xref: /linux/kernel/pid.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched/task.h>
42 #include <linux/idr.h>
43 
44 struct pid init_struct_pid = INIT_STRUCT_PID;
45 
46 int pid_max = PID_MAX_DEFAULT;
47 
48 #define RESERVED_PIDS		300
49 
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52 
53 /*
54  * PID-map pages start out as NULL, they get allocated upon
55  * first use and are never deallocated. This way a low pid_max
56  * value does not cause lots of bitmaps to be allocated, but
57  * the scheme scales to up to 4 million PIDs, runtime.
58  */
59 struct pid_namespace init_pid_ns = {
60 	.kref = KREF_INIT(2),
61 	.idr = IDR_INIT,
62 	.pid_allocated = PIDNS_ADDING,
63 	.level = 0,
64 	.child_reaper = &init_task,
65 	.user_ns = &init_user_ns,
66 	.ns.inum = PROC_PID_INIT_INO,
67 #ifdef CONFIG_PID_NS
68 	.ns.ops = &pidns_operations,
69 #endif
70 };
71 EXPORT_SYMBOL_GPL(init_pid_ns);
72 
73 /*
74  * Note: disable interrupts while the pidmap_lock is held as an
75  * interrupt might come in and do read_lock(&tasklist_lock).
76  *
77  * If we don't disable interrupts there is a nasty deadlock between
78  * detach_pid()->free_pid() and another cpu that does
79  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
80  * read_lock(&tasklist_lock);
81  *
82  * After we clean up the tasklist_lock and know there are no
83  * irq handlers that take it we can leave the interrupts enabled.
84  * For now it is easier to be safe than to prove it can't happen.
85  */
86 
87 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
88 
89 void put_pid(struct pid *pid)
90 {
91 	struct pid_namespace *ns;
92 
93 	if (!pid)
94 		return;
95 
96 	ns = pid->numbers[pid->level].ns;
97 	if ((atomic_read(&pid->count) == 1) ||
98 	     atomic_dec_and_test(&pid->count)) {
99 		kmem_cache_free(ns->pid_cachep, pid);
100 		put_pid_ns(ns);
101 	}
102 }
103 EXPORT_SYMBOL_GPL(put_pid);
104 
105 static void delayed_put_pid(struct rcu_head *rhp)
106 {
107 	struct pid *pid = container_of(rhp, struct pid, rcu);
108 	put_pid(pid);
109 }
110 
111 void free_pid(struct pid *pid)
112 {
113 	/* We can be called with write_lock_irq(&tasklist_lock) held */
114 	int i;
115 	unsigned long flags;
116 
117 	spin_lock_irqsave(&pidmap_lock, flags);
118 	for (i = 0; i <= pid->level; i++) {
119 		struct upid *upid = pid->numbers + i;
120 		struct pid_namespace *ns = upid->ns;
121 		switch (--ns->pid_allocated) {
122 		case 2:
123 		case 1:
124 			/* When all that is left in the pid namespace
125 			 * is the reaper wake up the reaper.  The reaper
126 			 * may be sleeping in zap_pid_ns_processes().
127 			 */
128 			wake_up_process(ns->child_reaper);
129 			break;
130 		case PIDNS_ADDING:
131 			/* Handle a fork failure of the first process */
132 			WARN_ON(ns->child_reaper);
133 			ns->pid_allocated = 0;
134 			/* fall through */
135 		case 0:
136 			schedule_work(&ns->proc_work);
137 			break;
138 		}
139 
140 		idr_remove(&ns->idr, upid->nr);
141 	}
142 	spin_unlock_irqrestore(&pidmap_lock, flags);
143 
144 	call_rcu(&pid->rcu, delayed_put_pid);
145 }
146 
147 struct pid *alloc_pid(struct pid_namespace *ns)
148 {
149 	struct pid *pid;
150 	enum pid_type type;
151 	int i, nr;
152 	struct pid_namespace *tmp;
153 	struct upid *upid;
154 	int retval = -ENOMEM;
155 
156 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
157 	if (!pid)
158 		return ERR_PTR(retval);
159 
160 	tmp = ns;
161 	pid->level = ns->level;
162 
163 	for (i = ns->level; i >= 0; i--) {
164 		int pid_min = 1;
165 
166 		idr_preload(GFP_KERNEL);
167 		spin_lock_irq(&pidmap_lock);
168 
169 		/*
170 		 * init really needs pid 1, but after reaching the maximum
171 		 * wrap back to RESERVED_PIDS
172 		 */
173 		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
174 			pid_min = RESERVED_PIDS;
175 
176 		/*
177 		 * Store a null pointer so find_pid_ns does not find
178 		 * a partially initialized PID (see below).
