xref: /linux/kernel/pid.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_fs.h>
40 
41 #define pid_hashfn(nr, ns)	\
42 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
43 static struct hlist_head *pid_hash;
44 static unsigned int pidhash_shift = 4;
45 struct pid init_struct_pid = INIT_STRUCT_PID;
46 
47 int pid_max = PID_MAX_DEFAULT;
48 
49 #define RESERVED_PIDS		300
50 
51 int pid_max_min = RESERVED_PIDS + 1;
52 int pid_max_max = PID_MAX_LIMIT;
53 
54 #define BITS_PER_PAGE		(PAGE_SIZE*8)
55 #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
56 
57 static inline int mk_pid(struct pid_namespace *pid_ns,
58 		struct pidmap *map, int off)
59 {
60 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
61 }
62 
63 #define find_next_offset(map, off)					\
64 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
65 
66 /*
67  * PID-map pages start out as NULL, they get allocated upon
68  * first use and are never deallocated. This way a low pid_max
69  * value does not cause lots of bitmaps to be allocated, but
70  * the scheme scales to up to 4 million PIDs, runtime.
71  */
72 struct pid_namespace init_pid_ns = {
73 	.kref = {
74 		.refcount       = ATOMIC_INIT(2),
75 	},
76 	.pidmap = {
77 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
78 	},
79 	.last_pid = 0,
80 	.level = 0,
81 	.child_reaper = &init_task,
82 	.user_ns = &init_user_ns,
83 	.proc_inum = PROC_PID_INIT_INO,
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86 
87 /*
88  * Note: disable interrupts while the pidmap_lock is held as an
89  * interrupt might come in and do read_lock(&tasklist_lock).
90  *
91  * If we don't disable interrupts there is a nasty deadlock between
92  * detach_pid()->free_pid() and another cpu that does
93  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94  * read_lock(&tasklist_lock);
95  *
96  * After we clean up the tasklist_lock and know there are no
97  * irq handlers that take it we can leave the interrupts enabled.
98  * For now it is easier to be safe than to prove it can't happen.
99  */
100 
101 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102 
103 static void free_pidmap(struct upid *upid)
104 {
105 	int nr = upid->nr;
106 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
107 	int offset = nr & BITS_PER_PAGE_MASK;
108 
109 	clear_bit(offset, map->page);
110 	atomic_inc(&map->nr_free);
111 }
112 
113 /*
114  * If we started walking pids at 'base', is 'a' seen before 'b'?
115  */
116 static int pid_before(int base, int a, int b)
117 {
118 	/*
119 	 * This is the same as saying
120 	 *
121 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
122 	 * and that mapping orders 'a' and 'b' with respect to 'base'.
123 	 */
124 	return (unsigned)(a - base) < (unsigned)(b - base);
125 }
126 
127 /*
128  * We might be racing with someone else trying to set pid_ns->last_pid
129  * at the pid allocation time (there's also a sysctl for this, but racing
130  * with this one is OK, see comment in kernel/pid_namespace.c about it).
131  * We want the winner to have the "later" value, because if the
132  * "earlier" value prevails, then a pid may get reused immediately.
133  *
134  * Since pids rollover, it is not sufficient to just pick the bigger
135  * value.  We have to consider where we started counting from.
136  *
137  * 'base' is the value of pid_ns->last_pid that we observed when
138  * we started looking for a pid.
139  *
140  * 'pid' is the pid that we eventually found.
141  */
142 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
143 {
144 	int prev;
145 	int last_write = base;
146 	do {
147 		prev = last_write;
148 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
149 	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
150 }
151 
152 static int alloc_pidmap(struct pid_namespace *pid_ns)
153 {
154 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
155 	struct pidmap *map;
156 
157 	pid = last + 1;
158 	if (pid >= pid_max)
159 		pid = RESERVED_PIDS;
160 	offset = pid & BITS_PER_PAGE_MASK;
161 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
162 	/*
163 	 * If last_pid points into the middle of the map->page we
164 	 * want to scan this bitmap block twice, the second time
165 	 * we start with offset == 0 (or RESERVED_PIDS).
