1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/proc_fs.h> 41 42 #define pid_hashfn(nr, ns) \ 43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 44 static struct hlist_head *pid_hash; 45 static unsigned int pidhash_shift = 4; 46 struct pid init_struct_pid = INIT_STRUCT_PID; 47 48 int pid_max = PID_MAX_DEFAULT; 49 50 #define RESERVED_PIDS 300 51 52 int pid_max_min = RESERVED_PIDS + 1; 53 int pid_max_max = PID_MAX_LIMIT; 54 55 static inline int mk_pid(struct pid_namespace *pid_ns, 56 struct pidmap *map, int off) 57 { 58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 59 } 60 61 #define find_next_offset(map, off) \ 62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = { 72 .refcount = ATOMIC_INIT(2), 73 }, 74 .pidmap = { 75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 76 }, 77 .last_pid = 0, 78 .nr_hashed = PIDNS_HASH_ADDING, 79 .level = 0, 80 .child_reaper = &init_task, 81 .user_ns = &init_user_ns, 82 .proc_inum = PROC_PID_INIT_INO, 83 }; 84 EXPORT_SYMBOL_GPL(init_pid_ns); 85 86 /* 87 * Note: disable interrupts while the pidmap_lock is held as an 88 * interrupt might come in and do read_lock(&tasklist_lock). 89 * 90 * If we don't disable interrupts there is a nasty deadlock between 91 * detach_pid()->free_pid() and another cpu that does 92 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 93 * read_lock(&tasklist_lock); 94 * 95 * After we clean up the tasklist_lock and know there are no 96 * irq handlers that take it we can leave the interrupts enabled. 97 * For now it is easier to be safe than to prove it can't happen. 98 */ 99 100 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 101 102 static void free_pidmap(struct upid *upid) 103 { 104 int nr = upid->nr; 105 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 106 int offset = nr & BITS_PER_PAGE_MASK; 107 108 clear_bit(offset, map->page); 109 atomic_inc(&map->nr_free); 110 } 111 112 /* 113 * If we started walking pids at 'base', is 'a' seen before 'b'? 114 */ 115 static int pid_before(int base, int a, int b) 116 { 117 /* 118 * This is the same as saying 119 * 120 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 121 * and that mapping orders 'a' and 'b' with respect to 'base'. 122 */ 123 return (unsigned)(a - base) < (unsigned)(b - base); 124 } 125 126 /* 127 * We might be racing with someone else trying to set pid_ns->last_pid 128 * at the pid allocation time (there's also a sysctl for this, but racing 129 * with this one is OK, see comment in kernel/pid_namespace.c about it). 130 * We want the winner to have the "later" value, because if the 131 * "earlier" value prevails, then a pid may get reused immediately. 132 * 133 * Since pids rollover, it is not sufficient to just pick the bigger 134 * value. We have to consider where we started counting from. 135 * 136 * 'base' is the value of pid_ns->last_pid that we observed when 137 * we started looking for a pid. 138 * 139 * 'pid' is the pid that we eventually found. 140 */ 141 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 142 { 143 int prev; 144 int last_write = base; 145 do { 146 prev = last_write; 147 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 148 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 149 } 150 151 static int alloc_pidmap(struct pid_namespace *pid_ns) 152 { 153 int i, offset, max_scan, pid, last = pid_ns->last_pid; 154 struct pidmap *map; 155 156 pid = last + 1; 157 if (pid >= pid_max) 158 pid = RESERVED_PIDS; 159 offset = pid & BITS_PER_PAGE_MASK; 160 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 161 /* 162 * If last_pid points into the middle of the map->page we 163 * want to scan this bitmap block twice, the second time 164 * we start with offset == 0 (or RESERVED_PIDS). 