xref: /linux/kernel/pid_namespace.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/syscalls.h>
14 #include <linux/err.h>
15 #include <linux/acct.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/reboot.h>
19 #include <linux/export.h>
20 
21 #define BITS_PER_PAGE		(PAGE_SIZE*8)
22 
23 struct pid_cache {
24 	int nr_ids;
25 	char name[16];
26 	struct kmem_cache *cachep;
27 	struct list_head list;
28 };
29 
30 static LIST_HEAD(pid_caches_lh);
31 static DEFINE_MUTEX(pid_caches_mutex);
32 static struct kmem_cache *pid_ns_cachep;
33 
34 /*
35  * creates the kmem cache to allocate pids from.
36  * @nr_ids: the number of numerical ids this pid will have to carry
37  */
38 
39 static struct kmem_cache *create_pid_cachep(int nr_ids)
40 {
41 	struct pid_cache *pcache;
42 	struct kmem_cache *cachep;
43 
44 	mutex_lock(&pid_caches_mutex);
45 	list_for_each_entry(pcache, &pid_caches_lh, list)
46 		if (pcache->nr_ids == nr_ids)
47 			goto out;
48 
49 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
50 	if (pcache == NULL)
51 		goto err_alloc;
52 
53 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
54 	cachep = kmem_cache_create(pcache->name,
55 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
56 			0, SLAB_HWCACHE_ALIGN, NULL);
57 	if (cachep == NULL)
58 		goto err_cachep;
59 
60 	pcache->nr_ids = nr_ids;
61 	pcache->cachep = cachep;
62 	list_add(&pcache->list, &pid_caches_lh);
63 out:
64 	mutex_unlock(&pid_caches_mutex);
65 	return pcache->cachep;
66 
67 err_cachep:
68 	kfree(pcache);
69 err_alloc:
70 	mutex_unlock(&pid_caches_mutex);
71 	return NULL;
72 }
73 
74 static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
75 {
76 	struct pid_namespace *ns;
77 	unsigned int level = parent_pid_ns->level + 1;
78 	int i, err = -ENOMEM;
79 
80 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
81 	if (ns == NULL)
82 		goto out;
83 
84 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
85 	if (!ns->pidmap[0].page)
86 		goto out_free;
87 
88 	ns->pid_cachep = create_pid_cachep(level + 1);
89 	if (ns->pid_cachep == NULL)
90 		goto out_free_map;
91 
92 	kref_init(&ns->kref);
93 	ns->level = level;
94 	ns->parent = get_pid_ns(parent_pid_ns);
95 
96 	set_bit(0, ns->pidmap[0].page);
97 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
98 
99 	for (i = 1; i < PIDMAP_ENTRIES; i++)
100 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
101 
102 	err = pid_ns_prepare_proc(ns);
103 	if (err)
104 		goto out_put_parent_pid_ns;
105 
106 	return ns;
107 
108 out_put_parent_pid_ns:
109 	put_pid_ns(parent_pid_ns);
110 out_free_map:
111 	kfree(ns->pidmap[0].page);
112 out_free:
113 	kmem_cache_free(pid_ns_cachep, ns);
114 out:
115 	return ERR_PTR(err);
116 }
117 
118 static void destroy_pid_namespace(struct pid_namespace *ns)
119 {
120 	int i;
121 
122 	for (i = 0; i < PIDMAP_ENTRIES; i++)
123 		kfree(ns->pidmap[i].page);
124 	kmem_cache_free(pid_ns_cachep, ns);
125 }
126 
127 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
128 {
129 	if (!(flags & CLONE_NEWPID))
130 		return get_pid_ns(old_ns);
131 	if (flags & (CLONE_THREAD|CLONE_PARENT))
132 		return ERR_PTR(-EINVAL);
133 	return create_pid_namespace(old_ns);
134 }
135 
136 void free_pid_ns(struct kref *kref)
137 {
138 	struct pid_namespace *ns, *parent;
139 
140 	ns = container_of(kref, struct pid_namespace, kref);
141 
142 	parent = ns->parent;
143 	destroy_pid_namespace(ns);
144 
145 	if (parent != NULL)
146 		put_pid_ns(parent);
147 }
148 EXPORT_SYMBOL_GPL(free_pid_ns);
149 
150 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
151 {
152 	int nr;
153 	int rc;
154 	struct task_struct *task, *me = current;
155 
156 	/* Ignore SIGCHLD causing any terminated children to autoreap */
157 	spin_lock_irq(&me->sighand->siglock);
158 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
159 	spin_unlock_irq(&me->sighand->siglock);
160 
161 	/*
162 	 * The last thread in the cgroup-init thread group is terminating.
