xref: /linux/kernel/pid.c (revision cea0f76a483d1270ac6f6513964e3e75193dda48)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 
46 struct pid init_struct_pid = {
47 	.count		= REFCOUNT_INIT(1),
48 	.tasks		= {
49 		{ .first = NULL },
50 		{ .first = NULL },
51 		{ .first = NULL },
52 	},
53 	.level		= 0,
54 	.numbers	= { {
55 		.nr		= 0,
56 		.ns		= &init_pid_ns,
57 	}, }
58 };
59 
60 int pid_max = PID_MAX_DEFAULT;
61 
62 #define RESERVED_PIDS		300
63 
64 int pid_max_min = RESERVED_PIDS + 1;
65 int pid_max_max = PID_MAX_LIMIT;
66 
67 /*
68  * PID-map pages start out as NULL, they get allocated upon
69  * first use and are never deallocated. This way a low pid_max
70  * value does not cause lots of bitmaps to be allocated, but
71  * the scheme scales to up to 4 million PIDs, runtime.
72  */
73 struct pid_namespace init_pid_ns = {
74 	.kref = KREF_INIT(2),
75 	.idr = IDR_INIT(init_pid_ns.idr),
76 	.pid_allocated = PIDNS_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86 
87 /*
88  * Note: disable interrupts while the pidmap_lock is held as an
89  * interrupt might come in and do read_lock(&tasklist_lock).
90  *
91  * If we don't disable interrupts there is a nasty deadlock between
92  * detach_pid()->free_pid() and another cpu that does
93  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94  * read_lock(&tasklist_lock);
95  *
96  * After we clean up the tasklist_lock and know there are no
97  * irq handlers that take it we can leave the interrupts enabled.
98  * For now it is easier to be safe than to prove it can't happen.
99  */
100 
101 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102 
103 void put_pid(struct pid *pid)
104 {
105 	struct pid_namespace *ns;
106 
107 	if (!pid)
108 		return;
109 
110 	ns = pid->numbers[pid->level].ns;
111 	if (refcount_dec_and_test(&pid->count)) {
112 		kmem_cache_free(ns->pid_cachep, pid);
113 		put_pid_ns(ns);
114 	}
115 }
116 EXPORT_SYMBOL_GPL(put_pid);
117 
118 static void delayed_put_pid(struct rcu_head *rhp)
119 {
120 	struct pid *pid = container_of(rhp, struct pid, rcu);
121 	put_pid(pid);
122 }
123 
124 void free_pid(struct pid *pid)
125 {
126 	/* We can be called with write_lock_irq(&tasklist_lock) held */
127 	int i;
128 	unsigned long flags;
129 
130 	spin_lock_irqsave(&pidmap_lock, flags);
131 	for (i = 0; i <= pid->level; i++) {
132 		struct upid *upid = pid->numbers + i;
133 		struct pid_namespace *ns = upid->ns;
134 		switch (--ns->pid_allocated) {
135 		case 2:
136 		case 1:
137 			/* When all that is left in the pid namespace
138 			 * is the reaper wake up the reaper.  The reaper
139 			 * may be sleeping in zap_pid_ns_processes().
140 			 */
141 			wake_up_process(ns->child_reaper);
142 			break;
143 		case PIDNS_ADDING:
144 			/* Handle a fork failure of the first process */
145 			WARN_ON(ns->child_reaper);
146 			ns->pid_allocated = 0;
147 			break;
148 		}
149 
150 		idr_remove(&ns->idr, upid->nr);
151 	}
152 	spin_unlock_irqrestore(&pidmap_lock, flags);
153 
154 	call_rcu(&pid->rcu, delayed_put_pid);
155 }
156 
157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
158 		      size_t set_tid_size)
159 {
160 	struct pid *pid;
161 	enum pid_type type;
162 	int i, nr;
163 	struct pid_namespace *tmp;
164 	struct upid *upid;
165 	int retval = -ENOMEM;
166 
167 	/*
168 	 * set_tid_size contains the size of the set_tid array. Starting at
169 	 * the most nested currently active PID namespace it tells alloc_pid()
170 	 * which PID to set for a process in that most nested PID namespace
171 	 * up to set_tid_size PID namespaces. It does not have to set the PID
172 	 * for a process in all nested PID namespaces but set_tid_size must
173 	 * never be greater than the current ns->level + 1.
