1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Pid namespaces 4 * 5 * Authors: 6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 8 * Many thanks to Oleg Nesterov for comments and help 9 * 10 */ 11 12 #include <linux/pid.h> 13 #include <linux/pid_namespace.h> 14 #include <linux/user_namespace.h> 15 #include <linux/syscalls.h> 16 #include <linux/cred.h> 17 #include <linux/err.h> 18 #include <linux/acct.h> 19 #include <linux/slab.h> 20 #include <linux/proc_ns.h> 21 #include <linux/reboot.h> 22 #include <linux/export.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/signal.h> 25 #include <linux/idr.h> 26 #include <linux/nstree.h> 27 #include <uapi/linux/wait.h> 28 #include "pid_sysctl.h" 29 30 static DEFINE_MUTEX(pid_caches_mutex); 31 static struct kmem_cache *pid_ns_cachep; 32 /* Write once array, filled from the beginning. */ 33 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL]; 34 35 /* 36 * creates the kmem cache to allocate pids from. 37 * @level: pid namespace level 38 */ 39 40 static struct kmem_cache *create_pid_cachep(unsigned int level) 41 { 42 /* Level 0 is init_pid_ns.pid_cachep */ 43 struct kmem_cache **pkc = &pid_cache[level - 1]; 44 struct kmem_cache *kc; 45 char name[4 + 10 + 1]; 46 unsigned int len; 47 48 kc = READ_ONCE(*pkc); 49 if (kc) 50 return kc; 51 52 snprintf(name, sizeof(name), "pid_%u", level + 1); 53 len = struct_size_t(struct pid, numbers, level + 1); 54 mutex_lock(&pid_caches_mutex); 55 /* Name collision forces to do allocation under mutex. */ 56 if (!*pkc) 57 *pkc = kmem_cache_create(name, len, 0, 58 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 59 mutex_unlock(&pid_caches_mutex); 60 /* current can fail, but someone else can succeed. */ 61 return READ_ONCE(*pkc); 62 } 63 64 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 65 { 66 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 67 } 68 69 static void dec_pid_namespaces(struct ucounts *ucounts) 70 { 71 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 72 } 73 74 static void destroy_pid_namespace_work(struct work_struct *work); 75 76 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 77 struct pid_namespace *parent_pid_ns) 78 { 79 struct pid_namespace *ns; 80 unsigned int level = parent_pid_ns->level + 1; 81 struct ucounts *ucounts; 82 int err; 83 84 err = -EINVAL; 85 if (!in_userns(parent_pid_ns->user_ns, user_ns)) 86 goto out; 87 88 err = -ENOSPC; 89 if (level > MAX_PID_NS_LEVEL) 90 goto out; 91 ucounts = inc_pid_namespaces(user_ns); 92 if (!ucounts) 93 goto out; 94 95 err = -ENOMEM; 96 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 97 if (ns == NULL) 98 goto out_dec; 99 100 idr_init(&ns->idr); 101 102 ns->pid_cachep = create_pid_cachep(level); 103 if (ns->pid_cachep == NULL) 104 goto out_free_idr; 105 106 err = ns_common_init(ns); 107 if (err) 108 goto out_free_idr; 109 110 ns->pid_max = PID_MAX_LIMIT; 111 err = register_pidns_sysctls(ns); 112 if (err) 113 goto out_free_inum; 114 115 ns->level = level; 116 ns->parent = get_pid_ns(parent_pid_ns); 117 ns->user_ns = get_user_ns(user_ns); 118 ns->ucounts = ucounts; 119 ns->pid_allocated = PIDNS_ADDING; 120 INIT_WORK(&ns->work, destroy_pid_namespace_work); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 123 ns->memfd_noexec_scope = pidns_memfd_noexec_scope(parent_pid_ns); 124 #endif 125 126 ns_tree_add(ns); 127 return ns; 128 129 out_free_inum: 130 ns_common_free(ns); 131 out_free_idr: 132 idr_destroy(&ns->idr); 133 kmem_cache_free(pid_ns_cachep, ns); 134 out_dec: 135 dec_pid_namespaces(ucounts); 136 out: 137 return ERR_PTR(err); 138 } 139 140 static void delayed_free_pidns(struct rcu_head *p) 141 { 142 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 143 144 dec_pid_namespaces(ns->ucounts); 145 put_user_ns(ns->user_ns); 146 147 kmem_cache_free(pid_ns_cachep, ns); 148 } 149 150 static void destroy_pid_namespace(struct pid_namespace *ns) 151 { 152 ns_tree_remove(ns); 153 unregister_pidns_sysctls(ns); 154 155 ns_common_free(ns); 156 157 idr_destroy(&ns->idr); 158 call_rcu(&ns->rcu, delayed_free_pidns); 159 } 160 161 static void destroy_pid_namespace_work(struct work_struct *work) 162 { 163 struct pid_namespace *ns = 164 container_of(work, struct pid_namespace, work); 165 166 do { 167 struct pid_namespace *parent; 168 169 parent = ns->parent; 170 destroy_pid_namespace(ns); 171 ns = parent; 172 } while (ns != &init_pid_ns && ns_ref_put(ns)); 173 } 174 175 struct pid_namespace *copy_pid_ns(u64 flags, 176 struct user_namespace *user_ns, struct pid_namespace *old_ns) 177 { 178 if (!