1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <net/sock.h> 47 #include <uapi/linux/pidfd.h> 48 49 struct pid init_struct_pid = { 50 .count = REFCOUNT_INIT(1), 51 .tasks = { 52 { .first = NULL }, 53 { .first = NULL }, 54 { .first = NULL }, 55 }, 56 .level = 0, 57 .numbers = { { 58 .nr = 0, 59 .ns = &init_pid_ns, 60 }, } 61 }; 62 63 int pid_max = PID_MAX_DEFAULT; 64 65 #define RESERVED_PIDS 300 66 67 int pid_max_min = RESERVED_PIDS + 1; 68 int pid_max_max = PID_MAX_LIMIT; 69 #ifdef CONFIG_FS_PID 70 /* 71 * Pseudo filesystems start inode numbering after one. We use Reserved 72 * PIDs as a natural offset. 73 */ 74 static u64 pidfs_ino = RESERVED_PIDS; 75 #endif 76 77 /* 78 * PID-map pages start out as NULL, they get allocated upon 79 * first use and are never deallocated. This way a low pid_max 80 * value does not cause lots of bitmaps to be allocated, but 81 * the scheme scales to up to 4 million PIDs, runtime. 82 */ 83 struct pid_namespace init_pid_ns = { 84 .ns.count = REFCOUNT_INIT(2), 85 .idr = IDR_INIT(init_pid_ns.idr), 86 .pid_allocated = PIDNS_ADDING, 87 .level = 0, 88 .child_reaper = &init_task, 89 .user_ns = &init_user_ns, 90 .ns.inum = PROC_PID_INIT_INO, 91 #ifdef CONFIG_PID_NS 92 .ns.ops = &pidns_operations, 93 #endif 94 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 95 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 96 #endif 97 }; 98 EXPORT_SYMBOL_GPL(init_pid_ns); 99 100 /* 101 * Note: disable interrupts while the pidmap_lock is held as an 102 * interrupt might come in and do read_lock(&tasklist_lock). 103 * 104 * If we don't disable interrupts there is a nasty deadlock between 105 * detach_pid()->free_pid() and another cpu that does 106 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 107 * read_lock(&tasklist_lock); 108 * 109 * After we clean up the tasklist_lock and know there are no 110 * irq handlers that take it we can leave the interrupts enabled. 111 * For now it is easier to be safe than to prove it can't happen. 112 */ 113 114 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 115 116 void put_pid(struct pid *pid) 117 { 118 struct pid_namespace *ns; 119 120 if (!pid) 121 return; 122 123 ns = pid->numbers[pid->level].ns; 124 if (refcount_dec_and_test(&pid->count)) { 125 kmem_cache_free(ns->pid_cachep, pid); 126 put_pid_ns(ns); 127 } 128 } 129 EXPORT_SYMBOL_GPL(put_pid); 130 131 static void delayed_put_pid(struct rcu_head *rhp) 132 { 133 struct pid *pid = container_of(rhp, struct pid, rcu); 134 put_pid(pid); 135 } 136 137 void free_pid(struct pid *pid) 138 { 139 /* We can be called with write_lock_irq(&tasklist_lock) held */ 140 int i; 141 unsigned long flags; 142 143 spin_lock_irqsave(&pidmap_lock, flags); 144 for (i = 0; i <= pid->level; i++) { 145 struct upid *upid = pid->numbers + i; 146 struct pid_namespace *ns = upid->ns; 147 switch (--ns->pid_allocated) { 148 case 2: 149 case 1: 150 /* When all that is left in the pid namespace 151 * is the reaper wake up the reaper. The reaper 152 * may be sleeping in zap_pid_ns_processes(). 153 */ 154 wake_up_process(ns->child_reaper); 155 break; 156 case PIDNS_ADDING: 157 /* Handle a fork failure of the first process */ 158 WARN_ON(ns->child_reaper); 159 ns->pid_allocated = 0; 160 break; 161 } 162 163 idr_remove(&ns->idr, upid->nr); 164 } 165 spin_unlock_irqrestore(&pidmap_lock, flags); 166 167 call_rcu(&pid->rcu, delayed_put_pid); 168 } 169 170 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 171 size_t set_tid_size) 172 { 173 struct pid *pid; 174 enum pid_type type; 175 int i, nr; 176 struct pid_namespace *tmp; 177 struct upid *upid; 178 int retval = -ENOMEM; 179 180 /* 181 * set_tid_size contains the size of the set_tid array. Starting at 182 * the most nested currently active PID namespace it tells alloc_pid() 183 * which PID to set for a process in that most nested PID namespace 184 * up to set_tid_size PID namespaces. It does not have to set the PID 185 * for a process in all nested PID namespaces but set_tid_size must 186 * never be greater than the current ns->level + 1. 