174 	 */
175 	if (set_tid_size > ns->level + 1)
176 		return ERR_PTR(-EINVAL);
177 
178 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
179 	if (!pid)
180 		return ERR_PTR(retval);
181 
182 	tmp = ns;
183 	pid->level = ns->level;
184 
185 	for (i = ns->level; i >= 0; i--) {
186 		int tid = 0;
187 
188 		if (set_tid_size) {
189 			tid = set_tid[ns->level - i];
190 
191 			retval = -EINVAL;
192 			if (tid < 1 || tid >= pid_max)
193 				goto out_free;
194 			/*
195 			 * Also fail if a PID != 1 is requested and
196 			 * no PID 1 exists.
197 			 */
198 			if (tid != 1 && !tmp->child_reaper)
199 				goto out_free;
200 			retval = -EPERM;
201 			if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
202 				goto out_free;
203 			set_tid_size--;
204 		}
205 
206 		idr_preload(GFP_KERNEL);
207 		spin_lock_irq(&pidmap_lock);
208 
209 		if (tid) {
210 			nr = idr_alloc(&tmp->idr, NULL, tid,
211 				       tid + 1, GFP_ATOMIC);
212 			/*
213 			 * If ENOSPC is returned it means that the PID is
214 			 * alreay in use. Return EEXIST in that case.
215 			 */
216 			if (nr == -ENOSPC)
217 				nr = -EEXIST;
218 		} else {
219 			int pid_min = 1;
220 			/*
221 			 * init really needs pid 1, but after reaching the
222 			 * maximum wrap back to RESERVED_PIDS
223 			 */
224 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
225 				pid_min = RESERVED_PIDS;
226 
227 			/*
228 			 * Store a null pointer so find_pid_ns does not find
229 			 * a partially initialized PID (see below).
230 			 */
231 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
232 					      pid_max, GFP_ATOMIC);
233 		}
234 		spin_unlock_irq(&pidmap_lock);
235 		idr_preload_end();
236 
237 		if (nr < 0) {
238 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
239 			goto out_free;
240 		}
241 
242 		pid->numbers[i].nr = nr;
243 		pid->numbers[i].ns = tmp;
244 		tmp = tmp->parent;
245 	}
246 
247 	/*
248 	 * ENOMEM is not the most obvious choice especially for the case
249 	 * where the child subreaper has already exited and the pid
250 	 * namespace denies the creation of any new processes. But ENOMEM
251 	 * is what we have exposed to userspace for a long time and it is
252 	 * documented behavior for pid namespaces. So we can't easily
253 	 * change it even if there were an error code better suited.