165 */ 166 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 167 for (i = 0; i <= max_scan; ++i) { 168 if (unlikely(!map->page)) { 169 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 170 /* 171 * Free the page if someone raced with us 172 * installing it: 173 */ 174 spin_lock_irq(&pidmap_lock); 175 if (!map->page) { 176 map->page = page; 177 page = NULL; 178 } 179 spin_unlock_irq(&pidmap_lock); 180 kfree(page); 181 if (unlikely(!map->page)) 182 break; 183 } 184 if (likely(atomic_read(&map->nr_free))) { 185 for ( ; ; ) { 186 if (!test_and_set_bit(offset, map->page)) { 187 atomic_dec(&map->nr_free); 188 set_last_pid(pid_ns, last, pid); 189 return pid; 190 } 191 offset = find_next_offset(map, offset); 192 if (offset >= BITS_PER_PAGE) 193 break; 194 pid = mk_pid(pid_ns, map, offset); 195 if (pid >= pid_max) 196 break; 197 } 198 } 199 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 200 ++map; 201 offset = 0; 202 } else { 203 map = &pid_ns->pidmap[0]; 204 offset = RESERVED_PIDS; 205 if (unlikely(last == offset)) 206 break; 207 } 208 pid = mk_pid(pid_ns, map, offset); 209 } 210 return -1; 211 } 212 213 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 214 { 215 int offset; 216 struct pidmap *map, *end; 217 218 if (last >= PID_MAX_LIMIT) 219 return -1; 220 221 offset = (last + 1) & BITS_PER_PAGE_MASK; 222 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 223 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 224 for (; map < end; map++, offset = 0) { 225 if (unlikely(!map->page)) 226 continue; 227 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 228 if (offset < BITS_PER_PAGE) 229 return mk_pid(pid_ns, map, offset); 230 } 231 return -1; 232 } 233 234 void put_pid(struct pid *pid) 235 { 236 struct pid_namespace *ns; 237 238 if (!pid) 239 return; 240 241 ns = pid->numbers[pid->level].ns; 242 if ((atomic_read(&pid->count) == 1) || 243 atomic_dec_and_test(&pid->count)) { 244 kmem_cache_free(ns->pid_cachep, pid); 245 put_pid_ns(ns); 246 } 247 } 248 EXPORT_SYMBOL_GPL(put_pid); 249 250 static void delayed_put_pid(struct rcu_head *rhp) 251 { 252 struct pid *pid = container_of(rhp, struct pid, rcu); 253 put_pid(pid); 254 } 255 256 void free_pid(struct pid *pid) 257 { 258 /* We can be called with write_lock_irq(&tasklist_lock) held */ 259 int i; 260 unsigned long flags; 261 262 spin_lock_irqsave(&pidmap_lock, flags); 263 for (i = 0; i <= pid->level; i++) { 264 struct upid *upid = pid->numbers + i; 265 struct pid_namespace *ns = upid->ns; 266 hlist_del_rcu(&upid->pid_chain); 267 switch(--ns->nr_hashed) { 268 case 1: 269 /* When all that is left in the pid namespace 270 * is the reaper wake up the reaper. The reaper 271 * may be sleeping in zap_pid_ns_processes(). 272 */ 273 wake_up_process(ns->child_reaper); 274 break; 275 case 0: 276 schedule_work(&ns->proc_work); 277 break; 278 } 279 } 280 spin_unlock_irqrestore(&pidmap_lock, flags); 281 282 for (i = 0; i <= pid->level; i++) 283 free_pidmap(pid->numbers + i); 284 285 call_rcu(&pid->rcu, delayed_put_pid); 286 } 287 288 struct pid *alloc_pid(struct pid_namespace *ns) 289 { 290 struct pid *pid; 291 enum pid_type type; 292 int i, nr; 293 struct pid_namespace *tmp; 294 struct upid *upid; 295 296 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 297 if (!pid) 298 goto out; 299 300 tmp = ns; 301 pid->level = ns->level; 302 for (i = ns->level; i >= 0; i--) { 303 nr = alloc_pidmap(tmp); 304 if (nr < 0) 305 goto out_free; 306 307 pid->numbers[i].nr = nr; 308 pid->numbers[i].ns = tmp; 309 tmp = tmp->parent; 310 } 311 312 if (unlikely(is_child_reaper(pid))) { 313 if (pid_ns_prepare_proc(ns)) 314 goto out_free; 315 } 316 317 get_pid_ns(ns); 318 atomic_set(&pid->count, 1); 319 for (type = 0; type < PIDTYPE_MAX; ++type) 320 INIT_HLIST_HEAD(&pid->tasks[type]); 321 322 upid = pid->numbers + ns->level; 323 spin_lock_irq(&pidmap_lock); 324 if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) 325 goto out_unlock; 326 for ( ; upid >= pid->numbers; --upid) { 327 hlist_add_head_rcu(&upid->pid_chain, 328 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 329 upid->ns->nr_hashed++; 330 } 331 spin_unlock_irq(&pidmap_lock); 332 333 out: 334 return pid; 335 336 out_unlock: 337 spin_unlock_irq(&pidmap_lock); 338 out_free: 339 while (++i <= ns->level) 340 free_pidmap(pid->numbers + i); 341 342 kmem_cache_free(ns->pid_cachep, pid); 343 pid = NULL; 344 goto out; 345 } 346 347 void disable_pid_allocation(struct pid_namespace *ns) 348 { 349 spin_lock_irq(&pidmap_lock); 350 ns->nr_hashed &= ~PIDNS_HASH_ADDING; 351 spin_unlock_irq(&pidmap_lock); 352 } 353 354 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 355 { 356 struct upid *pnr; 357 358 hlist_for_each_entry_rcu(pnr, 359 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 360 if (pnr->nr == nr && pnr->ns == ns) 361 return container_of(pnr, struct pid, 362 numbers[ns->level]); 363 364 return NULL; 365 } 366 EXPORT_SYMBOL_GPL(find_pid_ns); 367 368 struct pid *find_vpid(int nr) 369 { 370 return find_pid_ns(nr, task_active_pid_ns(current)); 371 } 372 EXPORT_SYMBOL_GPL(find_vpid); 373 374 /* 375 * attach_pid() must be called with the tasklist_lock write-held. 376 */ 377 void attach_pid(struct task_struct *task, enum pid_type type) 378 { 379 struct pid_link *link = &task->pids[type]; 380 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); 381 } 382 383 static void __change_pid(struct task_struct *task, enum pid_type type, 384 struct pid *new) 385 { 386 struct pid_link *link; 387 struct pid *pid; 388 int tmp; 389 390 link = &task->pids[type]; 391 pid = link->pid; 392 393 hlist_del_rcu(&link->node); 394 link->pid = new; 395 396 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 397 if (!hlist_empty(&pid->tasks[tmp])) 398 return; 399 400 free_pid(pid); 401 } 402 403 void detach_pid(struct task_struct *task, enum pid_type type) 404 { 405 __change_pid(task, type, NULL); 406 } 407 408 void change_pid(struct task_struct *task, enum pid_type type, 409 struct pid *pid) 410 { 411 __change_pid(task, type, pid); 412 attach_pid(task, type); 413 } 414 415 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 416 void transfer_pid(struct task_struct *old, struct task_struct *new, 417 enum pid_type type) 418 { 419 new->pids[type].pid = old->pids[type].pid; 420 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 421 } 422 423 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 424 { 425 struct task_struct *result = NULL; 426 if (pid) { 427 struct hlist_node *first; 428 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 429 lockdep_tasklist_lock_is_held()); 430 if (first) 431 result = hlist_entry(first, struct task_struct, pids[(type)].node); 432 } 433 return result; 434 } 435 EXPORT_SYMBOL(pid_task); 436 437 /* 438 * Must be called under rcu_read_lock(). 