187 */ 188 if (set_tid_size > ns->level + 1) 189 return ERR_PTR(-EINVAL); 190 191 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 192 if (!pid) 193 return ERR_PTR(retval); 194 195 tmp = ns; 196 pid->level = ns->level; 197 198 for (i = ns->level; i >= 0; i--) { 199 int tid = 0; 200 201 if (set_tid_size) { 202 tid = set_tid[ns->level - i]; 203 204 retval = -EINVAL; 205 if (tid < 1 || tid >= pid_max) 206 goto out_free; 207 /* 208 * Also fail if a PID != 1 is requested and 209 * no PID 1 exists. 210 */ 211 if (tid != 1 && !tmp->child_reaper) 212 goto out_free; 213 retval = -EPERM; 214 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 215 goto out_free; 216 set_tid_size--; 217 } 218 219 idr_preload(GFP_KERNEL); 220 spin_lock_irq(&pidmap_lock); 221 222 if (tid) { 223 nr = idr_alloc(&tmp->idr, NULL, tid, 224 tid + 1, GFP_ATOMIC); 225 /* 226 * If ENOSPC is returned it means that the PID is 227 * alreay in use. Return EEXIST in that case. 228 */ 229 if (nr == -ENOSPC) 230 nr = -EEXIST; 231 } else { 232 int pid_min = 1; 233 /* 234 * init really needs pid 1, but after reaching the 235 * maximum wrap back to RESERVED_PIDS 236 */ 237 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 238 pid_min = RESERVED_PIDS; 239 240 /* 241 * Store a null pointer so find_pid_ns does not find 242 * a partially initialized PID (see below). 243 */ 244 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 245 pid_max, GFP_ATOMIC); 246 } 247 spin_unlock_irq(&pidmap_lock); 248 idr_preload_end(); 249 250 if (nr < 0) { 251 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 252 goto out_free; 253 } 254 255 pid->numbers[i].nr = nr; 256 pid->numbers[i].ns = tmp; 257 tmp = tmp->parent; 258 } 259 260 /* 261 * ENOMEM is not the most obvious choice especially for the case 262 * where the child subreaper has already exited and the pid 263 * namespace denies the creation of any new processes. But ENOMEM 264 * is what we have exposed to userspace for a long time and it is 265 * documented behavior for pid namespaces. So we can't easily 266 * change it even if there were an error code better suited. 267 */ 268 retval = -ENOMEM; 269 270 get_pid_ns(ns); 271 refcount_set(&pid->count, 1); 272 spin_lock_init(&pid->lock); 273 for (type = 0; type < PIDTYPE_MAX; ++type) 274 INIT_HLIST_HEAD(&pid->tasks[type]); 275 276 init_waitqueue_head(&pid->wait_pidfd); 277 INIT_HLIST_HEAD(&pid->inodes); 278 279 upid = pid->numbers + ns->level; 280 spin_lock_irq(&pidmap_lock); 281 if (!(ns->pid_allocated & PIDNS_ADDING)) 282 goto out_unlock; 283 #ifdef CONFIG_FS_PID 284 pid->stashed = NULL; 285 pid->ino = ++pidfs_ino; 286 #endif 287 for ( ; upid >= pid->numbers; --upid) { 288 /* Make the PID visible to find_pid_ns. */ 289 idr_replace(&upid->ns->idr, pid, upid->nr); 290 upid->ns->pid_allocated++; 291 } 292 spin_unlock_irq(&pidmap_lock); 293 294 return pid; 295 296 out_unlock: 297 spin_unlock_irq(&pidmap_lock); 298 put_pid_ns(ns); 299 300 out_free: 301 spin_lock_irq(&pidmap_lock); 302 while (++i <= ns->level) { 303 upid = pid->numbers + i; 304 idr_remove(&upid->ns->idr, upid->nr); 305 } 306 307 /* On failure to allocate the first pid, reset the state */ 308 if (ns->pid_allocated == PIDNS_ADDING) 309 idr_set_cursor(&ns->idr, 0); 310 311 spin_unlock_irq(&pidmap_lock); 312 313 kmem_cache_free(ns->pid_cachep, pid); 314 return ERR_PTR(retval); 315 } 316 317 void disable_pid_allocation(struct pid_namespace *ns) 318 { 319 spin_lock_irq(&pidmap_lock); 320 ns->pid_allocated &= ~PIDNS_ADDING; 321 spin_unlock_irq(&pidmap_lock); 322 } 323 324 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 325 { 326 return idr_find(&ns->idr, nr); 327 } 328 EXPORT_SYMBOL_GPL(find_pid_ns); 329 330 struct pid *find_vpid(int nr) 331 { 332 return find_pid_ns(nr, task_active_pid_ns(current)); 333 } 334 EXPORT_SYMBOL_GPL(find_vpid); 335 336 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 337 { 338 return (type == PIDTYPE_PID) ? 