1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <linux/seqlock.h> 47 #include <net/sock.h> 48 #include <uapi/linux/pidfd.h> 49 50 struct pid init_struct_pid = { 51 .count = REFCOUNT_INIT(1), 52 .tasks = { 53 { .first = NULL }, 54 { .first = NULL }, 55 { .first = NULL }, 56 }, 57 .level = 0, 58 .numbers = { { 59 .nr = 0, 60 .ns = &init_pid_ns, 61 }, } 62 }; 63 64 static int pid_max_min = RESERVED_PIDS + 1; 65 static int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .ns.count = REFCOUNT_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 .pid_max = PID_MAX_DEFAULT, 85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 86 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 87 #endif 88 }; 89 EXPORT_SYMBOL_GPL(init_pid_ns); 90 91 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 92 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock); 93 94 void put_pid(struct pid *pid) 95 { 96 struct pid_namespace *ns; 97 98 if (!pid) 99 return; 100 101 ns = pid->numbers[pid->level].ns; 102 if (refcount_dec_and_test(&pid->count)) { 103 WARN_ON_ONCE(pid->stashed); 104 kmem_cache_free(ns->pid_cachep, pid); 105 put_pid_ns(ns); 106 } 107 } 108 EXPORT_SYMBOL_GPL(put_pid); 109 110 static void delayed_put_pid(struct rcu_head *rhp) 111 { 112 struct pid *pid = container_of(rhp, struct pid, rcu); 113 put_pid(pid); 114 } 115 116 void free_pid(struct pid *pid) 117 { 118 int i; 119 120 lockdep_assert_not_held(&tasklist_lock); 121 122 spin_lock(&pidmap_lock); 123 for (i = 0; i <= pid->level; i++) { 124 struct upid *upid = pid->numbers + i; 125 struct pid_namespace *ns = upid->ns; 126 switch (--ns->pid_allocated) { 127 case 2: 128 case 1: 129 /* When all that is left in the pid namespace 130 * is the reaper wake up the reaper. The reaper 131 * may be sleeping in zap_pid_ns_processes(). 132 */ 133 wake_up_process(ns->child_reaper); 134 break; 135 case PIDNS_ADDING: 136 /* Handle a fork failure of the first process */ 137 WARN_ON(ns->child_reaper); 138 ns->pid_allocated = 0; 139 break; 140 } 141 142 idr_remove(&ns->idr, upid->nr); 143 } 144 pidfs_remove_pid(pid); 145 spin_unlock(&pidmap_lock); 146 147 call_rcu(&pid->rcu, delayed_put_pid); 148 } 149 150 void free_pids(struct pid **pids) 151 { 152 int tmp; 153 154 /* 155 * This can batch pidmap_lock. 156 */ 157 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 158 if (pids[tmp]) 159 free_pid(pids[tmp]); 160 } 161 162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 163 size_t set_tid_size) 164 { 165 struct pid *pid; 166 enum pid_type type; 167 int i, nr; 168 struct pid_namespace *tmp; 169 struct upid *upid; 170 int retval = -ENOMEM; 171 172 /* 173 * set_tid_size contains the size of the set_tid array. Starting at 174 * the most nested currently active PID namespace it tells alloc_pid() 175 * which PID to set for a process in that most nested PID namespace 176 * up to set_tid_size PID namespaces. It does not have to set the PID 177 * for a process in all nested PID namespaces but set_tid_size must 178 * never be greater than the current ns->level + 1. 179 */ 180 if (set_tid_size > ns->level + 1) 181 return ERR_PTR(-EINVAL); 182 183 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 184 if (!pid) 185 return ERR_PTR(retval); 186 187 tmp = ns; 188 pid->level = ns->level; 189 190 for (i = ns->level; i >= 0; i--) { 191 int tid = 0; 192 int pid_max = READ_ONCE(tmp->pid_max); 193 194 if (set_tid_size) { 195 tid = set_tid[ns->level - i]; 196 197 retval = -EINVAL; 198 if (tid < 1 || tid >= pid_max) 199 goto out_free; 200 /* 201 * Also fail if a PID != 1 is requested and 202 * no PID 1 exists. 