179 		 */
180 		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
181 				      pid_max, GFP_ATOMIC);
182 		spin_unlock_irq(&pidmap_lock);
183 		idr_preload_end();
184 
185 		if (nr < 0) {
186 			retval = nr;
187 			goto out_free;
188 		}
189 
190 		pid->numbers[i].nr = nr;
191 		pid->numbers[i].ns = tmp;
192 		tmp = tmp->parent;
193 	}
194 
195 	if (unlikely(is_child_reaper(pid))) {
196 		if (pid_ns_prepare_proc(ns)) {
197 			disable_pid_allocation(ns);
198 			goto out_free;
199 		}
200 	}
201 
202 	get_pid_ns(ns);
203 	atomic_set(&pid->count, 1);
204 	for (type = 0; type < PIDTYPE_MAX; ++type)
205 		INIT_HLIST_HEAD(&pid->tasks[type]);
206 
207 	upid = pid->numbers + ns->level;
208 	spin_lock_irq(&pidmap_lock);
209 	if (!(ns->pid_allocated & PIDNS_ADDING))
210 		goto out_unlock;
211 	for ( ; upid >= pid->numbers; --upid) {
212 		/* Make the PID visible to find_pid_ns. */
213 		idr_replace(&upid->ns->idr, pid, upid->nr);
214 		upid->ns->pid_allocated++;
215 	}
216 	spin_unlock_irq(&pidmap_lock);
217 
218 	return pid;
219 
220 out_unlock:
221 	spin_unlock_irq(&pidmap_lock);
222 	put_pid_ns(ns);
223 
224 out_free:
225 	spin_lock_irq(&pidmap_lock);
226 	while (++i <= ns->level)
227 		idr_remove(&ns->idr, (pid->numbers + i)->nr);
228 
229 	spin_unlock_irq(&pidmap_lock);
230 
231 	kmem_cache_free(ns->pid_cachep, pid);
232 	return ERR_PTR(retval);
233 }
234 
235 void disable_pid_allocation(struct pid_namespace *ns)
236 {
237 	spin_lock_irq(&pidmap_lock);
238 	ns->pid_allocated &= ~PIDNS_ADDING;
239 	spin_unlock_irq(&pidmap_lock);
240 }
241 
242 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
243 {
244 	return idr_find(&ns->idr, nr);
245 }
246 EXPORT_SYMBOL_GPL(find_pid_ns);
247 
248 struct pid *find_vpid(int nr)
249 {
250 	return find_pid_ns(nr, task_active_pid_ns(current));
251 }
252 EXPORT_SYMBOL_GPL(find_vpid);
253 
254 /*
255  * attach_pid() must be called with the tasklist_lock write-held.
256  */
257 void attach_pid(struct task_struct *task, enum pid_type type)
258 {
259 	struct pid_link *link = &task->pids[type];
260 	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
261 }
262 
263 static void __change_pid(struct task_struct *task, enum pid_type type,
264 			struct pid *new)
265 {
266 	struct pid_link *link;
267 	struct pid *pid;
268 	int tmp;
269 
270 	link = &task->pids[type];
271 	pid = link->pid;
272 
273 	hlist_del_rcu(&link->node);
274 	link->pid = new;
275 
276 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
277 		if (!hlist_empty(&pid->tasks[tmp]))
278 			return;
279 
280 	free_pid(pid);
281 }
282 
283 void detach_pid(struct task_struct *task, enum pid_type type)
284 {
285 	__change_pid(task, type, NULL);
286 }
287 
288 void change_pid(struct task_struct *task, enum pid_type type,
289 		struct pid *pid)
290 {
291 	__change_pid(task, type, pid);
292 	attach_pid(task, type);
293 }
294 
295 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
296 void transfer_pid(struct task_struct *old, struct task_struct *new,
297 			   enum pid_type type)
298 {
299 	new->pids[type].pid = old->pids[type].pid;
300 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
301 }
302 
303 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
304 {
305 	struct task_struct *result = NULL;
306 	if (pid) {
307 		struct hlist_node *first;
308 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
309 					      lockdep_tasklist_lock_is_held());
310 		if (first)
311 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
312 	}
313 	return result;
314 }
315 EXPORT_SYMBOL(pid_task);
316 
317 /*
318  * Must be called under rcu_read_lock().
