xref: /linux/kernel/pid.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched/task.h>
42 
43 #define pid_hashfn(nr, ns)	\
44 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
45 static struct hlist_head *pid_hash;
46 static unsigned int pidhash_shift = 4;
47 struct pid init_struct_pid = INIT_STRUCT_PID;
48 
49 int pid_max = PID_MAX_DEFAULT;
50 
51 #define RESERVED_PIDS		300
52 
53 int pid_max_min = RESERVED_PIDS + 1;
54 int pid_max_max = PID_MAX_LIMIT;
55 
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 		struct pidmap *map, int off)
58 {
59 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61 
62 #define find_next_offset(map, off)					\
63 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64 
65 /*
66  * PID-map pages start out as NULL, they get allocated upon
67  * first use and are never deallocated. This way a low pid_max
68  * value does not cause lots of bitmaps to be allocated, but
69  * the scheme scales to up to 4 million PIDs, runtime.
70  */
71 struct pid_namespace init_pid_ns = {
72 	.kref = KREF_INIT(2),
73 	.pidmap = {
74 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
75 	},
76 	.last_pid = 0,
77 	.nr_hashed = PIDNS_HASH_ADDING,
78 	.level = 0,
79 	.child_reaper = &init_task,
80 	.user_ns = &init_user_ns,
81 	.ns.inum = PROC_PID_INIT_INO,
82 #ifdef CONFIG_PID_NS
83 	.ns.ops = &pidns_operations,
84 #endif
85 };
86 EXPORT_SYMBOL_GPL(init_pid_ns);
87 
88 /*
89  * Note: disable interrupts while the pidmap_lock is held as an
90  * interrupt might come in and do read_lock(&tasklist_lock).
91  *
92  * If we don't disable interrupts there is a nasty deadlock between
93  * detach_pid()->free_pid() and another cpu that does
94  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95  * read_lock(&tasklist_lock);
96  *
97  * After we clean up the tasklist_lock and know there are no
98  * irq handlers that take it we can leave the interrupts enabled.
99  * For now it is easier to be safe than to prove it can't happen.
100  */
101 
102 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103 
104 static void free_pidmap(struct upid *upid)
105 {
106 	int nr = upid->nr;
107 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
108 	int offset = nr & BITS_PER_PAGE_MASK;
109 
110 	clear_bit(offset, map->page);
111 	atomic_inc(&map->nr_free);
112 }
113 
114 /*
115  * If we started walking pids at 'base', is 'a' seen before 'b'?
116  */
117 static int pid_before(int base, int a, int b)
118 {
119 	/*
120 	 * This is the same as saying
121 	 *
122 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
123 	 * and that mapping orders 'a' and 'b' with respect to 'base'.
124 	 */
125 	return (unsigned)(a - base) < (unsigned)(b - base);
126 }
127 
128 /*
129  * We might be racing with someone else trying to set pid_ns->last_pid
130  * at the pid allocation time (there's also a sysctl for this, but racing
131  * with this one is OK, see comment in kernel/pid_namespace.c about it).
132  * We want the winner to have the "later" value, because if the
133  * "earlier" value prevails, then a pid may get reused immediately.
134  *
135  * Since pids rollover, it is not sufficient to just pick the bigger
136  * value.  We have to consider where we started counting from.
137  *
138  * 'base' is the value of pid_ns->last_pid that we observed when
139  * we started looking for a pid.
140  *
141  * 'pid' is the pid that we eventually found.
142  */
143 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
144 {
145 	int prev;
146 	int last_write = base;
147 	do {
148 		prev = last_write;
149 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
150 	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
151 }
152 
153 static int alloc_pidmap(struct pid_namespace *pid_ns)
154 {
155 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
156 	struct pidmap *map;
157 
158 	pid = last + 1;
159 	if (pid >= pid_max)
160 		pid = RESERVED_PIDS;
161 	offset = pid & BITS_PER_PAGE_MASK;
162 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
163 	/*
164 	 * If last_pid points into the middle of the map->page we
165 	 * want to scan this bitmap block twice, the second time
166 	 * we start with offset == 0 (or RESERVED_PIDS).