203 */ 204 if (tid != 1 && !tmp->child_reaper) 205 goto out_free; 206 retval = -EPERM; 207 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 208 goto out_free; 209 set_tid_size--; 210 } 211 212 idr_preload(GFP_KERNEL); 213 spin_lock(&pidmap_lock); 214 215 if (tid) { 216 nr = idr_alloc(&tmp->idr, NULL, tid, 217 tid + 1, GFP_ATOMIC); 218 /* 219 * If ENOSPC is returned it means that the PID is 220 * alreay in use. Return EEXIST in that case. 221 */ 222 if (nr == -ENOSPC) 223 nr = -EEXIST; 224 } else { 225 int pid_min = 1; 226 /* 227 * init really needs pid 1, but after reaching the 228 * maximum wrap back to RESERVED_PIDS 229 */ 230 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 231 pid_min = RESERVED_PIDS; 232 233 /* 234 * Store a null pointer so find_pid_ns does not find 235 * a partially initialized PID (see below). 236 */ 237 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 238 pid_max, GFP_ATOMIC); 239 } 240 spin_unlock(&pidmap_lock); 241 idr_preload_end(); 242 243 if (nr < 0) { 244 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 245 goto out_free; 246 } 247 248 pid->numbers[i].nr = nr; 249 pid->numbers[i].ns = tmp; 250 tmp = tmp->parent; 251 } 252 253 /* 254 * ENOMEM is not the most obvious choice especially for the case 255 * where the child subreaper has already exited and the pid 256 * namespace denies the creation of any new processes. But ENOMEM 257 * is what we have exposed to userspace for a long time and it is 258 * documented behavior for pid namespaces. So we can't easily 259 * change it even if there were an error code better suited. 260 */ 261 retval = -ENOMEM; 262 263 get_pid_ns(ns); 264 refcount_set(&pid->count, 1); 265 spin_lock_init(&pid->lock); 266 for (type = 0; type < PIDTYPE_MAX; ++type) 267 INIT_HLIST_HEAD(&pid->tasks[type]); 268 269 init_waitqueue_head(&pid->wait_pidfd); 270 INIT_HLIST_HEAD(&pid->inodes); 271 272 upid = pid->numbers + ns->level; 273 idr_preload(GFP_KERNEL); 274 spin_lock(&pidmap_lock); 275 if (!(ns->pid_allocated & PIDNS_ADDING)) 276 goto out_unlock; 277 pidfs_add_pid(pid); 278 for ( ; upid >= pid->numbers; --upid) { 279 /* Make the PID visible to find_pid_ns. */ 280 idr_replace(&upid->ns->idr, pid, upid->nr); 281 upid->ns->pid_allocated++; 282 } 283 spin_unlock(&pidmap_lock); 284 idr_preload_end(); 285 286 return pid; 287 288 out_unlock: 289 spin_unlock(&pidmap_lock); 290 idr_preload_end(); 291 put_pid_ns(ns); 292 293 out_free: 294 spin_lock(&pidmap_lock); 295 while (++i <= ns->level) { 296 upid = pid->numbers + i; 297 idr_remove(&upid->ns->idr, upid->nr); 298 } 299 300 /* On failure to allocate the first pid, reset the state */ 301 if (ns->pid_allocated == PIDNS_ADDING) 302 idr_set_cursor(&ns->idr, 0); 303 304 spin_unlock(&pidmap_lock); 305 306 kmem_cache_free(ns->pid_cachep, pid); 307 return ERR_PTR(retval); 308 } 309 310 void disable_pid_allocation(struct pid_namespace *ns) 311 { 312 spin_lock(&pidmap_lock); 313 ns->pid_allocated &= ~PIDNS_ADDING; 314 spin_unlock(&pidmap_lock); 315 } 316 317 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 318 { 319 return idr_find(&ns->idr, nr); 320 } 321 EXPORT_SYMBOL_GPL(find_pid_ns); 322 323 struct pid *find_vpid(int nr) 324 { 325 return find_pid_ns(nr, task_active_pid_ns(current)); 326 } 327 EXPORT_SYMBOL_GPL(find_vpid); 328 329 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 330 { 331 return (type == PIDTYPE_PID) ? 