1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <linux/seqlock.h> 47 #include <net/sock.h> 48 #include <uapi/linux/pidfd.h> 49 50 struct pid init_struct_pid = { 51 .count = REFCOUNT_INIT(1), 52 .tasks = { 53 { .first = NULL }, 54 { .first = NULL }, 55 { .first = NULL }, 56 }, 57 .level = 0, 58 .numbers = { { 59 .nr = 0, 60 .ns = &init_pid_ns, 61 }, } 62 }; 63 64 static int pid_max_min = RESERVED_PIDS + 1; 65 static int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .ns.count = REFCOUNT_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 .pid_max = PID_MAX_DEFAULT, 85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 86 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 87 #endif 88 }; 89 EXPORT_SYMBOL_GPL(init_pid_ns); 90 91 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 92 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock); 93 94 void put_pid(struct pid *pid) 95 { 96 struct pid_namespace *ns; 97 98 if (!pid) 99 return; 100 101 ns = pid->numbers[pid->level].ns; 102 if (refcount_dec_and_test(&pid->count)) { 103 kmem_cache_free(ns->pid_cachep, pid); 104 put_pid_ns(ns); 105 } 106 } 107 EXPORT_SYMBOL_GPL(put_pid); 108 109 static void delayed_put_pid(struct rcu_head *rhp) 110 { 111 struct pid *pid = container_of(rhp, struct pid, rcu); 112 put_pid(pid); 113 } 114 115 void free_pid(struct pid *pid) 116 { 117 int i; 118 119 lockdep_assert_not_held(&tasklist_lock); 120 121 spin_lock(&pidmap_lock); 122 for (i = 0; i <= pid->level; i++) { 123 struct upid *upid = pid->numbers + i; 124 struct pid_namespace *ns = upid->ns; 125 switch (--ns->pid_allocated) { 126 case 2: 127 case 1: 128 /* When all that is left in the pid namespace 129 * is the reaper wake up the reaper. The reaper 130 * may be sleeping in zap_pid_ns_processes(). 131 */ 132 wake_up_process(ns->child_reaper); 133 break; 134 case PIDNS_ADDING: 135 /* Handle a fork failure of the first process */ 136 WARN_ON(ns->child_reaper); 137 ns->pid_allocated = 0; 138 break; 139 } 140 141 idr_remove(&ns->idr, upid->nr); 142 } 143 pidfs_remove_pid(pid); 144 spin_unlock(&pidmap_lock); 145 146 call_rcu(&pid->rcu, delayed_put_pid); 147 } 148 149 void free_pids(struct pid **pids) 150 { 151 int tmp; 152 153 /* 154 * This can batch pidmap_lock. 155 */ 156 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 157 if (pids[tmp]) 158 free_pid(pids[tmp]); 159 } 160 161 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 162 size_t set_tid_size) 163 { 164 struct pid *pid; 165 enum pid_type type; 166 int i, nr; 167 struct pid_namespace *tmp; 168 struct upid *upid; 169 int retval = -ENOMEM; 170 171 /* 172 * set_tid_size contains the size of the set_tid array. Starting at 173 * the most nested currently active PID namespace it tells alloc_pid() 174 * which PID to set for a process in that most nested PID namespace 175 * up to set_tid_size PID namespaces. It does not have to set the PID 176 * for a process in all nested PID namespaces but set_tid_size must 177 * never be greater than the current ns->level + 1. 178 */ 179 if (set_tid_size > ns->level + 1) 180 return ERR_PTR(-EINVAL); 181 182 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 183 if (!pid) 184 return ERR_PTR(retval); 185 186 tmp = ns; 187 pid->level = ns->level; 188 189 for (i = ns->level; i >= 0; i--) { 190 int tid = 0; 191 int pid_max = READ_ONCE(tmp->pid_max); 192 193 if (set_tid_size) { 194 tid = set_tid[ns->level - i]; 195 196 retval = -EINVAL; 197 if (tid < 1 || tid >= pid_max) 198 goto out_free; 199 /* 200 * Also fail if a PID != 1 is requested and 201 * no PID 1 exists. 