1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/err.h> 16 #include <linux/acct.h> 17 #include <linux/slab.h> 18 #include <linux/proc_ns.h> 19 #include <linux/reboot.h> 20 #include <linux/export.h> 21 22 struct pid_cache { 23 int nr_ids; 24 char name[16]; 25 struct kmem_cache *cachep; 26 struct list_head list; 27 }; 28 29 static LIST_HEAD(pid_caches_lh); 30 static DEFINE_MUTEX(pid_caches_mutex); 31 static struct kmem_cache *pid_ns_cachep; 32 33 /* 34 * creates the kmem cache to allocate pids from. 35 * @nr_ids: the number of numerical ids this pid will have to carry 36 */ 37 38 static struct kmem_cache *create_pid_cachep(int nr_ids) 39 { 40 struct pid_cache *pcache; 41 struct kmem_cache *cachep; 42 43 mutex_lock(&pid_caches_mutex); 44 list_for_each_entry(pcache, &pid_caches_lh, list) 45 if (pcache->nr_ids == nr_ids) 46 goto out; 47 48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 49 if (pcache == NULL) 50 goto err_alloc; 51 52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 53 cachep = kmem_cache_create(pcache->name, 54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 55 0, SLAB_HWCACHE_ALIGN, NULL); 56 if (cachep == NULL) 57 goto err_cachep; 58 59 pcache->nr_ids = nr_ids; 60 pcache->cachep = cachep; 61 list_add(&pcache->list, &pid_caches_lh); 62 out: 63 mutex_unlock(&pid_caches_mutex); 64 return pcache->cachep; 65 66 err_cachep: 67 kfree(pcache); 68 err_alloc: 69 mutex_unlock(&pid_caches_mutex); 70 return NULL; 71 } 72 73 static void proc_cleanup_work(struct work_struct *work) 74 { 75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 76 pid_ns_release_proc(ns); 77 } 78 79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 80 #define MAX_PID_NS_LEVEL 32 81 82 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 83 struct pid_namespace *parent_pid_ns) 84 { 85 struct pid_namespace *ns; 86 unsigned int level = parent_pid_ns->level + 1; 87 int i; 88 int err; 89 90 if (level > MAX_PID_NS_LEVEL) { 91 err = -EINVAL; 92 goto out; 93 } 94 95 err = -ENOMEM; 96 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 97 if (ns == NULL) 98 goto out; 99 100 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 101 if (!ns->pidmap[0].page) 102 goto out_free; 103 104 ns->pid_cachep = create_pid_cachep(level + 1); 105 if (ns->pid_cachep == NULL) 106 goto out_free_map; 107 108 err = proc_alloc_inum(&ns->proc_inum); 109 if (err) 110 goto out_free_map; 111 112 kref_init(&ns->kref); 113 ns->level = level; 114 ns->parent = get_pid_ns(parent_pid_ns); 115 ns->user_ns = get_user_ns(user_ns); 116 ns->nr_hashed = PIDNS_HASH_ADDING; 117 INIT_WORK(&ns->proc_work, proc_cleanup_work); 118 119 set_bit(0, ns->pidmap[0].page); 120 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 121 122 for (i = 1; i < PIDMAP_ENTRIES; i++) 123 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 124 125 return ns; 126 127 out_free_map: 128 kfree(ns->pidmap[0].page); 129 out_free: 130 kmem_cache_free(pid_ns_cachep, ns); 131 out: 132 return ERR_PTR(err); 133 } 134 135 static void delayed_free_pidns(struct rcu_head *p) 136 { 137 kmem_cache_free(pid_ns_cachep, 138 container_of(p, struct pid_namespace, rcu)); 139 } 140 141 static void destroy_pid_namespace(struct pid_namespace *ns) 142 { 143 int i; 144 145 proc_free_inum(ns->proc_inum); 146 for (i = 0; i < PIDMAP_ENTRIES; i++) 147 kfree(ns->pidmap[i].page); 148 put_user_ns(ns->user_ns); 149 call_rcu(&ns->rcu, delayed_free_pidns); 150 } 151 152 struct pid_namespace *copy_pid_ns(unsigned long flags, 153 struct user_namespace *user_ns, struct pid_namespace *old_ns) 154 { 155 if (!