167 	 */
168 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
169 	for (i = 0; i <= max_scan; ++i) {
170 		if (unlikely(!map->page)) {
171 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
172 			/*
173 			 * Free the page if someone raced with us
174 			 * installing it:
175 			 */
176 			spin_lock_irq(&pidmap_lock);
177 			if (!map->page) {
178 				map->page = page;
179 				page = NULL;
180 			}
181 			spin_unlock_irq(&pidmap_lock);
182 			kfree(page);
183 			if (unlikely(!map->page))
184 				return -ENOMEM;
185 		}
186 		if (likely(atomic_read(&map->nr_free))) {
187 			for ( ; ; ) {
188 				if (!test_and_set_bit(offset, map->page)) {
189 					atomic_dec(&map->nr_free);
190 					set_last_pid(pid_ns, last, pid);
191 					return pid;
192 				}
193 				offset = find_next_offset(map, offset);
194 				if (offset >= BITS_PER_PAGE)
195 					break;
196 				pid = mk_pid(pid_ns, map, offset);
197 				if (pid >= pid_max)
198 					break;
199 			}
200 		}
201 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
202 			++map;
203 			offset = 0;
204 		} else {
205 			map = &pid_ns->pidmap[0];
206 			offset = RESERVED_PIDS;
207 			if (unlikely(last == offset))
208 				break;
209 		}
210 		pid = mk_pid(pid_ns, map, offset);
211 	}
212 	return -EAGAIN;
213 }
214 
215 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
216 {
217 	int offset;
218 	struct pidmap *map, *end;
219 
220 	if (last >= PID_MAX_LIMIT)
221 		return -1;
222 
223 	offset = (last + 1) & BITS_PER_PAGE_MASK;
224 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
225 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
226 	for (; map < end; map++, offset = 0) {
227 		if (unlikely(!map->page))
228 			continue;
229 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
230 		if (offset < BITS_PER_PAGE)
231 			return mk_pid(pid_ns, map, offset);
232 	}
233 	return -1;
234 }
235 
236 void put_pid(struct pid *pid)
237 {
238 	struct pid_namespace *ns;
239 
240 	if (!pid)
241 		return;
242 
243 	ns = pid->numbers[pid->level].ns;
244 	if ((atomic_read(&pid->count) == 1) ||
245 	     atomic_dec_and_test(&pid->count)) {
246 		kmem_cache_free(ns->pid_cachep, pid);
247 		put_pid_ns(ns);
248 	}
249 }
250 EXPORT_SYMBOL_GPL(put_pid);
251 
252 static void delayed_put_pid(struct rcu_head *rhp)
253 {
254 	struct pid *pid = container_of(rhp, struct pid, rcu);
255 	put_pid(pid);
256 }
257 
258 void free_pid(struct pid *pid)
259 {
260 	/* We can be called with write_lock_irq(&tasklist_lock) held */
261 	int i;
262 	unsigned long flags;
263 
264 	spin_lock_irqsave(&pidmap_lock, flags);
265 	for (i = 0; i <= pid->level; i++) {
266 		struct upid *upid = pid->numbers + i;
267 		struct pid_namespace *ns = upid->ns;
268 		hlist_del_rcu(&upid->pid_chain);
269 		switch(--ns->nr_hashed) {
270 		case 2:
271 		case 1:
272 			/* When all that is left in the pid namespace
273 			 * is the reaper wake up the reaper.  The reaper
274 			 * may be sleeping in zap_pid_ns_processes().