332 &task->thread_pid : 333 &task->signal->pids[type]; 334 } 335 336 /* 337 * attach_pid() must be called with the tasklist_lock write-held. 338 */ 339 void attach_pid(struct task_struct *task, enum pid_type type) 340 { 341 struct pid *pid; 342 343 lockdep_assert_held_write(&tasklist_lock); 344 345 pid = *task_pid_ptr(task, type); 346 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 347 } 348 349 static void __change_pid(struct pid **pids, struct task_struct *task, 350 enum pid_type type, struct pid *new) 351 { 352 struct pid **pid_ptr, *pid; 353 int tmp; 354 355 lockdep_assert_held_write(&tasklist_lock); 356 357 pid_ptr = task_pid_ptr(task, type); 358 pid = *pid_ptr; 359 360 hlist_del_rcu(&task->pid_links[type]); 361 *pid_ptr = new; 362 363 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 364 if (pid_has_task(pid, tmp)) 365 return; 366 367 WARN_ON(pids[type]); 368 pids[type] = pid; 369 } 370 371 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type) 372 { 373 __change_pid(pids, task, type, NULL); 374 } 375 376 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type, 377 struct pid *pid) 378 { 379 __change_pid(pids, task, type, pid); 380 attach_pid(task, type); 381 } 382 383 void exchange_tids(struct task_struct *left, struct task_struct *right) 384 { 385 struct pid *pid1 = left->thread_pid; 386 struct pid *pid2 = right->thread_pid; 387 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 388 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 389 390 lockdep_assert_held_write(&tasklist_lock); 391 392 /* Swap the single entry tid lists */ 393 hlists_swap_heads_rcu(head1, head2); 394 395 /* Swap the per task_struct pid */ 396 rcu_assign_pointer(left->thread_pid, pid2); 397 rcu_assign_pointer(right->thread_pid, pid1); 398 399 /* Swap the cached value */ 400 WRITE_ONCE(left->pid, pid_nr(pid2)); 401 WRITE_ONCE(right->pid, pid_nr(pid1)); 402 } 403 404 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 405 void transfer_pid(struct task_struct *old, struct task_struct *new, 406 enum pid_type type) 407 { 408 WARN_ON_ONCE(type == PIDTYPE_PID); 409 lockdep_assert_held_write(&tasklist_lock); 410 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 411 } 412 413 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 414 { 415 struct task_struct *result = NULL; 416 if (pid) { 417 struct hlist_node *first; 418 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 419 lockdep_tasklist_lock_is_held()); 420 if (first) 421 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 422 } 423 return result; 424 } 425 EXPORT_SYMBOL(pid_task); 426 427 /* 428 * Must be called under rcu_read_lock(). 429 */ 430 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 431 { 432 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 433 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 434 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 435 } 436 437 struct task_struct *find_task_by_vpid(pid_t vnr) 438 { 439 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 440 } 441 442 struct task_struct *find_get_task_by_vpid(pid_t nr) 443 { 444 struct task_struct *task; 445 446 rcu_read_lock(); 447 task = find_task_by_vpid(nr); 448 if (task) 449 get_task_struct(task); 450 rcu_read_unlock(); 451 452 return task; 453 } 454 455 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 456 { 457 struct pid *pid; 458 rcu_read_lock(); 459 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 460 rcu_read_unlock(); 461 return pid; 462 } 463 EXPORT_SYMBOL_GPL(get_task_pid); 464 465 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 466 { 467 struct task_struct *result; 468 rcu_read_lock(); 469 result = pid_task(pid, type); 470 if (result) 471 get_task_struct(result); 472 rcu_read_unlock(); 473 return result; 474 } 475 EXPORT_SYMBOL_GPL(get_pid_task); 476 477 struct pid *find_get_pid(pid_t nr) 478 { 479 struct pid *pid; 480 481 rcu_read_lock(); 482 