(flags & CLONE_NEWPID)) 179 return get_pid_ns(old_ns); 180 if (task_active_pid_ns(current) != old_ns) 181 return ERR_PTR(-EINVAL); 182 return create_pid_namespace(user_ns, old_ns); 183 } 184 185 void put_pid_ns(struct pid_namespace *ns) 186 { 187 if (ns && ns != &init_pid_ns && ns_ref_put(ns)) 188 schedule_work(&ns->work); 189 } 190 EXPORT_SYMBOL_GPL(put_pid_ns); 191 192 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 193 { 194 int nr; 195 int rc; 196 struct task_struct *task, *me = current; 197 int init_pids = thread_group_leader(me) ? 1 : 2; 198 struct pid *pid; 199 200 /* Don't allow any more processes into the pid namespace */ 201 disable_pid_allocation(pid_ns); 202 203 /* 204 * Ignore SIGCHLD causing any terminated children to autoreap. 205 * This speeds up the namespace shutdown, plus see the comment 206 * below. 207 */ 208 spin_lock_irq(&me->sighand->siglock); 209 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 210 spin_unlock_irq(&me->sighand->siglock); 211 212 /* 213 * The last thread in the cgroup-init thread group is terminating. 214 * Find remaining pid_ts in the namespace, signal and wait for them 215 * to exit. 216 * 217 * Note: This signals each threads in the namespace - even those that 218 * belong to the same thread group, To avoid this, we would have 219 * to walk the entire tasklist looking a processes in this 220 * namespace, but that could be unnecessarily expensive if the 221 * pid namespace has just a few processes. Or we need to 222 * maintain a tasklist for each pid namespace. 223 * 224 */ 225 rcu_read_lock(); 226 read_lock(&tasklist_lock); 227 nr = 2; 228 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) { 229 task = pid_task(pid, PIDTYPE_PID); 230 if (task && !__fatal_signal_pending(task)) 231 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX); 232 } 233 read_unlock(&tasklist_lock); 234 rcu_read_unlock(); 235 236 /* 237 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 238 * kernel_wait4() will also block until our children traced from the 239 * parent namespace are detached and become EXIT_DEAD. 240 */ 241 do { 242 clear_thread_flag(TIF_SIGPENDING); 243 clear_thread_flag(TIF_NOTIFY_SIGNAL); 244 rc = kernel_wait4(-1, NULL, __WALL, NULL); 245 } while (rc != -ECHILD); 246 247 /* 248 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE 249 * process whose parents processes are outside of the pid 250 * namespace. Such processes are created with setns()+fork(). 251 * 252 * If those EXIT_ZOMBIE processes are not reaped by their 253 * parents before their parents exit, they will be reparented 254 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to 255 * stay valid until they all go away. 256 * 257 * The code relies on the pid_ns->child_reaper ignoring 258 * SIGCHILD to cause those EXIT_ZOMBIE processes to be 259 * autoreaped if reparented. 260 * 261 * Semantically it is also desirable to wait for EXIT_ZOMBIE 262 * processes before allowing the child_reaper to be reaped, as 263 * that gives the invariant that when the init process of a 264 * pid namespace is reaped all of the processes in the pid 265 * namespace are gone. 266 * 267 * Once all of the other tasks are gone from the pid_namespace 268 * free_pid() will awaken this task. 269 */ 270 for (;;) { 271 set_current_state(TASK_INTERRUPTIBLE); 272 if (pid_ns->pid_allocated == init_pids) 273 break; 274 schedule(); 275 } 276 __set_current_state(TASK_RUNNING); 277 278 if (pid_ns->reboot) 279 current->signal->group_exit_code = pid_ns->reboot; 280 281 acct_exit_ns(pid_ns); 282 return; 283 } 284 285 #ifdef CONFIG_CHECKPOINT_RESTORE 286 static int pid_ns_ctl_handler(const struct ctl_table *table, int write, 287 void *buffer, size_t *lenp, loff_t *ppos) 288 { 289 struct pid_namespace *pid_ns = task_active_pid_ns(current); 290 struct ctl_table tmp = *table; 291 int ret, next; 292 293 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns)) 294 return -EPERM; 295 296 next = idr_get_cursor(&pid_ns->idr) - 1; 297 298 tmp.data = &next; 299 tmp.extra2 = &pid_ns->pid_max; 300 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 301 if (!ret && write) 302 idr_set_cursor(&pid_ns->idr, next + 1); 303 304 return ret; 305 } 306 