166 	 */
167 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
168 	for (i = 0; i <= max_scan; ++i) {
169 		if (unlikely(!map->page)) {
170 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
171 			/*
172 			 * Free the page if someone raced with us
173 			 * installing it:
174 			 */
175 			spin_lock_irq(&pidmap_lock);
176 			if (!map->page) {
177 				map->page = page;
178 				page = NULL;
179 			}
180 			spin_unlock_irq(&pidmap_lock);
181 			kfree(page);
182 			if (unlikely(!map->page))
183 				break;
184 		}
185 		if (likely(atomic_read(&map->nr_free))) {
186 			do {
187 				if (!test_and_set_bit(offset, map->page)) {
188 					atomic_dec(&map->nr_free);
189 					set_last_pid(pid_ns, last, pid);
190 					return pid;
191 				}
192 				offset = find_next_offset(map, offset);
193 				pid = mk_pid(pid_ns, map, offset);
194 			} while (offset < BITS_PER_PAGE && pid < pid_max);
195 		}
196 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
197 			++map;
198 			offset = 0;
199 		} else {
200 			map = &pid_ns->pidmap[0];
201 			offset = RESERVED_PIDS;
202 			if (unlikely(last == offset))
203 				break;
204 		}
205 		pid = mk_pid(pid_ns, map, offset);
206 	}
207 	return -1;
208 }
209 
210 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
211 {
212 	int offset;
213 	struct pidmap *map, *end;
214 
215 	if (last >= PID_MAX_LIMIT)
216 		return -1;
217 
218 	offset = (last + 1) & BITS_PER_PAGE_MASK;
219 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
220 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
221 	for (; map < end; map++, offset = 0) {
222 		if (unlikely(!map->page))
223 			continue;
224 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
225 		if (offset < BITS_PER_PAGE)
226 			return mk_pid(pid_ns, map, offset);
227 	}
228 	return -1;
229 }
230 
231 void put_pid(struct pid *pid)
232 {
233 	struct pid_namespace *ns;
234 
235 	if (!pid)
236 		return;
237 
238 	ns = pid->numbers[pid->level].ns;
239 	if ((atomic_read(&pid->count) == 1) ||
240 	     atomic_dec_and_test(&pid->count)) {
241 		kmem_cache_free(ns->pid_cachep, pid);
242 		put_pid_ns(ns);
243 	}
244 }
245 EXPORT_SYMBOL_GPL(put_pid);
246 
247 static void delayed_put_pid(struct rcu_head *rhp)
248 {
249 	struct pid *pid = container_of(rhp, struct pid, rcu);
250 	put_pid(pid);
251 }
252 
253 void free_pid(struct pid *pid)
254 {
255 	/* We can be called with write_lock_irq(&tasklist_lock) held */
256 	int i;
257 	unsigned long flags;
258 
259 	spin_lock_irqsave(&pidmap_lock, flags);
260 	for (i = 0; i <= pid->level; i++) {
261 		struct upid *upid = pid->numbers + i;
262 		struct pid_namespace *ns = upid->ns;
263 		hlist_del_rcu(&upid->pid_chain);
264 		switch(--ns->nr_hashed) {
265 		case 1:
266 			/* When all that is left in the pid namespace
267 			 * is the reaper wake up the reaper.  The reaper
268 			 * may be sleeping in zap_pid_ns_processes().