pid = get_pid(find_vpid(nr)); 483 rcu_read_unlock(); 484 485 return pid; 486 } 487 EXPORT_SYMBOL_GPL(find_get_pid); 488 489 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 490 { 491 struct upid *upid; 492 pid_t nr = 0; 493 494 if (pid && ns->level <= pid->level) { 495 upid = &pid->numbers[ns->level]; 496 if (upid->ns == ns) 497 nr = upid->nr; 498 } 499 return nr; 500 } 501 EXPORT_SYMBOL_GPL(pid_nr_ns); 502 503 pid_t pid_vnr(struct pid *pid) 504 { 505 return pid_nr_ns(pid, task_active_pid_ns(current)); 506 } 507 EXPORT_SYMBOL_GPL(pid_vnr); 508 509 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 510 struct pid_namespace *ns) 511 { 512 pid_t nr = 0; 513 514 rcu_read_lock(); 515 if (!ns) 516 ns = task_active_pid_ns(current); 517 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 518 rcu_read_unlock(); 519 520 return nr; 521 } 522 EXPORT_SYMBOL(__task_pid_nr_ns); 523 524 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 525 { 526 return ns_of_pid(task_pid(tsk)); 527 } 528 EXPORT_SYMBOL_GPL(task_active_pid_ns); 529 530 /* 531 * Used by proc to find the first pid that is greater than or equal to nr. 532 * 533 * If there is a pid at nr this function is exactly the same as find_pid_ns. 534 */ 535 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 536 { 537 return idr_get_next(&ns->idr, &nr); 538 } 539 EXPORT_SYMBOL_GPL(find_ge_pid); 540 541 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 542 { 543 CLASS(fd, f)(fd); 544 struct pid *pid; 545 546 if (fd_empty(f)) 547 return ERR_PTR(-EBADF); 548 549 pid = pidfd_pid(fd_file(f)); 550 if (!IS_ERR(pid)) { 551 get_pid(pid); 552 *flags = fd_file(f)->f_flags; 553 } 554 return pid; 555 } 556 557 /** 558 * pidfd_get_task() - Get the task associated with a pidfd 559 * 560 * @pidfd: pidfd for which to get the task 561 * @flags: flags associated with this pidfd 562 * 563 * Return the task associated with @pidfd. The function takes a reference on 564 * the returned task. The caller is responsible for releasing that reference. 565 * 566 * Return: On success, the task_struct associated with the pidfd. 567 * On error, a negative errno number will be returned. 568 */ 569 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 570 { 571 unsigned int f_flags = 0; 572 struct pid *pid; 573 struct task_struct *task; 574 enum pid_type type; 575 576 switch (pidfd) { 577 case PIDFD_SELF_THREAD: 578 type = PIDTYPE_PID; 579 pid = get_task_pid(current, type); 580 break; 581 case PIDFD_SELF_THREAD_GROUP: 582 type = PIDTYPE_TGID; 583 pid = get_task_pid(current, type); 584 break; 585 default: 586 pid = pidfd_get_pid(pidfd, &f_flags); 587 if (IS_ERR(pid)) 588 return ERR_CAST(pid); 589 type = PIDTYPE_TGID; 590 break; 591 } 592 593 task = get_pid_task(pid, type); 594 put_pid(pid); 595 if (!task) 596 return ERR_PTR(-ESRCH); 597 598 *flags = f_flags; 599 return task; 600 } 601 602 /** 603 * pidfd_create() - Create a new pid file descriptor. 604 * 605 * @pid: struct pid that the pidfd will reference 606 * @flags: flags to pass 607 * 608 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 609 * 610 * Note, that this function can only be called after the fd table has 611 * been unshared to avoid leaking the pidfd to the new process. 612 * 613 * This symbol should not be explicitly exported to loadable modules. 614 * 615 * Return: On success, a cloexec pidfd is returned. 616 * On error, a negative errno number will be returned. 617 */ 618 static int pidfd_create(struct pid *pid, unsigned int flags) 619 { 620 int pidfd; 621 struct file *pidfd_file; 622 623 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 624 if (pidfd < 0) 625 return pidfd; 626 627 fd_install(pidfd, pidfd_file); 628 return pidfd; 629 } 630 631 /** 632 * sys_pidfd_open() - Open new pid file descriptor. 