254 	 */
255 	retval = -ENOMEM;
256 
257 	get_pid_ns(ns);
258 	refcount_set(&pid->count, 1);
259 	spin_lock_init(&pid->lock);
260 	for (type = 0; type < PIDTYPE_MAX; ++type)
261 		INIT_HLIST_HEAD(&pid->tasks[type]);
262 
263 	init_waitqueue_head(&pid->wait_pidfd);
264 	INIT_HLIST_HEAD(&pid->inodes);
265 
266 	upid = pid->numbers + ns->level;
267 	spin_lock_irq(&pidmap_lock);
268 	if (!(ns->pid_allocated & PIDNS_ADDING))
269 		goto out_unlock;
270 	for ( ; upid >= pid->numbers; --upid) {
271 		/* Make the PID visible to find_pid_ns. */
272 		idr_replace(&upid->ns->idr, pid, upid->nr);
273 		upid->ns->pid_allocated++;
274 	}
275 	spin_unlock_irq(&pidmap_lock);
276 
277 	return pid;
278 
279 out_unlock:
280 	spin_unlock_irq(&pidmap_lock);
281 	put_pid_ns(ns);
282 
283 out_free:
284 	spin_lock_irq(&pidmap_lock);
285 	while (++i <= ns->level) {
286 		upid = pid->numbers + i;
287 		idr_remove(&upid->ns->idr, upid->nr);
288 	}
289 
290 	/* On failure to allocate the first pid, reset the state */
291 	if (ns->pid_allocated == PIDNS_ADDING)
292 		idr_set_cursor(&ns->idr, 0);
293 
294 	spin_unlock_irq(&pidmap_lock);
295 
296 	kmem_cache_free(ns->pid_cachep, pid);
297 	return ERR_PTR(retval);
298 }
299 
300 void disable_pid_allocation(struct pid_namespace *ns)
301 {
302 	spin_lock_irq(&pidmap_lock);
303 	ns->pid_allocated &= ~PIDNS_ADDING;
304 	spin_unlock_irq(&pidmap_lock);
305 }
306 
307 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
308 {
309 	return idr_find(&ns->idr, nr);
310 }
311 EXPORT_SYMBOL_GPL(find_pid_ns);
312 
313 struct pid *find_vpid(int nr)
314 {
315 	return find_pid_ns(nr, task_active_pid_ns(current));
316 }
317 EXPORT_SYMBOL_GPL(find_vpid);
318 
319 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
320 {
321 	return (type == PIDTYPE_PID) ?
322 		&task->thread_pid :
323 		&task->signal->pids[type];
324 }
325 
326 /*
327  * attach_pid() must be called with the tasklist_lock write-held.
328  */
329 void attach_pid(struct task_struct *task, enum pid_type type)
330 {
331 	struct pid *pid = *task_pid_ptr(task, type);
332 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
333 }
334 
335 static void __change_pid(struct task_struct *task, enum pid_type type,
336 			struct pid *new)
337 {
338 	struct pid **pid_ptr = task_pid_ptr(task, type);
339 	struct pid *pid;
340 	int tmp;
341 
342 	pid = *pid_ptr;
343 
344 	hlist_del_rcu(&task->pid_links[type]);
345 	*pid_ptr = new;
346 
347 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
348 		if (pid_has_task(pid, tmp))
349 			return;
350 
351 	free_pid(pid);
352 }
353 
354 void detach_pid(struct task_struct *task, enum pid_type type)
355 {
356 	__change_pid(task, type, NULL);
357 }
358 
359 void change_pid(struct task_struct *task, enum pid_type type,
360 		struct pid *pid)
361 {
362 	__change_pid(task, type, pid);
363 	attach_pid(task, type);
364 }
365 
366 void exchange_tids(struct task_struct *left, struct task_struct *right)
367 {
368 	struct pid *pid1 = left->thread_pid;
369 	struct pid *pid2 = right->thread_pid;
370 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
371 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
372 
373 	/* Swap the single entry tid lists */
374 	hlists_swap_heads_rcu(head1, head2);
375 
376 	/* Swap the per task_struct pid */
377 	rcu_assign_pointer(left->thread_pid, pid2);
378 	rcu_assign_pointer(right->thread_pid, pid1);
379 
380 	/* Swap the cached value */
381 	WRITE_ONCE(left->pid, pid_nr(pid2));
382 	WRITE_ONCE(right->pid, pid_nr(pid1));
383 }
384 
385 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
386 void transfer_pid(struct task_struct *old, struct task_struct *new,
387 			   enum pid_type type)
388 {
389 	if (type == PIDTYPE_PID)
390 		new->thread_pid = old->thread_pid;
391 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
392 }
393 
394 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
395 {
396 	struct task_struct *result = NULL;
397 	if (pid) {
398 		struct hlist_node *first;
399 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
400 					      lockdep_tasklist_lock_is_held());
401 		if (first)
402 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
403 	}
404 	return result;
405 }
406 EXPORT_SYMBOL(pid_task);
407 
408 /*
409  * Must be called under rcu_read_lock().