269 			 */
270 			wake_up_process(ns->child_reaper);
271 			break;
272 		case 0:
273 			ns->nr_hashed = -1;
274 			schedule_work(&ns->proc_work);
275 			break;
276 		}
277 	}
278 	spin_unlock_irqrestore(&pidmap_lock, flags);
279 
280 	for (i = 0; i <= pid->level; i++)
281 		free_pidmap(pid->numbers + i);
282 
283 	call_rcu(&pid->rcu, delayed_put_pid);
284 }
285 
286 struct pid *alloc_pid(struct pid_namespace *ns)
287 {
288 	struct pid *pid;
289 	enum pid_type type;
290 	int i, nr;
291 	struct pid_namespace *tmp;
292 	struct upid *upid;
293 
294 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
295 	if (!pid)
296 		goto out;
297 
298 	tmp = ns;
299 	pid->level = ns->level;
300 	for (i = ns->level; i >= 0; i--) {
301 		nr = alloc_pidmap(tmp);
302 		if (nr < 0)
303 			goto out_free;
304 
305 		pid->numbers[i].nr = nr;
306 		pid->numbers[i].ns = tmp;
307 		tmp = tmp->parent;
308 	}
309 
310 	if (unlikely(is_child_reaper(pid))) {
311 		if (pid_ns_prepare_proc(ns))
312 			goto out_free;
313 	}
314 
315 	get_pid_ns(ns);
316 	atomic_set(&pid->count, 1);
317 	for (type = 0; type < PIDTYPE_MAX; ++type)
318 		INIT_HLIST_HEAD(&pid->tasks[type]);
319 
320 	upid = pid->numbers + ns->level;
321 	spin_lock_irq(&pidmap_lock);
322 	if (ns->nr_hashed < 0)
323 		goto out_unlock;
324 	for ( ; upid >= pid->numbers; --upid) {
325 		hlist_add_head_rcu(&upid->pid_chain,
326 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
327 		upid->ns->nr_hashed++;
328 	}
329 	spin_unlock_irq(&pidmap_lock);
330 
331 out:
332 	return pid;
333 
334 out_unlock:
335 	spin_unlock(&pidmap_lock);
336 out_free:
337 	while (++i <= ns->level)
338 		free_pidmap(pid->numbers + i);
339 
340 	kmem_cache_free(ns->pid_cachep, pid);
341 	pid = NULL;
342 	goto out;
343 }
344 
345 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
346 {
347 	struct hlist_node *elem;
348 	struct upid *pnr;
349 
350 	hlist_for_each_entry_rcu(pnr, elem,
351 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
352 		if (pnr->nr == nr && pnr->ns == ns)
353 			return container_of(pnr, struct pid,
354 					numbers[ns->level]);
355 
356 	return NULL;
357 }
358 EXPORT_SYMBOL_GPL(find_pid_ns);
359 
360 struct pid *find_vpid(int nr)
361 {
362 	return find_pid_ns(nr, task_active_pid_ns(current));
363 }
364 EXPORT_SYMBOL_GPL(find_vpid);
365 
366 /*
367  * attach_pid() must be called with the tasklist_lock write-held.
368  */
369 void attach_pid(struct task_struct *task, enum pid_type type,
370 		struct pid *pid)
371 {
372 	struct pid_link *link;
373 
374 	link = &task->pids[type];
375 	link->pid = pid;
376 	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
377 }
378 
379 static void __change_pid(struct task_struct *task, enum pid_type type,
380 			struct pid *new)
381 {
382 	struct pid_link *link;
383 	struct pid *pid;
384 	int tmp;
385 
386 	link = &task->pids[type];
387 	pid = link->pid;
388 
389 	hlist_del_rcu(&link->node);
390 	link->pid = new;
391 
392 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
393 		if (!hlist_empty(&pid->tasks[tmp]))
394 			return;
395 
396 	free_pid(pid);
397 }
398 
399 void detach_pid(struct task_struct *task, enum pid_type type)
400 {
401 	__change_pid(task, type, NULL);
402 }
403 
404 void change_pid(struct task_struct *task, enum pid_type type,
405 		struct pid *pid)
406 {
407 	__change_pid(task, type, pid);
408 	attach_pid(task, type, pid);
409 }
410 
411 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
412 void transfer_pid(struct task_struct *old, struct task_struct *new,
413 			   enum pid_type type)
414 {
415 	new->pids[type].pid = old->pids[type].pid;
416 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
417 }
418 
419 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
420 {
421 	struct task_struct *result = NULL;
422 	if (pid) {
423 		struct hlist_node *first;
424 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
425 					      lockdep_tasklist_lock_is_held());
426 		if (first)
427 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
428 	}
429 	return result;
430 }
431 EXPORT_SYMBOL(pid_task);
432 
433 /*
434  * Must be called under rcu_read_lock().