307 static const struct ctl_table pid_ns_ctl_table[] = { 308 { 309 .procname = "ns_last_pid", 310 .maxlen = sizeof(int), 311 .mode = 0666, /* permissions are checked in the handler */ 312 .proc_handler = pid_ns_ctl_handler, 313 .extra1 = SYSCTL_ZERO, 314 .extra2 = &init_pid_ns.pid_max, 315 }, 316 }; 317 #endif /* CONFIG_CHECKPOINT_RESTORE */ 318 319 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 320 { 321 if (pid_ns == &init_pid_ns) 322 return 0; 323 324 switch (cmd) { 325 case LINUX_REBOOT_CMD_RESTART2: 326 case LINUX_REBOOT_CMD_RESTART: 327 pid_ns->reboot = SIGHUP; 328 break; 329 330 case LINUX_REBOOT_CMD_POWER_OFF: 331 case LINUX_REBOOT_CMD_HALT: 332 pid_ns->reboot = SIGINT; 333 break; 334 default: 335 return -EINVAL; 336 } 337 338 read_lock(&tasklist_lock); 339 send_sig(SIGKILL, pid_ns->child_reaper, 1); 340 read_unlock(&tasklist_lock); 341 342 do_exit(0); 343 344 /* Not reached */ 345 return 0; 346 } 347 348 static struct ns_common *pidns_get(struct task_struct *task) 349 { 350 struct pid_namespace *ns; 351 352 rcu_read_lock(); 353 ns = task_active_pid_ns(task); 354 if (ns) 355 get_pid_ns(ns); 356 rcu_read_unlock(); 357 358 return ns ? &ns->ns : NULL; 359 } 360 361 static struct ns_common *pidns_for_children_get(struct task_struct *task) 362 { 363 struct pid_namespace *ns = NULL; 364 365 task_lock(task); 366 if (task->nsproxy) { 367 ns = task->nsproxy->pid_ns_for_children; 368 get_pid_ns(ns); 369 } 370 task_unlock(task); 371 372 if (ns) { 373 read_lock(&tasklist_lock); 374 if (!ns->child_reaper) { 375 put_pid_ns(ns); 376 ns = NULL; 377 } 378 read_unlock(&tasklist_lock); 379 } 380 381 return ns ? &ns->ns : NULL; 382 } 383 384 static void pidns_put(struct ns_common *ns) 385 { 386 put_pid_ns(to_pid_ns(ns)); 387 } 388 389 bool pidns_is_ancestor(struct pid_namespace *child, 390 struct pid_namespace *ancestor) 391 { 392 struct pid_namespace *ns; 393 394 if (child->level < ancestor->level) 395 return false; 396 for (ns = child; ns->level > ancestor->level; ns = ns->parent) 397 ; 398 return ns == ancestor; 399 } 400 401 static int pidns_install(struct nsset *nsset, struct ns_common *ns) 402 { 403 struct nsproxy *nsproxy = nsset->nsproxy; 404 struct pid_namespace *active = task_active_pid_ns(current); 405 struct pid_namespace *new = to_pid_ns(ns); 406 407 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 408 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 409 return -EPERM; 410 411 /* 412 * Only allow entering the current active pid namespace 413 * or a child of the current active pid namespace. 414 * 415 * This is required for fork to return a usable pid value and 416 * this maintains the property that processes and their 417 * children can not escape their current pid namespace. 418 */ 419 if (!pidns_is_ancestor(new, active)) 420 return -EINVAL; 421 422 put_pid_ns(nsproxy->pid_ns_for_children); 423 nsproxy->pid_ns_for_children = get_pid_ns(new); 424 return 0; 425 } 426 427 static struct ns_common *pidns_get_parent(struct ns_common *ns) 428 { 429 struct pid_namespace *active = task_active_pid_ns(current); 430 struct pid_namespace *pid_ns, *p; 431 432 /* See if the parent is in the current namespace */ 433 pid_ns = p = to_pid_ns(ns)->parent; 434 for (;;) { 435 if (!p) 436 return ERR_PTR(-EPERM); 437 if (p == active) 438 break; 439 p = p->parent; 440 } 441 442 return &get_pid_ns(pid_ns)->ns; 443 } 444 445 static struct user_namespace *pidns_owner(struct ns_common *ns) 446 { 447 return to_pid_ns(ns)->user_ns; 448 } 449 450 const struct proc_ns_operations pidns_operations = { 451 .name = "pid", 452 .get = pidns_get, 453 .put = pidns_put, 454 .install = pidns_install, 455 .owner = pidns_owner, 456 .get_parent = pidns_get_parent, 457 }; 458 459 const struct proc_ns_operations pidns_for_children_operations = { 460 .name = "pid_for_children", 461 .real_ns_name = "pid", 462 .get = pidns_for_children_get, 463 .put = pidns_put, 464 .install = pidns_install, 465 .owner = pidns_owner, 466 .get_parent = pidns_get_parent, 467 }; 468 469 static __init int pid_namespaces_init(void) 470 { 471 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT); 472 473 #ifdef CONFIG_CHECKPOINT_RESTORE 474 register_sysctl_init("kernel", pid_ns_ctl_table); 475 #endif 476 477 register_pid_ns_sysctl_table_vm(); 478 ns_tree_add(&init_pid_ns); 479 return 0; 480 } 481 482 __initcall(pid_namespaces_init); 483