410  */
411 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
412 {
413 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
414 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
415 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
416 }
417 
418 struct task_struct *find_task_by_vpid(pid_t vnr)
419 {
420 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
421 }
422 
423 struct task_struct *find_get_task_by_vpid(pid_t nr)
424 {
425 	struct task_struct *task;
426 
427 	rcu_read_lock();
428 	task = find_task_by_vpid(nr);
429 	if (task)
430 		get_task_struct(task);
431 	rcu_read_unlock();
432 
433 	return task;
434 }
435 
436 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
437 {
438 	struct pid *pid;
439 	rcu_read_lock();
440 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
441 	rcu_read_unlock();
442 	return pid;
443 }
444 EXPORT_SYMBOL_GPL(get_task_pid);
445 
446 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
447 {
448 	struct task_struct *result;
449 	rcu_read_lock();
450 	result = pid_task(pid, type);
451 	if (result)
452 		get_task_struct(result);
453 	rcu_read_unlock();
454 	return result;
455 }
456 EXPORT_SYMBOL_GPL(get_pid_task);
457 
458 struct pid *find_get_pid(pid_t nr)
459 {
460 	struct pid *pid;
461 
462 	rcu_read_lock();
463 	pid = get_pid(find_vpid(nr));
464 	rcu_read_unlock();
465 
466 	return pid;
467 }
468 EXPORT_SYMBOL_GPL(find_get_pid);
469 
470 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
471 {
472 	struct upid *upid;
473 	pid_t nr = 0;
474 
475 	if (pid && ns->level <= pid->level) {
476 		upid = &pid->numbers[ns->level];
477 		if (upid->ns == ns)
478 			nr = upid->nr;
479 	}
480 	return nr;
481 }
482 EXPORT_SYMBOL_GPL(pid_nr_ns);
483 
484 pid_t pid_vnr(struct pid *pid)
485 {
486 	return pid_nr_ns(pid, task_active_pid_ns(current));
487 }
488 EXPORT_SYMBOL_GPL(pid_vnr);
489 
490 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
491 			struct pid_namespace *ns)
492 {
493 	pid_t nr = 0;
494 
495 	rcu_read_lock();
496 	if (!ns)
497 		ns = task_active_pid_ns(current);
498 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
499 	rcu_read_unlock();
500 
501 	return nr;
502 }
503 EXPORT_SYMBOL(__task_pid_nr_ns);
504 
505 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
506 {
507 	return ns_of_pid(task_pid(tsk));
508 }
509 EXPORT_SYMBOL_GPL(task_active_pid_ns);
510 
511 /*
512  * Used by proc to find the first pid that is greater than or equal to nr.
513  *
514  * If there is a pid at nr this function is exactly the same as find_pid_ns.
515  */
516 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
517 {
518 	return idr_get_next(&ns->idr, &nr);
519 }
520 
521 /**
522  * pidfd_create() - Create a new pid file descriptor.
523  *
524  * @pid:  struct pid that the pidfd will reference
525  *
526  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
527  *
528  * Note, that this function can only be called after the fd table has
529  * been unshared to avoid leaking the pidfd to the new process.
530  *
531  * Return: On success, a cloexec pidfd is returned.
532  *         On error, a negative errno number will be returned.
533  */
534 static int pidfd_create(struct pid *pid)
535 {
536 	int fd;
537 
538 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
539 			      O_RDWR | O_CLOEXEC);
540 	if (fd < 0)
541 		put_pid(pid);
542 
543 	return fd;
544 }
545 
546 /**
547  * pidfd_open() - Open new pid file descriptor.
548  *
549  * @pid:   pid for which to retrieve a pidfd
550  * @flags: flags to pass
551  *
552  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
553  * the process identified by @pid. Currently, the process identified by
554  * @pid must be a thread-group leader. This restriction currently exists
555  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
556  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
557  * leaders).