339 &task->thread_pid : 340 &task->signal->pids[type]; 341 } 342 343 /* 344 * attach_pid() must be called with the tasklist_lock write-held. 345 */ 346 void attach_pid(struct task_struct *task, enum pid_type type) 347 { 348 struct pid *pid = *task_pid_ptr(task, type); 349 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 350 } 351 352 static void __change_pid(struct task_struct *task, enum pid_type type, 353 struct pid *new) 354 { 355 struct pid **pid_ptr = task_pid_ptr(task, type); 356 struct pid *pid; 357 int tmp; 358 359 pid = *pid_ptr; 360 361 hlist_del_rcu(&task->pid_links[type]); 362 *pid_ptr = new; 363 364 if (type == PIDTYPE_PID) { 365 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID)); 366 wake_up_all(&pid->wait_pidfd); 367 } 368 369 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 370 if (pid_has_task(pid, tmp)) 371 return; 372 373 free_pid(pid); 374 } 375 376 void detach_pid(struct task_struct *task, enum pid_type type) 377 { 378 __change_pid(task, type, NULL); 379 } 380 381 void change_pid(struct task_struct *task, enum pid_type type, 382 struct pid *pid) 383 { 384 __change_pid(task, type, pid); 385 attach_pid(task, type); 386 } 387 388 void exchange_tids(struct task_struct *left, struct task_struct *right) 389 { 390 struct pid *pid1 = left->thread_pid; 391 struct pid *pid2 = right->thread_pid; 392 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 393 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 394 395 /* Swap the single entry tid lists */ 396 hlists_swap_heads_rcu(head1, head2); 397 398 /* Swap the per task_struct pid */ 399 rcu_assign_pointer(left->thread_pid, pid2); 400 rcu_assign_pointer(right->thread_pid, pid1); 401 402 /* Swap the cached value */ 403 WRITE_ONCE(left->pid, pid_nr(pid2)); 404 WRITE_ONCE(right->pid, pid_nr(pid1)); 405 } 406 407 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 408 void transfer_pid(struct task_struct *old, struct task_struct *new, 409 enum pid_type type) 410 { 411 WARN_ON_ONCE(type == PIDTYPE_PID); 412 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 413 } 414 415 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 416 { 417 struct task_struct *result = NULL; 418 if (pid) { 419 struct hlist_node *first; 420 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 421 lockdep_tasklist_lock_is_held()); 422 if (first) 423 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 424 } 425 return result; 426 } 427 EXPORT_SYMBOL(pid_task); 428 429 /* 430 * Must be called under rcu_read_lock(). 431 */ 432 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 433 { 434 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 435 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 436 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 437 } 438 439 struct task_struct *find_task_by_vpid(pid_t vnr) 440 { 441 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 442 } 443 444 struct task_struct *find_get_task_by_vpid(pid_t nr) 445 { 446 struct task_struct *task; 447 448 rcu_read_lock(); 449 task = find_task_by_vpid(nr); 450 if (task) 451 get_task_struct(task); 452 rcu_read_unlock(); 453 454 return task; 455 } 456 457 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 458 { 459 struct pid *pid; 460 rcu_read_lock(); 461 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 462 rcu_read_unlock(); 463 return pid; 464 } 465 EXPORT_SYMBOL_GPL(get_task_pid); 466 467 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 468 { 469 struct task_struct *result; 470 rcu_read_lock(); 471 result = pid_task(pid, type); 472 if (result) 473 get_task_struct(result); 474 rcu_read_unlock(); 475 return result; 476 } 477 