOINT_RESTORE */
306 
307 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
308 {
309 	if (pid_ns == &init_pid_ns)
310 		return 0;
311 
312 	switch (cmd) {
313 	case LINUX_REBOOT_CMD_RESTART2:
314 	case LINUX_REBOOT_CMD_RESTART:
315 		pid_ns->reboot = SIGHUP;
316 		break;
317 
318 	case LINUX_REBOOT_CMD_POWER_OFF:
319 	case LINUX_REBOOT_CMD_HALT:
320 		pid_ns->reboot = SIGINT;
321 		break;
322 	default:
323 		return -EINVAL;
324 	}
325 
326 	read_lock(&tasklist_lock);
327 	force_sig(SIGKILL, pid_ns->child_reaper);
328 	read_unlock(&tasklist_lock);
329 
330 	do_exit(0);
331 
332 	/* Not reached */
333 	return 0;
334 }
335 
336 static void *pidns_get(struct task_struct *task)
337 {
338 	struct pid_namespace *ns;
339 
340 	rcu_read_lock();
341 	ns = task_active_pid_ns(task);
342 	if (ns)
343 		get_pid_ns(ns);
344 	rcu_read_unlock();
345 
346 	return ns;
347 }
348 
349 static void pidns_put(void *ns)
350 {
351 	put_pid_ns(ns);
352 }
353 
354 static int pidns_install(struct nsproxy *nsproxy, void *ns)
355 {
356 	struct pid_namespace *active = task_active_pid_ns(current);
357 	struct pid_namespace *ancestor, *new = ns;
358 
359 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
360 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
361 		return -EPERM;
362 
363 	/*
364 	 * Only allow entering the current active pid namespace
365 	 * or a child of the current active pid namespace.
366 	 *
367 	 * This is required for fork to return a usable pid value and
368 	 * this maintains the property that processes and their
369 	 * children can not escape their current pid namespace.
370 	 */
371 	if (new->level < active->level)
372 		return -EINVAL;
373 
374 	ancestor = new;
375 	while (ancestor->level > active->level)
376 		ancestor = ancestor->parent;
377 	if (ancestor != active)
378 		return -EINVAL;
379 
380 	put_pid_ns(nsproxy->pid_ns_for_children);
381 	nsproxy->pid_ns_for_children = get_pid_ns(new);
382 	return 0;
383 }
384 
385 static unsigned int pidns_inum(void *ns)
386 {
387 	struct pid_namespace *pid_ns = ns;
388 	return pid_ns->proc_inum;
389 }
390 
391 const struct proc_ns_operations pidns_operations = {
392 	.name		= "pid",
393 	.type		= CLONE_NEWPID,
394 	.get		= pidns_get,
395 	.put		= pidns_put,
396 	.install	= pidns_install,
397 	.inum		= pidns_inum,
398 };
399 
400 static __init int pid_namespaces_init(void)
401 {
402 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
403 
404 #ifdef CONFIG_CHECKPOINT_RESTORE
405 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
406 #endif
407 	return 0;
408 }
409 
410 __initcall(pid_namespaces_init);
411