(flags & CLONE_NEWPID)) 156 return get_pid_ns(old_ns); 157 if (task_active_pid_ns(current) != old_ns) 158 return ERR_PTR(-EINVAL); 159 return create_pid_namespace(user_ns, old_ns); 160 } 161 162 static void free_pid_ns(struct kref *kref) 163 { 164 struct pid_namespace *ns; 165 166 ns = container_of(kref, struct pid_namespace, kref); 167 destroy_pid_namespace(ns); 168 } 169 170 void put_pid_ns(struct pid_namespace *ns) 171 { 172 struct pid_namespace *parent; 173 174 while (ns != &init_pid_ns) { 175 parent = ns->parent; 176 if (!kref_put(&ns->kref, free_pid_ns)) 177 break; 178 ns = parent; 179 } 180 } 181 EXPORT_SYMBOL_GPL(put_pid_ns); 182 183 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 184 { 185 int nr; 186 int rc; 187 struct task_struct *task, *me = current; 188 int init_pids = thread_group_leader(me) ? 1 : 2; 189 190 /* Don't allow any more processes into the pid namespace */ 191 disable_pid_allocation(pid_ns); 192 193 /* 194 * Ignore SIGCHLD causing any terminated children to autoreap. 195 * This speeds up the namespace shutdown, plus see the comment 196 * below. 197 */ 198 spin_lock_irq(&me->sighand->siglock); 199 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 200 spin_unlock_irq(&me->sighand->siglock); 201 202 /* 203 * The last thread in the cgroup-init thread group is terminating. 204 * Find remaining pid_ts in the namespace, signal and wait for them 205 * to exit. 206 * 207 * Note: This signals each threads in the namespace - even those that 208 * belong to the same thread group, To avoid this, we would have 209 * to walk the entire tasklist looking a processes in this 210 * namespace, but that could be unnecessarily expensive if the 211 * pid namespace has just a few processes. Or we need to 212 * maintain a tasklist for each pid namespace. 213 * 214 */ 215 read_lock(&tasklist_lock); 216 nr = next_pidmap(pid_ns, 1); 217 while (nr > 0) { 218 rcu_read_lock(); 219 220 task = pid_task(find_vpid(nr), PIDTYPE_PID); 221 if (task && !__fatal_signal_pending(task)) 222 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 223 224 rcu_read_unlock(); 225 226 nr = next_pidmap(pid_ns, nr); 227 } 228 read_unlock(&tasklist_lock); 229 230 /* 231 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 232 * sys_wait4() will also block until our children traced from the 233 * parent namespace are detached and become EXIT_DEAD. 234 */ 235 do { 236 clear_thread_flag(TIF_SIGPENDING); 237 rc = sys_wait4(-1, NULL, __WALL, NULL); 238 } while (rc != -ECHILD); 239 240 /* 241 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 242 * really care, we could reparent them to the global init. We could 243 * exit and reap ->child_reaper even if it is not the last thread in 244 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), 245 * pid_ns can not go away until proc_kill_sb() drops the reference. 246 * 247 * But this ns can also have other tasks injected by setns()+fork(). 248 * Again, ignoring the user visible semantics we do not really need 249 * to wait until they are all reaped, but they can be reparented to 250 * us and thus we need to ensure that pid->child_reaper stays valid 251 * until they all go away. See free_pid()->wake_up_process(). 252 * 253 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 254 * if reparented. 