275 			 */
276 			wake_up_process(ns->child_reaper);
277 			break;
278 		case PIDNS_HASH_ADDING:
279 			/* Handle a fork failure of the first process */
280 			WARN_ON(ns->child_reaper);
281 			ns->nr_hashed = 0;
282 			/* fall through */
283 		case 0:
284 			schedule_work(&ns->proc_work);
285 			break;
286 		}
287 	}
288 	spin_unlock_irqrestore(&pidmap_lock, flags);
289 
290 	for (i = 0; i <= pid->level; i++)
291 		free_pidmap(pid->numbers + i);
292 
293 	call_rcu(&pid->rcu, delayed_put_pid);
294 }
295 
296 struct pid *alloc_pid(struct pid_namespace *ns)
297 {
298 	struct pid *pid;
299 	enum pid_type type;
300 	int i, nr;
301 	struct pid_namespace *tmp;
302 	struct upid *upid;
303 	int retval = -ENOMEM;
304 
305 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
306 	if (!pid)
307 		return ERR_PTR(retval);
308 
309 	tmp = ns;
310 	pid->level = ns->level;
311 	for (i = ns->level; i >= 0; i--) {
312 		nr = alloc_pidmap(tmp);
313 		if (nr < 0) {
314 			retval = nr;
315 			goto out_free;
316 		}
317 
318 		pid->numbers[i].nr = nr;
319 		pid->numbers[i].ns = tmp;
320 		tmp = tmp->parent;
321 	}
322 
323 	if (unlikely(is_child_reaper(pid))) {
324 		if (pid_ns_prepare_proc(ns))
325 			goto out_free;
326 	}
327 
328 	get_pid_ns(ns);
329 	atomic_set(&pid->count, 1);
330 	for (type = 0; type < PIDTYPE_MAX; ++type)
331 		INIT_HLIST_HEAD(&pid->tasks[type]);
332 
333 	upid = pid->numbers + ns->level;
334 	spin_lock_irq(&pidmap_lock);
335 	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
336 		goto out_unlock;
337 	for ( ; upid >= pid->numbers; --upid) {
338 		hlist_add_head_rcu(&upid->pid_chain,
339 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
340 		upid->ns->nr_hashed++;
341 	}
342 	spin_unlock_irq(&pidmap_lock);
343 
344 	return pid;
345 
346 out_unlock:
347 	spin_unlock_irq(&pidmap_lock);
348 	put_pid_ns(ns);
349 
350 out_free:
351 	while (++i <= ns->level)
352 		free_pidmap(pid->numbers + i);
353 
354 	kmem_cache_free(ns->pid_cachep, pid);
355 	return ERR_PTR(retval);
356 }
357 
358 void disable_pid_allocation(struct pid_namespace *ns)
359 {
360 	spin_lock_irq(&pidmap_lock);
361 	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
362 	spin_unlock_irq(&pidmap_lock);
363 }
364 
365 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
366 {
367 	struct upid *pnr;
368 
369 	hlist_for_each_entry_rcu(pnr,
370 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
371 		if (pnr->nr == nr && pnr->ns == ns)
372 			return container_of(pnr, struct pid,
373 					numbers[ns->level]);
374 
375 	return NULL;
376 }
377 EXPORT_SYMBOL_GPL(find_pid_ns);
378 
379 struct pid *find_vpid(int nr)
380 {
381 	return find_pid_ns(nr, task_active_pid_ns(current));
382 }
383 EXPORT_SYMBOL_GPL(find_vpid);
384 
385 /*
386  * attach_pid() must be called with the tasklist_lock write-held.
387  */
388 void attach_pid(struct task_struct *task, enum pid_type type)
389 {
390 	struct pid_link *link = &task->pids[type];
391 	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
392 }
393 
394 static void __change_pid(struct task_struct *task, enum pid_type type,
395 			struct pid *new)
396 {
397 	struct pid_link *link;
398 	struct pid *pid;
399 	int tmp;
400 
401 	link = &task->pids[type];
402 	pid = link->pid;
403 
404 	hlist_del_rcu(&link->node);
405 	link->pid = new;
406 
407 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
408 		if (!hlist_empty(&pid->tasks[tmp]))
409 			return;
410 
411 	free_pid(pid);
412 }
413 
414 void detach_pid(struct task_struct *task, enum pid_type type)
415 {
416 	__change_pid(task, type, NULL);
417 }
418 
419 void change_pid(struct task_struct *task, enum pid_type type,
420 		struct pid *pid)
421 {
422 	__change_pid(task, type, pid);
423 	attach_pid(task, type);
424 }
425 
426 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
427 void transfer_pid(struct task_struct *old, struct task_struct *new,
428 			   enum pid_type type)
429 {
430 	new->pids[type].pid = old->pids[type].pid;
431 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
432 }
433 
434 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
435 {
436 	struct task_struct *result = NULL;
437 	if (pid) {
438 		struct hlist_node *first;
439 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
440 					      lockdep_tasklist_lock_is_held());
441 		if (first)
442 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
443 	}
444 	return result;
445 }
446 EXPORT_SYMBOL(pid_task);
447 
448 /*
449  * Must be called under rcu_read_lock().