633 * 634 * @pid: pid for which to retrieve a pidfd 635 * @flags: flags to pass 636 * 637 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 638 * the task identified by @pid. Without PIDFD_THREAD flag the target task 639 * must be a thread-group leader. 640 * 641 * Return: On success, a cloexec pidfd is returned. 642 * On error, a negative errno number will be returned. 643 */ 644 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 645 { 646 int fd; 647 struct pid *p; 648 649 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 650 return -EINVAL; 651 652 if (pid <= 0) 653 return -EINVAL; 654 655 p = find_get_pid(pid); 656 if (!p) 657 return -ESRCH; 658 659 fd = pidfd_create(p, flags); 660 661 put_pid(p); 662 return fd; 663 } 664 665 #ifdef CONFIG_SYSCTL 666 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) 667 { 668 return &task_active_pid_ns(current)->set; 669 } 670 671 static int set_is_seen(struct ctl_table_set *set) 672 { 673 return &task_active_pid_ns(current)->set == set; 674 } 675 676 static int pid_table_root_permissions(struct ctl_table_header *head, 677 const struct ctl_table *table) 678 { 679 struct pid_namespace *pidns = 680 container_of(head->set, struct pid_namespace, set); 681 int mode = table->mode; 682 683 if (ns_capable(pidns->user_ns, CAP_SYS_ADMIN) || 684 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) 685 mode = (mode & S_IRWXU) >> 6; 686 else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) 687 mode = (mode & S_IRWXG) >> 3; 688 else 689 mode = mode & S_IROTH; 690 return (mode << 6) | (mode << 3) | mode; 691 } 692 693 static void pid_table_root_set_ownership(struct ctl_table_header *head, 694 kuid_t *uid, kgid_t *gid) 695 { 696 struct pid_namespace *pidns = 697 container_of(head->set, struct pid_namespace, set); 698 kuid_t ns_root_uid; 699 kgid_t ns_root_gid; 700 701 ns_root_uid = make_kuid(pidns->user_ns, 0); 702 if (uid_valid(ns_root_uid)) 703 *uid = ns_root_uid; 704 705 ns_root_gid = make_kgid(pidns->user_ns, 0); 706 if (gid_valid(ns_root_gid)) 707 *gid = ns_root_gid; 708 } 709 710 static struct ctl_table_root pid_table_root = { 711 .lookup = pid_table_root_lookup, 712 .permissions = pid_table_root_permissions, 713 .set_ownership = pid_table_root_set_ownership, 714 }; 715 716 static const struct ctl_table pid_table[] = { 717 { 718 .procname = "pid_max", 719 .data = &init_pid_ns.pid_max, 720 .maxlen = sizeof(int), 721 .mode = 0644, 722 .proc_handler = proc_dointvec_minmax, 723 .extra1 = &pid_max_min, 724 .extra2 = &pid_max_max, 725 }, 726 }; 727 #endif 728 729 int register_pidns_sysctls(struct pid_namespace *pidns) 730 { 731 #ifdef CONFIG_SYSCTL 732 struct ctl_table *tbl; 733 734 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); 735 736 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); 737 if (!tbl) 738 return -ENOMEM; 739 tbl->data = &pidns->pid_max; 740 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, 741 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 742 743 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, 744 ARRAY_SIZE(pid_table)); 745 if (!pidns->sysctls) { 746 kfree(tbl); 747 retire_sysctl_set(&pidns->set); 748 return -ENOMEM; 749 } 750 #endif 751 return 0; 752 } 753 754 void unregister_pidns_sysctls(struct pid_namespace *pidns) 755 { 756 #ifdef CONFIG_SYSCTL 757 const struct ctl_table *tbl; 758 759 tbl = pidns->sysctls->ctl_table_arg; 760 unregister_sysctl_table(pidns->sysctls); 761 retire_sysctl_set(&pidns->set); 762 kfree(tbl); 763 #endif 764 } 