255 */ 256 for (;;) { 257 set_current_state(TASK_UNINTERRUPTIBLE); 258 if (pid_ns->nr_hashed == init_pids) 259 break; 260 schedule(); 261 } 262 __set_current_state(TASK_RUNNING); 263 264 if (pid_ns->reboot) 265 current->signal->group_exit_code = pid_ns->reboot; 266 267 acct_exit_ns(pid_ns); 268 return; 269 } 270 271 #ifdef CONFIG_CHECKPOINT_RESTORE 272 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 273 void __user *buffer, size_t *lenp, loff_t *ppos) 274 { 275 struct pid_namespace *pid_ns = task_active_pid_ns(current); 276 struct ctl_table tmp = *table; 277 278 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 279 return -EPERM; 280 281 /* 282 * Writing directly to ns' last_pid field is OK, since this field 283 * is volatile in a living namespace anyway and a code writing to 284 * it should synchronize its usage with external means. 285 */ 286 287 tmp.data = &pid_ns->last_pid; 288 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 289 } 290 291 extern int pid_max; 292 static int zero = 0; 293 static struct ctl_table pid_ns_ctl_table[] = { 294 { 295 .procname = "ns_last_pid", 296 .maxlen = sizeof(int), 297 .mode = 0666, /* permissions are checked in the handler */ 298 .proc_handler = pid_ns_ctl_handler, 299 .extra1 = &zero, 300 .extra2 = &pid_max, 301 }, 302 { } 303 }; 304 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 305 #endif /* CONFIG_CHECKPOINT_RESTORE */ 306 307 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 308 { 309 if (pid_ns == &init_pid_ns) 310 return 0; 311 312 switch (cmd) { 313 case LINUX_REBOOT_CMD_RESTART2: 314 case LINUX_REBOOT_CMD_RESTART: 315 pid_ns->reboot = SIGHUP; 316 break; 317 318 case LINUX_REBOOT_CMD_POWER_OFF: 319 case LINUX_REBOOT_CMD_HALT: 320 pid_ns->reboot = SIGINT; 321 break; 322 default: 323 return -EINVAL; 324 } 325 326 read_lock(&tasklist_lock); 327 force_sig(SIGKILL, pid_ns->child_reaper); 328 read_unlock(&tasklist_lock); 329 330 do_exit(0); 331 332 /* Not reached */ 333 return 0; 334 } 335 336 static void *pidns_get(struct task_struct *task) 337 { 338 struct pid_namespace *ns; 339 340 rcu_read_lock(); 341 ns = task_active_pid_ns(task); 342 if (ns) 343 get_pid_ns(ns); 344 rcu_read_unlock(); 345 346 return ns; 347 } 348 349 static void pidns_put(void *ns) 350 { 351 put_pid_ns(ns); 352 } 353 354 static int pidns_install(struct nsproxy *nsproxy, void *ns) 355 { 356 struct pid_namespace *active = task_active_pid_ns(current); 357 struct pid_namespace *ancestor, *new = ns; 358 359 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 360 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 361 return -EPERM; 362 363 /* 364 * Only allow entering the current active pid namespace 365 * or a child of the current active pid namespace. 366 * 367 * This is required for fork to return a usable pid value and 368 * this maintains the property that processes and their 369 * children can not escape their current pid namespace. 370 */ 371 if (new->level < active->level) 372 return -EINVAL; 373 374 ancestor = new; 375 while (ancestor->level > active->level) 376 ancestor = ancestor->parent; 377 if (ancestor != active) 378 return -EINVAL; 379 380 put_pid_ns(nsproxy->pid_ns_for_children); 381 nsproxy->pid_ns_for_children = get_pid_ns(new); 382 return 0; 383 } 384 385 static unsigned int pidns_inum(void *ns) 386 { 387 struct pid_namespace *pid_ns = ns; 388 return pid_ns->proc_inum; 389 } 390 391 const struct proc_ns_operations pidns_operations = { 392 .name = "pid", 393 .type = CLONE_NEWPID, 394 .get = pidns_get, 395 .put = pidns_put, 396 .install = pidns_install, 397 .inum = pidns_inum, 398 }; 399 400 static __init int pid_namespaces_init(void) 401 { 402 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 403 404 #ifdef CONFIG_CHECKPOINT_RESTORE 405 register_sysctl_paths(kern_path, pid_ns_ctl_table); 406 #endif 407 return 0; 408 } 409 410 __initcall(pid_namespaces_init); 411