202 */ 203 if (tid != 1 && !tmp->child_reaper) 204 goto out_free; 205 retval = -EPERM; 206 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 207 goto out_free; 208 set_tid_size--; 209 } 210 211 idr_preload(GFP_KERNEL); 212 spin_lock(&pidmap_lock); 213 214 if (tid) { 215 nr = idr_alloc(&tmp->idr, NULL, tid, 216 tid + 1, GFP_ATOMIC); 217 /* 218 * If ENOSPC is returned it means that the PID is 219 * alreay in use. Return EEXIST in that case. 220 */ 221 if (nr == -ENOSPC) 222 nr = -EEXIST; 223 } else { 224 int pid_min = 1; 225 /* 226 * init really needs pid 1, but after reaching the 227 * maximum wrap back to RESERVED_PIDS 228 */ 229 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 230 pid_min = RESERVED_PIDS; 231 232 /* 233 * Store a null pointer so find_pid_ns does not find 234 * a partially initialized PID (see below). 235 */ 236 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 237 pid_max, GFP_ATOMIC); 238 } 239 spin_unlock(&pidmap_lock); 240 idr_preload_end(); 241 242 if (nr < 0) { 243 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 244 goto out_free; 245 } 246 247 pid->numbers[i].nr = nr; 248 pid->numbers[i].ns = tmp; 249 tmp = tmp->parent; 250 } 251 252 /* 253 * ENOMEM is not the most obvious choice especially for the case 254 * where the child subreaper has already exited and the pid 255 * namespace denies the creation of any new processes. But ENOMEM 256 * is what we have exposed to userspace for a long time and it is 257 * documented behavior for pid namespaces. So we can't easily 258 * change it even if there were an error code better suited. 259 */ 260 retval = -ENOMEM; 261 262 get_pid_ns(ns); 263 refcount_set(&pid->count, 1); 264 spin_lock_init(&pid->lock); 265 for (type = 0; type < PIDTYPE_MAX; ++type) 266 INIT_HLIST_HEAD(&pid->tasks[type]); 267 268 init_waitqueue_head(&pid->wait_pidfd); 269 INIT_HLIST_HEAD(&pid->inodes); 270 271 upid = pid->numbers + ns->level; 272 idr_preload(GFP_KERNEL); 273 spin_lock(&pidmap_lock); 274 if (!(ns->pid_allocated & PIDNS_ADDING)) 275 goto out_unlock; 276 pidfs_add_pid(pid); 277 for ( ; upid >= pid->numbers; --upid) { 278 /* Make the PID visible to find_pid_ns. */ 279 idr_replace(&upid->ns->idr, pid, upid->nr); 280 upid->ns->pid_allocated++; 281 } 282 spin_unlock(&pidmap_lock); 283 idr_preload_end(); 284 285 return pid; 286 287 out_unlock: 288 spin_unlock(&pidmap_lock); 289 idr_preload_end(); 290 put_pid_ns(ns); 291 292 out_free: 293 spin_lock(&pidmap_lock); 294 while (++i <= ns->level) { 295 upid = pid->numbers + i; 296 idr_remove(&upid->ns->idr, upid->nr); 297 } 298 299 /* On failure to allocate the first pid, reset the state */ 300 if (ns->pid_allocated == PIDNS_ADDING) 301 idr_set_cursor(&ns->idr, 0); 302 303 spin_unlock(&pidmap_lock); 304 305 kmem_cache_free(ns->pid_cachep, pid); 306 return ERR_PTR(retval); 307 } 308 309 void disable_pid_allocation(struct pid_namespace *ns) 310 { 311 spin_lock(&pidmap_lock); 312 ns->pid_allocated &= ~PIDNS_ADDING; 313 spin_unlock(&pidmap_lock); 314 } 315 316 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 317 { 318 return idr_find(&ns->idr, nr); 319 } 320 EXPORT_SYMBOL_GPL(find_pid_ns); 321 322 struct pid *find_vpid(int nr) 323 { 324 return find_pid_ns(nr, task_active_pid_ns(current)); 325 } 326 EXPORT_SYMBOL_GPL(find_vpid); 327 328 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 329 { 330 return (type == PIDTYPE_PID) ? 