765 766 void __init pid_idr_init(void) 767 { 768 /* Verify no one has done anything silly: */ 769 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 770 771 /* bump default and minimum pid_max based on number of cpus */ 772 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, 773 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 774 pid_max_min = max_t(int, pid_max_min, 775 PIDS_PER_CPU_MIN * num_possible_cpus()); 776 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); 777 778 idr_init(&init_pid_ns.idr); 779 780 init_pid_ns.pid_cachep = kmem_cache_create("pid", 781 struct_size_t(struct pid, numbers, 1), 782 __alignof__(struct pid), 783 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 784 NULL); 785 } 786 787 static __init int pid_namespace_sysctl_init(void) 788 { 789 #ifdef CONFIG_SYSCTL 790 /* "kernel" directory will have already been initialized. */ 791 BUG_ON(register_pidns_sysctls(&init_pid_ns)); 792 #endif 793 return 0; 794 } 795 subsys_initcall(pid_namespace_sysctl_init); 796 797 static struct file *__pidfd_fget(struct task_struct *task, int fd) 798 { 799 struct file *file; 800 int ret; 801 802 ret = down_read_killable(&task->signal->exec_update_lock); 803 if (ret) 804 return ERR_PTR(ret); 805 806 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 807 file = fget_task(task, fd); 808 else 809 file = ERR_PTR(-EPERM); 810 811 up_read(&task->signal->exec_update_lock); 812 813 if (!file) { 814 /* 815 * It is possible that the target thread is exiting; it can be 816 * either: 817 * 1. before exit_signals(), which gives a real fd 818 * 2. before exit_files() takes the task_lock() gives a real fd 819 * 3. after exit_files() releases task_lock(), ->files is NULL; 820 * this has PF_EXITING, since it was set in exit_signals(), 821 * __pidfd_fget() returns EBADF. 822 * In case 3 we get EBADF, but that really means ESRCH, since 823 * the task is currently exiting and has freed its files 824 * struct, so we fix it up. 825 */ 826 if (task->flags & PF_EXITING) 827 file = ERR_PTR(-ESRCH); 828 else 829 file = ERR_PTR(-EBADF); 830 } 831 832 return file; 833 } 834 835 static int pidfd_getfd(struct pid *pid, int fd) 836 { 837 struct task_struct *task; 838 struct file *file; 839 int ret; 840 841 task = get_pid_task(pid, PIDTYPE_PID); 842 if (!task) 843 return -ESRCH; 844 845 file = __pidfd_fget(task, fd); 846 put_task_struct(task); 847 if (IS_ERR(file)) 848 return PTR_ERR(file); 849 850 ret = receive_fd(file, NULL, O_CLOEXEC); 851 fput(file); 852 853 return ret; 854 } 855 856 /** 857 * sys_pidfd_getfd() - Get a file descriptor from another process 858 * 859 * @pidfd: the pidfd file descriptor of the process 860 * @fd: the file descriptor number to get 861 * @flags: flags on how to get the fd (reserved) 862 * 863 * This syscall gets a copy of a file descriptor from another process 864 * based on the pidfd, and file descriptor number. It requires that 865 * the calling process has the ability to ptrace the process represented 866 * by the pidfd. The process which is having its file descriptor copied 867 * is otherwise unaffected. 868 * 869 * Return: On success, a cloexec file descriptor is returned. 870 * On error, a negative errno number will be returned. 871 */ 872 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 873 unsigned int, flags) 874 { 875 struct pid *pid; 876 877 /* flags is currently unused - make sure it's unset */ 878 if (flags) 879 return -EINVAL; 880 881 CLASS(fd, f)(pidfd); 882 if (fd_empty(f)) 883 return -EBADF; 884 885 pid = pidfd_pid(fd_file(f)); 886 if (IS_ERR(pid)) 887 return PTR_ERR(pid); 888 889 return pidfd_getfd(pid, fd); 890 } 891