439 */ 440 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 441 { 442 rcu_lockdep_assert(rcu_read_lock_held(), 443 "find_task_by_pid_ns() needs rcu_read_lock()" 444 " protection"); 445 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 446 } 447 448 struct task_struct *find_task_by_vpid(pid_t vnr) 449 { 450 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 451 } 452 453 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 454 { 455 struct pid *pid; 456 rcu_read_lock(); 457 if (type != PIDTYPE_PID) 458 task = task->group_leader; 459 pid = get_pid(task->pids[type].pid); 460 rcu_read_unlock(); 461 return pid; 462 } 463 EXPORT_SYMBOL_GPL(get_task_pid); 464 465 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 466 { 467 struct task_struct *result; 468 rcu_read_lock(); 469 result = pid_task(pid, type); 470 if (result) 471 get_task_struct(result); 472 rcu_read_unlock(); 473 return result; 474 } 475 EXPORT_SYMBOL_GPL(get_pid_task); 476 477 struct pid *find_get_pid(pid_t nr) 478 { 479 struct pid *pid; 480 481 rcu_read_lock(); 482 pid = get_pid(find_vpid(nr)); 483 rcu_read_unlock(); 484 485 return pid; 486 } 487 EXPORT_SYMBOL_GPL(find_get_pid); 488 489 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 490 { 491 struct upid *upid; 492 pid_t nr = 0; 493 494 if (pid && ns->level <= pid->level) { 495 upid = &pid->numbers[ns->level]; 496 if (upid->ns == ns) 497 nr = upid->nr; 498 } 499 return nr; 500 } 501 EXPORT_SYMBOL_GPL(pid_nr_ns); 502 503 pid_t pid_vnr(struct pid *pid) 504 { 505 return pid_nr_ns(pid, task_active_pid_ns(current)); 506 } 507 EXPORT_SYMBOL_GPL(pid_vnr); 508 509 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 510 struct pid_namespace *ns) 511 { 512 pid_t nr = 0; 513 514 rcu_read_lock(); 515 if (!ns) 516 ns = task_active_pid_ns(current); 517 if (likely(pid_alive(task))) { 518 if (type != PIDTYPE_PID) 519 task = task->group_leader; 520 nr = pid_nr_ns(task->pids[type].pid, ns); 521 } 522 rcu_read_unlock(); 523 524 return nr; 525 } 526 EXPORT_SYMBOL(__task_pid_nr_ns); 527 528 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 529 { 530 return pid_nr_ns(task_tgid(tsk), ns); 531 } 532 EXPORT_SYMBOL(task_tgid_nr_ns); 533 534 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 535 { 536 return ns_of_pid(task_pid(tsk)); 537 } 538 EXPORT_SYMBOL_GPL(task_active_pid_ns); 539 540 /* 541 * Used by proc to find the first pid that is greater than or equal to nr. 542 * 543 * If there is a pid at nr this function is exactly the same as find_pid_ns. 544 */ 545 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 546 { 547 struct pid *pid; 548 549 do { 550 pid = find_pid_ns(nr, ns); 551 if (pid) 552 break; 553 nr = next_pidmap(ns, nr); 554 } while (nr > 0); 555 556 return pid; 557 } 558 559 /* 560 * The pid hash table is scaled according to the amount of memory in the 561 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 562 * more. 563 */ 564 void __init pidhash_init(void) 565 { 566 unsigned int i, pidhash_size; 567 568 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 569 HASH_EARLY | HASH_SMALL, 570 &pidhash_shift, NULL, 571 0, 4096); 572 pidhash_size = 1U << pidhash_shift; 573 574 for (i = 0; i < pidhash_size; i++) 575 INIT_HLIST_HEAD(&pid_hash[i]); 576 } 577 578 void __init pidmap_init(void) 579 { 580 /* Veryify no one has done anything silly */ 581 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); 582 583 /* bump default and minimum pid_max based on number of cpus */ 584 pid_max = min(pid_max_max, max_t(int, pid_max, 585 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 586 pid_max_min = max_t(int, pid_max_min, 587 PIDS_PER_CPU_MIN * num_possible_cpus()); 588 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 589 590 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 591 /* Reserve PID 0. We never call free_pidmap(0) */ 592 set_bit(0, init_pid_ns.pidmap[0].page); 593 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 594 595 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 596 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 597 } 598