EXPORT_SYMBOL_GPL(get_pid_task); 478 479 struct pid *find_get_pid(pid_t nr) 480 { 481 struct pid *pid; 482 483 rcu_read_lock(); 484 pid = get_pid(find_vpid(nr)); 485 rcu_read_unlock(); 486 487 return pid; 488 } 489 EXPORT_SYMBOL_GPL(find_get_pid); 490 491 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 492 { 493 struct upid *upid; 494 pid_t nr = 0; 495 496 if (pid && ns->level <= pid->level) { 497 upid = &pid->numbers[ns->level]; 498 if (upid->ns == ns) 499 nr = upid->nr; 500 } 501 return nr; 502 } 503 EXPORT_SYMBOL_GPL(pid_nr_ns); 504 505 pid_t pid_vnr(struct pid *pid) 506 { 507 return pid_nr_ns(pid, task_active_pid_ns(current)); 508 } 509 EXPORT_SYMBOL_GPL(pid_vnr); 510 511 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 512 struct pid_namespace *ns) 513 { 514 pid_t nr = 0; 515 516 rcu_read_lock(); 517 if (!ns) 518 ns = task_active_pid_ns(current); 519 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 520 rcu_read_unlock(); 521 522 return nr; 523 } 524 EXPORT_SYMBOL(__task_pid_nr_ns); 525 526 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 527 { 528 return ns_of_pid(task_pid(tsk)); 529 } 530 EXPORT_SYMBOL_GPL(task_active_pid_ns); 531 532 /* 533 * Used by proc to find the first pid that is greater than or equal to nr. 534 * 535 * If there is a pid at nr this function is exactly the same as find_pid_ns. 536 */ 537 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 538 { 539 return idr_get_next(&ns->idr, &nr); 540 } 541 EXPORT_SYMBOL_GPL(find_ge_pid); 542 543 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 544 { 545 struct fd f; 546 struct pid *pid; 547 548 f = fdget(fd); 549 if (!f.file) 550 return ERR_PTR(-EBADF); 551 552 pid = pidfd_pid(f.file); 553 if (!IS_ERR(pid)) { 554 get_pid(pid); 555 *flags = f.file->f_flags; 556 } 557 558 fdput(f); 559 return pid; 560 } 561 562 /** 563 * pidfd_get_task() - Get the task associated with a pidfd 564 * 565 * @pidfd: pidfd for which to get the task 566 * @flags: flags associated with this pidfd 567 * 568 * Return the task associated with @pidfd. The function takes a reference on 569 * the returned task. The caller is responsible for releasing that reference. 570 * 571 * Return: On success, the task_struct associated with the pidfd. 572 * On error, a negative errno number will be returned. 573 */ 574 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 575 { 576 unsigned int f_flags; 577 struct pid *pid; 578 struct task_struct *task; 579 580 pid = pidfd_get_pid(pidfd, &f_flags); 581 if (IS_ERR(pid)) 582 return ERR_CAST(pid); 583 584 task = get_pid_task(pid, PIDTYPE_TGID); 585 put_pid(pid); 586 if (!task) 587 return ERR_PTR(-ESRCH); 588 589 *flags = f_flags; 590 return task; 591 } 592 593 /** 594 * pidfd_create() - Create a new pid file descriptor. 595 * 596 * @pid: struct pid that the pidfd will reference 597 * @flags: flags to pass 598 * 599 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 600 * 601 * Note, that this function can only be called after the fd table has 602 * been unshared to avoid leaking the pidfd to the new process. 603 * 604 * This symbol should not be explicitly exported to loadable modules. 605 * 606 * Return: On success, a cloexec pidfd is returned. 607 * On error, a negative errno number will be returned. 608 */ 609 static int pidfd_create(struct pid *pid, unsigned int flags) 610 { 611 int pidfd; 612 struct file *pidfd_file; 613 614 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 615 if (pidfd < 0) 616 return pidfd; 617 618 fd_install(pidfd, pidfd_file); 619 return pidfd; 620 } 621 622 /** 623 * sys_pidfd_open() - Open new pid file descriptor. 624 * 625 * @pid: pid for which to retrieve a pidfd 626 * @flags: flags to pass 627 * 628 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 629 * the task identified by @pid. Without PIDFD_THREAD flag the target task 630 * must be a thread-group leader. 