331 &task->thread_pid : 332 &task->signal->pids[type]; 333 } 334 335 /* 336 * attach_pid() must be called with the tasklist_lock write-held. 337 */ 338 void attach_pid(struct task_struct *task, enum pid_type type) 339 { 340 struct pid *pid; 341 342 lockdep_assert_held_write(&tasklist_lock); 343 344 pid = *task_pid_ptr(task, type); 345 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 346 } 347 348 static void __change_pid(struct pid **pids, struct task_struct *task, 349 enum pid_type type, struct pid *new) 350 { 351 struct pid **pid_ptr, *pid; 352 int tmp; 353 354 lockdep_assert_held_write(&tasklist_lock); 355 356 pid_ptr = task_pid_ptr(task, type); 357 pid = *pid_ptr; 358 359 hlist_del_rcu(&task->pid_links[type]); 360 *pid_ptr = new; 361 362 if (type == PIDTYPE_PID) { 363 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID)); 364 wake_up_all(&pid->wait_pidfd); 365 } 366 367 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 368 if (pid_has_task(pid, tmp)) 369 return; 370 371 WARN_ON(pids[type]); 372 pids[type] = pid; 373 } 374 375 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type) 376 { 377 __change_pid(pids, task, type, NULL); 378 } 379 380 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type, 381 struct pid *pid) 382 { 383 __change_pid(pids, task, type, pid); 384 attach_pid(task, type); 385 } 386 387 void exchange_tids(struct task_struct *left, struct task_struct *right) 388 { 389 struct pid *pid1 = left->thread_pid; 390 struct pid *pid2 = right->thread_pid; 391 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 392 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 393 394 lockdep_assert_held_write(&tasklist_lock); 395 396 /* Swap the single entry tid lists */ 397 hlists_swap_heads_rcu(head1, head2); 398 399 /* Swap the per task_struct pid */ 400 rcu_assign_pointer(left->thread_pid, pid2); 401 rcu_assign_pointer(right->thread_pid, pid1); 402 403 /* Swap the cached value */ 404 WRITE_ONCE(left->pid, pid_nr(pid2)); 405 WRITE_ONCE(right->pid, pid_nr(pid1)); 406 } 407 408 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 409 void transfer_pid(struct task_struct *old, struct task_struct *new, 410 enum pid_type type) 411 { 412 WARN_ON_ONCE(type == PIDTYPE_PID); 413 lockdep_assert_held_write(&tasklist_lock); 414 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 415 } 416 417 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 418 { 419 struct task_struct *result = NULL; 420 if (pid) { 421 struct hlist_node *first; 422 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 423 lockdep_tasklist_lock_is_held()); 424 if (first) 425 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 426 } 427 return result; 428 } 429 EXPORT_SYMBOL(pid_task); 430 431 /* 432 * Must be called under rcu_read_lock(). 433 */ 434 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 435 { 436 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 437 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 438 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 439 } 440 441 struct task_struct *find_task_by_vpid(pid_t vnr) 442 { 443 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 444 } 445 446 struct task_struct *find_get_task_by_vpid(pid_t nr) 447 { 448 struct task_struct *task; 449 450 rcu_read_lock(); 451 task = find_task_by_vpid(nr); 452 if (task) 453 get_task_struct(task); 454 rcu_read_unlock(); 455 456 return task; 457 } 458 459 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 460 { 461 struct pid *pid; 462 rcu_read_lock(); 463 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 464 rcu_read_unlock(); 465 return pid; 466 } 467 EXPORT_SYMBOL_GPL(get_task_pid); 468 469 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 470 { 471 struct task_struct *result; 472 rcu_read_lock(); 473 result = pid_task(pid, type); 474 if (result) 475 get_task_struct(result); 476 rcu_read_unlock(); 477 return result; 478 } 479 EXPORT_SYMBOL_GPL(get_pid_task); 480 481 struct pid *find_get_pid(pid_t nr) 482 { 483 struct pid *pid; 484 485 rcu_read_lock(); 486 pid = get_pid(find_vpid(nr)); 487 rcu_read_unlock(); 488 489 return pid; 490 } 491 EXPORT_SYMBOL_GPL(find_get_pid); 492 493 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 494 { 495 struct upid *upid; 496 pid_t nr = 0; 497 498 if (pid && ns->level <= pid->level) { 499 upid = &pid->numbers[ns->level]; 500 if (upid->ns == ns) 501 nr = upid->nr; 502 } 503 return nr; 504 } 505 EXPORT_SYMBOL_GPL(pid_nr_ns); 506 507 pid_t pid_vnr(struct pid *pid) 508 { 509 return pid_nr_ns(pid, task_active_pid_ns(current)); 510 } 511 EXPORT_SYMBOL_GPL(pid_vnr); 512 513 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 514 struct pid_namespace *ns) 515 { 516 pid_t nr = 0; 517 518 rcu_read_lock(); 519 if (!ns) 520 ns = task_active_pid_ns(current); 521 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 522 rcu_read_unlock(); 523 524 return nr; 525 } 526 EXPORT_SYMBOL(__task_pid_nr_ns); 527 528 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 529 { 530 return ns_of_pid(task_pid(tsk)); 531 } 532 EXPORT_SYMBOL_GPL(task_active_pid_ns); 533 534 /* 535 * Used by proc to find the first pid that is greater than or equal to nr. 536 * 537 * If there is a pid at nr this function is exactly the same as find_pid_ns. 538 */ 539 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 540 { 541 return idr_get_next(&ns->idr, &nr); 542 } 543 EXPORT_SYMBOL_GPL(find_ge_pid); 544 545 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 546 { 547 CLASS(fd, f)(fd); 548 struct pid *pid; 549 550 if (fd_empty(f)) 551 return ERR_PTR(-EBADF); 552 553 pid = pidfd_pid(fd_file(f)); 554 if (!IS_ERR(pid)) { 555 get_pid(pid); 556 *flags = fd_file(f)->f_flags; 557 } 558 return pid; 559 } 560 561 /** 562 * pidfd_get_task() - Get the task associated with a pidfd 563 * 564 * @pidfd: pidfd for which to get the task 565 * @flags: flags associated with this pidfd 566 * 567 * Return the task associated with @pidfd. The function takes a reference on 568 * the returned task. The caller is responsible for releasing that reference. 569 * 570 * Return: On success, the task_struct associated with the pidfd. 571 * On error, a negative errno number will be returned. 572 */ 573 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 574 { 575 unsigned int f_flags = 0; 576 struct pid *pid; 577 struct task_struct *task; 578 enum pid_type type; 579 580 switch (pidfd) { 581 case PIDFD_SELF_THREAD: 582 type = PIDTYPE_PID; 583 pid = get_task_pid(current, type); 584 break; 585 case PIDFD_SELF_THREAD_GROUP: 586 type = PIDTYPE_TGID; 587 pid = get_task_pid(current, type); 588 break; 589 default: 590 pid = pidfd_get_pid(pidfd, &f_flags); 591 if (IS_ERR(pid)) 592 return ERR_CAST(pid); 593 type = PIDTYPE_TGID; 594 break; 595 } 596 597 task = get_pid_task(pid, type); 598 put_pid(pid); 599 if (!task) 600 return ERR_PTR(-ESRCH); 601 602 *flags = f_flags; 603 return task; 604 } 605 606 /** 607 * pidfd_create() - Create a new pid file descriptor. 608 * 609 * @pid: struct pid that the pidfd will reference 610 * @flags: flags to pass 611 * 612 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 613 * 614 * Note, that this function can only be called after the fd table has 615 * been unshared to avoid leaking the pidfd to the new process. 616 * 617 * This symbol should not be explicitly exported to loadable modules. 618 * 619 * Return: On success, a cloexec pidfd is returned. 620 * On error, a negative errno number will be returned. 621 */ 622 static int pidfd_create(struct pid *pid, unsigned int flags) 623 { 624 int pidfd; 625 struct file *pidfd_file; 626 627 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 628 if (pidfd < 0) 629 return pidfd; 630 631 fd_install(pidfd, pidfd_file); 632 return pidfd; 633 } 634 635 /** 636 * sys_pidfd_open() - Open new pid file descriptor. 