558  *
559  * Return: On success, a cloexec pidfd is returned.
560  *         On error, a negative errno number will be returned.
561  */
562 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
563 {
564 	int fd;
565 	struct pid *p;
566 
567 	if (flags)
568 		return -EINVAL;
569 
570 	if (pid <= 0)
571 		return -EINVAL;
572 
573 	p = find_get_pid(pid);
574 	if (!p)
575 		return -ESRCH;
576 
577 	if (pid_has_task(p, PIDTYPE_TGID))
578 		fd = pidfd_create(p);
579 	else
580 		fd = -EINVAL;
581 
582 	put_pid(p);
583 	return fd;
584 }
585 
586 void __init pid_idr_init(void)
587 {
588 	/* Verify no one has done anything silly: */
589 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
590 
591 	/* bump default and minimum pid_max based on number of cpus */
592 	pid_max = min(pid_max_max, max_t(int, pid_max,
593 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
594 	pid_max_min = max_t(int, pid_max_min,
595 				PIDS_PER_CPU_MIN * num_possible_cpus());
596 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
597 
598 	idr_init(&init_pid_ns.idr);
599 
600 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
601 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
602 }
603 
604 static struct file *__pidfd_fget(struct task_struct *task, int fd)
605 {
606 	struct file *file;
607 	int ret;
608 
609 	ret = mutex_lock_killable(&task->signal->exec_update_mutex);
610 	if (ret)
611 		return ERR_PTR(ret);
612 
613 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
614 		file = fget_task(task, fd);
615 	else
616 		file = ERR_PTR(-EPERM);
617 
618 	mutex_unlock(&task->signal->exec_update_mutex);
619 
620 	return file ?: ERR_PTR(-EBADF);
621 }
622 
623 static int pidfd_getfd(struct pid *pid, int fd)
624 {
625 	struct task_struct *task;
626 	struct file *file;
627 	int ret;
628 
629 	task = get_pid_task(pid, PIDTYPE_PID);
630 	if (!task)
631 		return -ESRCH;
632 
633 	file = __pidfd_fget(task, fd);
634 	put_task_struct(task);
635 	if (IS_ERR(file))
636 		return PTR_ERR(file);
637 
638 	ret = security_file_receive(file);
639 	if (ret) {
640 		fput(file);
641 		return ret;
642 	}
643 
644 	ret = get_unused_fd_flags(O_CLOEXEC);
645 	if (ret < 0)
646 		fput(file);
647 	else
648 		fd_install(ret, file);
649 
650 	return ret;
651 }
652 
653 /**
654  * sys_pidfd_getfd() - Get a file descriptor from another process
655  *
656  * @pidfd:	the pidfd file descriptor of the process
657  * @fd:		the file descriptor number to get
658  * @flags:	flags on how to get the fd (reserved)
659  *
660  * This syscall gets a copy of a file descriptor from another process
661  * based on the pidfd, and file descriptor number. It requires that
662  * the calling process has the ability to ptrace the process represented
663  * by the pidfd. The process which is having its file descriptor copied
664  * is otherwise unaffected.
665  *
666  * Return: On success, a cloexec file descriptor is returned.
667  *         On error, a negative errno number will be returned.
668  */
669 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
670 		unsigned int, flags)
671 {
672 	struct pid *pid;
673 	struct fd f;
674 	int ret;
675 
676 	/* flags is currently unused - make sure it's unset */
677 	if (flags)
678 		return -EINVAL;
679 
680 	f = fdget(pidfd);
681 	if (!f.file)
682 		return -EBADF;
683 
684 	pid = pidfd_pid(f.file);
685 	if (IS_ERR(pid))
686 		ret = PTR_ERR(pid);
687 	else
688 		ret = pidfd_getfd(pid, fd);
689 
690 	fdput(f);
691 	return ret;
692 }
693