163 	 * Find remaining pid_ts in the namespace, signal and wait for them
164 	 * to exit.
165 	 *
166 	 * Note:  This signals each threads in the namespace - even those that
167 	 * 	  belong to the same thread group, To avoid this, we would have
168 	 * 	  to walk the entire tasklist looking a processes in this
169 	 * 	  namespace, but that could be unnecessarily expensive if the
170 	 * 	  pid namespace has just a few processes. Or we need to
171 	 * 	  maintain a tasklist for each pid namespace.
172 	 *
173 	 */
174 	read_lock(&tasklist_lock);
175 	nr = next_pidmap(pid_ns, 1);
176 	while (nr > 0) {
177 		rcu_read_lock();
178 
179 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
180 		if (task && !__fatal_signal_pending(task))
181 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
182 
183 		rcu_read_unlock();
184 
185 		nr = next_pidmap(pid_ns, nr);
186 	}
187 	read_unlock(&tasklist_lock);
188 
189 	/* Firstly reap the EXIT_ZOMBIE children we may have. */
190 	do {
191 		clear_thread_flag(TIF_SIGPENDING);
192 		rc = sys_wait4(-1, NULL, __WALL, NULL);
193 	} while (rc != -ECHILD);
194 
195 	/*
196 	 * sys_wait4() above can't reap the TASK_DEAD children.
197 	 * Make sure they all go away, see __unhash_process().
198 	 */
199 	for (;;) {
200 		bool need_wait = false;
201 
202 		read_lock(&tasklist_lock);
203 		if (!list_empty(&current->children)) {
204 			__set_current_state(TASK_UNINTERRUPTIBLE);
205 			need_wait = true;
206 		}
207 		read_unlock(&tasklist_lock);
208 
209 		if (!need_wait)
210 			break;
211 		schedule();
212 	}
213 
214 	if (pid_ns->reboot)
215 		current->signal->group_exit_code = pid_ns->reboot;
216 
217 	acct_exit_ns(pid_ns);
218 	return;
219 }
220 
221 #ifdef CONFIG_CHECKPOINT_RESTORE
222 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
223 		void __user *buffer, size_t *lenp, loff_t *ppos)
224 {
225 	struct ctl_table tmp = *table;
226 
227 	if (write && !capable(CAP_SYS_ADMIN))
228 		return -EPERM;
229 
230 	/*
231 	 * Writing directly to ns' last_pid field is OK, since this field
232 	 * is volatile in a living namespace anyway and a code writing to
233 	 * it should synchronize its usage with external means.
234 	 */
235 
236 	tmp.data = &current->nsproxy->pid_ns->last_pid;
237 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
238 }
239 
240 extern int pid_max;
241 static int zero = 0;
242 static struct ctl_table pid_ns_ctl_table[] = {
243 	{
244 		.procname = "ns_last_pid",
245 		.maxlen = sizeof(int),
246 		.mode = 0666, /* permissions are checked in the handler */
247 		.proc_handler = pid_ns_ctl_handler,
248 		.extra1 = &zero,
249 		.extra2 = &pid_max,
250 	},
251 	{ }
252 };
253 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
254 #endif	/* CONFIG_CHECKPOINT_RESTORE */
255 
256 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
257 {
258 	if (pid_ns == &init_pid_ns)
259 		return 0;
260 
261 	switch (cmd) {
262 	case LINUX_REBOOT_CMD_RESTART2:
263 	case LINUX_REBOOT_CMD_RESTART:
264 		pid_ns->reboot = SIGHUP;
265 		break;
266 
267 	case LINUX_REBOOT_CMD_POWER_OFF:
268 	case LINUX_REBOOT_CMD_HALT:
269 		pid_ns->reboot = SIGINT;
270 		break;
271 	default:
272 		return -EINVAL;
273 	}
274 
275 	read_lock(&tasklist_lock);
276 	force_sig(SIGKILL, pid_ns->child_reaper);
277 	read_unlock(&tasklist_lock);
278 
279 	do_exit(0);
280 
281 	/* Not reached */
282 	return 0;
283 }
284 
285 static __init int pid_namespaces_init(void)
286 {
287 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
288 
289 #ifdef CONFIG_CHECKPOINT_RESTORE
290 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
291 #endif
292 	return 0;
293 }
294 
295 __initcall(pid_namespaces_init);
296