637 * 638 * @pid: pid for which to retrieve a pidfd 639 * @flags: flags to pass 640 * 641 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 642 * the task identified by @pid. Without PIDFD_THREAD flag the target task 643 * must be a thread-group leader. 644 * 645 * Return: On success, a cloexec pidfd is returned. 646 * On error, a negative errno number will be returned. 647 */ 648 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 649 { 650 int fd; 651 struct pid *p; 652 653 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 654 return -EINVAL; 655 656 if (pid <= 0) 657 return -EINVAL; 658 659 p = find_get_pid(pid); 660 if (!p) 661 return -ESRCH; 662 663 fd = pidfd_create(p, flags); 664 665 put_pid(p); 666 return fd; 667 } 668 669 #ifdef CONFIG_SYSCTL 670 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) 671 { 672 return &task_active_pid_ns(current)->set; 673 } 674 675 static int set_is_seen(struct ctl_table_set *set) 676 { 677 return &task_active_pid_ns(current)->set == set; 678 } 679 680 static int pid_table_root_permissions(struct ctl_table_header *head, 681 const struct ctl_table *table) 682 { 683 struct pid_namespace *pidns = 684 container_of(head->set, struct pid_namespace, set); 685 int mode = table->mode; 686 687 if (ns_capable(pidns->user_ns, CAP_SYS_ADMIN) || 688 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) 689 mode = (mode & S_IRWXU) >> 6; 690 else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) 691 mode = (mode & S_IRWXG) >> 3; 692 else 693 mode = mode & S_IROTH; 694 return (mode << 6) | (mode << 3) | mode; 695 } 696 697 static void pid_table_root_set_ownership(struct ctl_table_header *head, 698 kuid_t *uid, kgid_t *gid) 699 { 700 struct pid_namespace *pidns = 701 container_of(head->set, struct pid_namespace, set); 702 kuid_t ns_root_uid; 703 kgid_t ns_root_gid; 704 705 ns_root_uid = make_kuid(pidns->user_ns, 0); 706 if (uid_valid(ns_root_uid)) 707 *uid = ns_root_uid; 708 709 ns_root_gid = make_kgid(pidns->user_ns, 0); 710 if (gid_valid(ns_root_gid)) 711 *gid = ns_root_gid; 712 } 713 714 static struct ctl_table_root pid_table_root = { 715 .lookup = pid_table_root_lookup, 716 .permissions = pid_table_root_permissions, 717 .set_ownership = pid_table_root_set_ownership, 718 }; 719 720 static const struct ctl_table pid_table[] = { 721 { 722 .procname = "pid_max", 723 .data = &init_pid_ns.pid_max, 724 .maxlen = sizeof(int), 725 .mode = 0644, 726 .proc_handler = proc_dointvec_minmax, 727 .extra1 = &pid_max_min, 728 .extra2 = &pid_max_max, 729 }, 730 }; 731 #endif 732 733 int register_pidns_sysctls(struct pid_namespace *pidns) 734 { 735 #ifdef CONFIG_SYSCTL 736 struct ctl_table *tbl; 737 738 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); 739 740 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); 741 if (!tbl) 742 return -ENOMEM; 743 tbl->data = &pidns->pid_max; 744 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, 745 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 746 747 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, 748 ARRAY_SIZE(pid_table)); 749 if (!pidns->sysctls) { 750 kfree(tbl); 751 retire_sysctl_set(&pidns->set); 752 return -ENOMEM; 753 } 754 #endif 755 return 0; 756 } 757 758 void unregister_pidns_sysctls(struct pid_namespace *pidns) 759 { 760 #ifdef CONFIG_SYSCTL 761 const struct ctl_table *tbl; 762 763 tbl = pidns->sysctls->ctl_table_arg; 764 unregister_sysctl_table(pidns->sysctls); 765 retire_sysctl_set(&pidns->set); 766 kfree(tbl); 