435  */
436 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
437 {
438 	rcu_lockdep_assert(rcu_read_lock_held(),
439 			   "find_task_by_pid_ns() needs rcu_read_lock()"
440 			   " protection");
441 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
442 }
443 
444 struct task_struct *find_task_by_vpid(pid_t vnr)
445 {
446 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
447 }
448 
449 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
450 {
451 	struct pid *pid;
452 	rcu_read_lock();
453 	if (type != PIDTYPE_PID)
454 		task = task->group_leader;
455 	pid = get_pid(task->pids[type].pid);
456 	rcu_read_unlock();
457 	return pid;
458 }
459 EXPORT_SYMBOL_GPL(get_task_pid);
460 
461 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462 {
463 	struct task_struct *result;
464 	rcu_read_lock();
465 	result = pid_task(pid, type);
466 	if (result)
467 		get_task_struct(result);
468 	rcu_read_unlock();
469 	return result;
470 }
471 EXPORT_SYMBOL_GPL(get_pid_task);
472 
473 struct pid *find_get_pid(pid_t nr)
474 {
475 	struct pid *pid;
476 
477 	rcu_read_lock();
478 	pid = get_pid(find_vpid(nr));
479 	rcu_read_unlock();
480 
481 	return pid;
482 }
483 EXPORT_SYMBOL_GPL(find_get_pid);
484 
485 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486 {
487 	struct upid *upid;
488 	pid_t nr = 0;
489 
490 	if (pid && ns->level <= pid->level) {
491 		upid = &pid->numbers[ns->level];
492 		if (upid->ns == ns)
493 			nr = upid->nr;
494 	}
495 	return nr;
496 }
497 EXPORT_SYMBOL_GPL(pid_nr_ns);
498 
499 pid_t pid_vnr(struct pid *pid)
500 {
501 	return pid_nr_ns(pid, task_active_pid_ns(current));
502 }
503 EXPORT_SYMBOL_GPL(pid_vnr);
504 
505 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506 			struct pid_namespace *ns)
507 {
508 	pid_t nr = 0;
509 
510 	rcu_read_lock();
511 	if (!ns)
512 		ns = task_active_pid_ns(current);
513 	if (likely(pid_alive(task))) {
514 		if (type != PIDTYPE_PID)
515 			task = task->group_leader;
516 		nr = pid_nr_ns(task->pids[type].pid, ns);
517 	}
518 	rcu_read_unlock();
519 
520 	return nr;
521 }
522 EXPORT_SYMBOL(__task_pid_nr_ns);
523 
524 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
525 {
526 	return pid_nr_ns(task_tgid(tsk), ns);
527 }
528 EXPORT_SYMBOL(task_tgid_nr_ns);
529 
530 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
531 {
532 	return ns_of_pid(task_pid(tsk));
533 }
534 EXPORT_SYMBOL_GPL(task_active_pid_ns);
535 
536 /*
537  * Used by proc to find the first pid that is greater than or equal to nr.
538  *
539  * If there is a pid at nr this function is exactly the same as find_pid_ns.
540  */
541 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
542 {
543 	struct pid *pid;
544 
545 	do {
546 		pid = find_pid_ns(nr, ns);
547 		if (pid)
548 			break;
549 		nr = next_pidmap(ns, nr);
550 	} while (nr > 0);
551 
552 	return pid;
553 }
554 
555 /*
556  * The pid hash table is scaled according to the amount of memory in the
557  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
558  * more.
559  */
560 void __init pidhash_init(void)
561 {
562 	unsigned int i, pidhash_size;
563 
564 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
565 					   HASH_EARLY | HASH_SMALL,
566 					   &pidhash_shift, NULL,
567 					   0, 4096);
568 	pidhash_size = 1U << pidhash_shift;
569 
570 	for (i = 0; i < pidhash_size; i++)
571 		INIT_HLIST_HEAD(&pid_hash[i]);
572 }
573 
574 void __init pidmap_init(void)
575 {
576 	/* bump default and minimum pid_max based on number of cpus */
577 	pid_max = min(pid_max_max, max_t(int, pid_max,
578 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
579 	pid_max_min = max_t(int, pid_max_min,
580 				PIDS_PER_CPU_MIN * num_possible_cpus());
581 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
582 
583 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
584 	/* Reserve PID 0. We never call free_pidmap(0) */
585 	set_bit(0, init_pid_ns.pidmap[0].page);
586 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
587 	init_pid_ns.nr_hashed = 1;
588 
589 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
590 			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
591 }
592