319  */
320 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
321 {
322 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
323 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
324 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
325 }
326 
327 struct task_struct *find_task_by_vpid(pid_t vnr)
328 {
329 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
330 }
331 
332 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
333 {
334 	struct pid *pid;
335 	rcu_read_lock();
336 	if (type != PIDTYPE_PID)
337 		task = task->group_leader;
338 	pid = get_pid(rcu_dereference(task->pids[type].pid));
339 	rcu_read_unlock();
340 	return pid;
341 }
342 EXPORT_SYMBOL_GPL(get_task_pid);
343 
344 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
345 {
346 	struct task_struct *result;
347 	rcu_read_lock();
348 	result = pid_task(pid, type);
349 	if (result)
350 		get_task_struct(result);
351 	rcu_read_unlock();
352 	return result;
353 }
354 EXPORT_SYMBOL_GPL(get_pid_task);
355 
356 struct pid *find_get_pid(pid_t nr)
357 {
358 	struct pid *pid;
359 
360 	rcu_read_lock();
361 	pid = get_pid(find_vpid(nr));
362 	rcu_read_unlock();
363 
364 	return pid;
365 }
366 EXPORT_SYMBOL_GPL(find_get_pid);
367 
368 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
369 {
370 	struct upid *upid;
371 	pid_t nr = 0;
372 
373 	if (pid && ns->level <= pid->level) {
374 		upid = &pid->numbers[ns->level];
375 		if (upid->ns == ns)
376 			nr = upid->nr;
377 	}
378 	return nr;
379 }
380 EXPORT_SYMBOL_GPL(pid_nr_ns);
381 
382 pid_t pid_vnr(struct pid *pid)
383 {
384 	return pid_nr_ns(pid, task_active_pid_ns(current));
385 }
386 EXPORT_SYMBOL_GPL(pid_vnr);
387 
388 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
389 			struct pid_namespace *ns)
390 {
391 	pid_t nr = 0;
392 
393 	rcu_read_lock();
394 	if (!ns)
395 		ns = task_active_pid_ns(current);
396 	if (likely(pid_alive(task))) {
397 		if (type != PIDTYPE_PID) {
398 			if (type == __PIDTYPE_TGID)
399 				type = PIDTYPE_PID;
400 
401 			task = task->group_leader;
402 		}
403 		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
404 	}
405 	rcu_read_unlock();
406 
407 	return nr;
408 }
409 EXPORT_SYMBOL(__task_pid_nr_ns);
410 
411 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
412 {
413 	return ns_of_pid(task_pid(tsk));
414 }
415 EXPORT_SYMBOL_GPL(task_active_pid_ns);
416 
417 /*
418  * Used by proc to find the first pid that is greater than or equal to nr.
419  *
420  * If there is a pid at nr this function is exactly the same as find_pid_ns.
421  */
422 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
423 {
424 	return idr_get_next(&ns->idr, &nr);
425 }
426 
427 void __init pid_idr_init(void)
428 {
429 	/* Verify no one has done anything silly: */
430 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
431 
432 	/* bump default and minimum pid_max based on number of cpus */
433 	pid_max = min(pid_max_max, max_t(int, pid_max,
434 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
435 	pid_max_min = max_t(int, pid_max_min,
436 				PIDS_PER_CPU_MIN * num_possible_cpus());
437 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
438 
439 	idr_init(&init_pid_ns.idr);
440 
441 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
442 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
443 }
444