767 #endif 768 } 769 770 void __init pid_idr_init(void) 771 { 772 /* Verify no one has done anything silly: */ 773 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 774 775 /* bump default and minimum pid_max based on number of cpus */ 776 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, 777 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 778 pid_max_min = max_t(int, pid_max_min, 779 PIDS_PER_CPU_MIN * num_possible_cpus()); 780 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); 781 782 idr_init(&init_pid_ns.idr); 783 784 init_pid_ns.pid_cachep = kmem_cache_create("pid", 785 struct_size_t(struct pid, numbers, 1), 786 __alignof__(struct pid), 787 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 788 NULL); 789 } 790 791 static __init int pid_namespace_sysctl_init(void) 792 { 793 #ifdef CONFIG_SYSCTL 794 /* "kernel" directory will have already been initialized. */ 795 BUG_ON(register_pidns_sysctls(&init_pid_ns)); 796 #endif 797 return 0; 798 } 799 subsys_initcall(pid_namespace_sysctl_init); 800 801 static struct file *__pidfd_fget(struct task_struct *task, int fd) 802 { 803 struct file *file; 804 int ret; 805 806 ret = down_read_killable(&task->signal->exec_update_lock); 807 if (ret) 808 return ERR_PTR(ret); 809 810 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 811 file = fget_task(task, fd); 812 else 813 file = ERR_PTR(-EPERM); 814 815 up_read(&task->signal->exec_update_lock); 816 817 if (!file) { 818 /* 819 * It is possible that the target thread is exiting; it can be 820 * either: 821 * 1. before exit_signals(), which gives a real fd 822 * 2. before exit_files() takes the task_lock() gives a real fd 823 * 3. after exit_files() releases task_lock(), ->files is NULL; 824 * this has PF_EXITING, since it was set in exit_signals(), 825 * __pidfd_fget() returns EBADF. 826 * In case 3 we get EBADF, but that really means ESRCH, since 827 * the task is currently exiting and has freed its files 828 * struct, so we fix it up. 829 */ 830 if (task->flags & PF_EXITING) 831 file = ERR_PTR(-ESRCH); 832 else 833 file = ERR_PTR(-EBADF); 834 } 835 836 return file; 837 } 838 839 static int pidfd_getfd(struct pid *pid, int fd) 840 { 841 struct task_struct *task; 842 struct file *file; 843 int ret; 844 845 task = get_pid_task(pid, PIDTYPE_PID); 846 if (!task) 847 return -ESRCH; 848 849 file = __pidfd_fget(task, fd); 850 put_task_struct(task); 851 if (IS_ERR(file)) 852 return PTR_ERR(file); 853 854 ret = receive_fd(file, NULL, O_CLOEXEC); 855 fput(file); 856 857 return ret; 858 } 859 860 /** 861 * sys_pidfd_getfd() - Get a file descriptor from another process 862 * 863 * @pidfd: the pidfd file descriptor of the process 864 * @fd: the file descriptor number to get 865 * @flags: flags on how to get the fd (reserved) 866 * 867 * This syscall gets a copy of a file descriptor from another process 868 * based on the pidfd, and file descriptor number. It requires that 869 * the calling process has the ability to ptrace the process represented 870 * by the pidfd. The process which is having its file descriptor copied 871 * is otherwise unaffected. 872 * 873 * Return: On success, a cloexec file descriptor is returned. 874 * On error, a negative errno number will be returned. 875 */ 876 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 877 unsigned int, flags) 878 { 879 struct pid *pid; 880 881 /* flags is currently unused - make sure it's unset */ 882 if (flags) 883 return -EINVAL; 884 885 CLASS(fd, f)(pidfd); 886 if (fd_empty(f)) 887 return -EBADF; 888 889 pid = pidfd_pid(fd_file(f)); 890 if (IS_ERR(pid)) 891 return PTR_ERR(pid); 892 893 return pidfd_getfd(pid, fd); 894 } 895