631 * 632 * Return: On success, a cloexec pidfd is returned. 633 * On error, a negative errno number will be returned. 634 */ 635 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 636 { 637 int fd; 638 struct pid *p; 639 640 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 641 return -EINVAL; 642 643 if (pid <= 0) 644 return -EINVAL; 645 646 p = find_get_pid(pid); 647 if (!p) 648 return -ESRCH; 649 650 fd = pidfd_create(p, flags); 651 652 put_pid(p); 653 return fd; 654 } 655 656 void __init pid_idr_init(void) 657 { 658 /* Verify no one has done anything silly: */ 659 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 660 661 /* bump default and minimum pid_max based on number of cpus */ 662 pid_max = min(pid_max_max, max_t(int, pid_max, 663 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 664 pid_max_min = max_t(int, pid_max_min, 665 PIDS_PER_CPU_MIN * num_possible_cpus()); 666 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 667 668 idr_init(&init_pid_ns.idr); 669 670 init_pid_ns.pid_cachep = kmem_cache_create("pid", 671 struct_size_t(struct pid, numbers, 1), 672 __alignof__(struct pid), 673 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 674 NULL); 675 } 676 677 static struct file *__pidfd_fget(struct task_struct *task, int fd) 678 { 679 struct file *file; 680 int ret; 681 682 ret = down_read_killable(&task->signal->exec_update_lock); 683 if (ret) 684 return ERR_PTR(ret); 685 686 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 687 file = fget_task(task, fd); 688 else 689 file = ERR_PTR(-EPERM); 690 691 up_read(&task->signal->exec_update_lock); 692 693 if (!file) { 694 /* 695 * It is possible that the target thread is exiting; it can be 696 * either: 697 * 1. before exit_signals(), which gives a real fd 698 * 2. before exit_files() takes the task_lock() gives a real fd 699 * 3. after exit_files() releases task_lock(), ->files is NULL; 700 * this has PF_EXITING, since it was set in exit_signals(), 701 * __pidfd_fget() returns EBADF. 702 * In case 3 we get EBADF, but that really means ESRCH, since 703 * the task is currently exiting and has freed its files 704 * struct, so we fix it up. 705 */ 706 if (task->flags & PF_EXITING) 707 file = ERR_PTR(-ESRCH); 708 else 709 file = ERR_PTR(-EBADF); 710 } 711 712 return file; 713 } 714 715 static int pidfd_getfd(struct pid *pid, int fd) 716 { 717 struct task_struct *task; 718 struct file *file; 719 int ret; 720 721 task = get_pid_task(pid, PIDTYPE_PID); 722 if (!task) 723 return -ESRCH; 724 725 file = __pidfd_fget(task, fd); 726 put_task_struct(task); 727 if (IS_ERR(file)) 728 return PTR_ERR(file); 729 730 ret = receive_fd(file, NULL, O_CLOEXEC); 731 fput(file); 732 733 return ret; 734 } 735 736 /** 737 * sys_pidfd_getfd() - Get a file descriptor from another process 738 * 739 * @pidfd: the pidfd file descriptor of the process 740 * @fd: the file descriptor number to get 741 * @flags: flags on how to get the fd (reserved) 742 * 743 * This syscall gets a copy of a file descriptor from another process 744 * based on the pidfd, and file descriptor number. It requires that 745 * the calling process has the ability to ptrace the process represented 746 * by the pidfd. The process which is having its file descriptor copied 747 * is otherwise unaffected. 748 * 749 * Return: On success, a cloexec file descriptor is returned. 750 * On error, a negative errno number will be returned. 751 */ 752 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 753 unsigned int, flags) 754 { 755 struct pid *pid; 756 struct fd f; 757 int ret; 758 759 /* flags is currently unused - make sure it's unset */ 760 if (flags) 761 return -EINVAL; 762 763 f = fdget(pidfd); 764 if (!f.file) 765 return -EBADF; 766 767 pid = pidfd_pid(f.file); 768 if (IS_ERR(pid)) 769 ret = PTR_ERR(pid); 770 else 771 ret = pidfd_getfd(pid, fd); 772 773 fdput(f); 774 return ret; 775 } 776