450  */
451 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
452 {
453 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
454 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
455 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
456 }
457 
458 struct task_struct *find_task_by_vpid(pid_t vnr)
459 {
460 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
461 }
462 
463 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
464 {
465 	struct pid *pid;
466 	rcu_read_lock();
467 	if (type != PIDTYPE_PID)
468 		task = task->group_leader;
469 	pid = get_pid(rcu_dereference(task->pids[type].pid));
470 	rcu_read_unlock();
471 	return pid;
472 }
473 EXPORT_SYMBOL_GPL(get_task_pid);
474 
475 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
476 {
477 	struct task_struct *result;
478 	rcu_read_lock();
479 	result = pid_task(pid, type);
480 	if (result)
481 		get_task_struct(result);
482 	rcu_read_unlock();
483 	return result;
484 }
485 EXPORT_SYMBOL_GPL(get_pid_task);
486 
487 struct pid *find_get_pid(pid_t nr)
488 {
489 	struct pid *pid;
490 
491 	rcu_read_lock();
492 	pid = get_pid(find_vpid(nr));
493 	rcu_read_unlock();
494 
495 	return pid;
496 }
497 EXPORT_SYMBOL_GPL(find_get_pid);
498 
499 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
500 {
501 	struct upid *upid;
502 	pid_t nr = 0;
503 
504 	if (pid && ns->level <= pid->level) {
505 		upid = &pid->numbers[ns->level];
506 		if (upid->ns == ns)
507 			nr = upid->nr;
508 	}
509 	return nr;
510 }
511 EXPORT_SYMBOL_GPL(pid_nr_ns);
512 
513 pid_t pid_vnr(struct pid *pid)
514 {
515 	return pid_nr_ns(pid, task_active_pid_ns(current));
516 }
517 EXPORT_SYMBOL_GPL(pid_vnr);
518 
519 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
520 			struct pid_namespace *ns)
521 {
522 	pid_t nr = 0;
523 
524 	rcu_read_lock();
525 	if (!ns)
526 		ns = task_active_pid_ns(current);
527 	if (likely(pid_alive(task))) {
528 		if (type != PIDTYPE_PID)
529 			task = task->group_leader;
530 		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
531 	}
532 	rcu_read_unlock();
533 
534 	return nr;
535 }
536 EXPORT_SYMBOL(__task_pid_nr_ns);
537 
538 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
539 {
540 	return pid_nr_ns(task_tgid(tsk), ns);
541 }
542 EXPORT_SYMBOL(task_tgid_nr_ns);
543 
544 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
545 {
546 	return ns_of_pid(task_pid(tsk));
547 }
548 EXPORT_SYMBOL_GPL(task_active_pid_ns);
549 
550 /*
551  * Used by proc to find the first pid that is greater than or equal to nr.
552  *
553  * If there is a pid at nr this function is exactly the same as find_pid_ns.
554  */
555 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
556 {
557 	struct pid *pid;
558 
559 	do {
560 		pid = find_pid_ns(nr, ns);
561 		if (pid)
562 			break;
563 		nr = next_pidmap(ns, nr);
564 	} while (nr > 0);
565 
566 	return pid;
567 }
568 
569 /*
570  * The pid hash table is scaled according to the amount of memory in the
571  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
572  * more.
573  */
574 void __init pidhash_init(void)
575 {
576 	unsigned int i, pidhash_size;
577 
578 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
579 					   HASH_EARLY | HASH_SMALL,
580 					   &pidhash_shift, NULL,
581 					   0, 4096);
582 	pidhash_size = 1U << pidhash_shift;
583 
584 	for (i = 0; i < pidhash_size; i++)
585 		INIT_HLIST_HEAD(&pid_hash[i]);
586 }
587 
588 void __init pidmap_init(void)
589 {
590 	/* Verify no one has done anything silly: */
591 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
592 
593 	/* bump default and minimum pid_max based on number of cpus */
594 	pid_max = min(pid_max_max, max_t(int, pid_max,
595 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
596 	pid_max_min = max_t(int, pid_max_min,
597 				PIDS_PER_CPU_MIN * num_possible_cpus());
598 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
599 
600 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
601 	/* Reserve PID 0. We never call free_pidmap(0) */
602 	set_bit(0, init_pid_ns.pidmap[0].page);
603 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
604 
605 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
606 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
607 }
608