1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 William Irwin, IBM 5 * (C) 2004 William Irwin, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 40 #define pid_hashfn(nr, ns) \ 41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 42 static struct hlist_head *pid_hash; 43 static unsigned int pidhash_shift = 4; 44 struct pid init_struct_pid = INIT_STRUCT_PID; 45 46 int pid_max = PID_MAX_DEFAULT; 47 48 #define RESERVED_PIDS 300 49 50 int pid_max_min = RESERVED_PIDS + 1; 51 int pid_max_max = PID_MAX_LIMIT; 52 53 #define BITS_PER_PAGE (PAGE_SIZE*8) 54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 55 56 static inline int mk_pid(struct pid_namespace *pid_ns, 57 struct pidmap *map, int off) 58 { 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 60 } 61 62 #define find_next_offset(map, off) \ 63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 64 65 /* 66 * PID-map pages start out as NULL, they get allocated upon 67 * first use and are never deallocated. This way a low pid_max 68 * value does not cause lots of bitmaps to be allocated, but 69 * the scheme scales to up to 4 million PIDs, runtime. 70 */ 71 struct pid_namespace init_pid_ns = { 72 .kref = { 73 .refcount = ATOMIC_INIT(2), 74 }, 75 .pidmap = { 76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 77 }, 78 .last_pid = 0, 79 .level = 0, 80 .child_reaper = &init_task, 81 }; 82 EXPORT_SYMBOL_GPL(init_pid_ns); 83 84 int is_container_init(struct task_struct *tsk) 85 { 86 int ret = 0; 87 struct pid *pid; 88 89 rcu_read_lock(); 90 pid = task_pid(tsk); 91 if (pid != NULL && pid->numbers[pid->level].nr == 1) 92 ret = 1; 93 rcu_read_unlock(); 94 95 return ret; 96 } 97 EXPORT_SYMBOL(is_container_init); 98 99 /* 100 * Note: disable interrupts while the pidmap_lock is held as an 101 * interrupt might come in and do read_lock(&tasklist_lock). 102 * 103 * If we don't disable interrupts there is a nasty deadlock between 104 * detach_pid()->free_pid() and another cpu that does 105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 106 * read_lock(&tasklist_lock); 107 * 108 * After we clean up the tasklist_lock and know there are no 109 * irq handlers that take it we can leave the interrupts enabled. 110 * For now it is easier to be safe than to prove it can't happen. 111 */ 112 113 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 114 115 static void free_pidmap(struct upid *upid) 116 { 117 int nr = upid->nr; 118 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 119 int offset = nr & BITS_PER_PAGE_MASK; 120 121 clear_bit(offset, map->page); 122 atomic_inc(&map->nr_free); 123 } 124 125 /* 126 * If we started walking pids at 'base', is 'a' seen before 'b'? 127 */ 128 static int pid_before(int base, int a, int b) 129 { 130 /* 131 * This is the same as saying 132 * 133 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 134 * and that mapping orders 'a' and 'b' with respect to 'base'. 135 */ 136 return (unsigned)(a - base) < (unsigned)(b - base); 137 } 138 139 /* 140 * We might be racing with someone else trying to set pid_ns->last_pid 141 * at the pid allocation time (there's also a sysctl for this, but racing 142 * with this one is OK, see comment in kernel/pid_namespace.c about it). 143 * We want the winner to have the "later" value, because if the 144 * "earlier" value prevails, then a pid may get reused immediately. 145 * 146 * Since pids rollover, it is not sufficient to just pick the bigger 147 * value. We have to consider where we started counting from. 148 * 149 * 'base' is the value of pid_ns->last_pid that we observed when 150 * we started looking for a pid. 151 * 152 * 'pid' is the pid that we eventually found. 153 */ 154 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 155 { 156 int prev; 157 int last_write = base; 158 do { 159 prev = last_write; 160 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 161 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 162 } 163 164 static int alloc_pidmap(struct pid_namespace *pid_ns) 165 { 166 int i, offset, max_scan, pid, last = pid_ns->last_pid; 167 struct pidmap *map; 168 169 pid = last + 1; 170 if (pid >= pid_max) 171 pid = RESERVED_PIDS; 172 offset = pid & BITS_PER_PAGE_MASK; 173 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 174 /* 175 * If last_pid points into the middle of the map->page we 176 * want to scan this bitmap block twice, the second time 177 * we start with offset == 0 (or RESERVED_PIDS). 178 */ 179 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 180 for (i = 0; i <= max_scan; ++i) { 181 if (unlikely(!map->page)) { 182 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 183 /* 184 * Free the page if someone raced with us 185 * installing it: 186 */ 187 spin_lock_irq(&pidmap_lock); 188 if (!map->page) { 189 map->page = page; 190 page = NULL; 191 } 192 spin_unlock_irq(&pidmap_lock); 193 kfree(page); 194 if (unlikely(!map->page)) 195 break; 196 } 197 if (likely(atomic_read(&map->nr_free))) { 198 do { 199 if (!test_and_set_bit(offset, map->page)) { 200 atomic_dec(&map->nr_free); 201 set_last_pid(pid_ns, last, pid); 202 return pid; 203 } 204 offset = find_next_offset(map, offset); 205 pid = mk_pid(pid_ns, map, offset); 206 } while (offset < BITS_PER_PAGE && pid < pid_max); 207 } 208 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 209 ++map; 210 offset = 0; 211 } else { 212 map = &pid_ns->pidmap[0]; 213 offset = RESERVED_PIDS; 214 if (unlikely(last == offset)) 215 break; 216 } 217 pid = mk_pid(pid_ns, map, offset); 218 } 219 return -1; 220 } 221 222 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 223 { 224 int offset; 225 struct pidmap *map, *end; 226 227 if (last >= PID_MAX_LIMIT) 228 return -1; 229 230 offset = (last + 1) & BITS_PER_PAGE_MASK; 231 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 232 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 233 for (; map < end; map++, offset = 0) { 234 if (unlikely(!map->page)) 235 continue; 236 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 237 if (offset < BITS_PER_PAGE) 238 return mk_pid(pid_ns, map, offset); 239 } 240 return -1; 241 } 242 243 void put_pid(struct pid *pid) 244 { 245 struct pid_namespace *ns; 246 247 if (!pid) 248 return; 249 250 ns = pid->numbers[pid->level].ns; 251 if ((atomic_read(&pid->count) == 1) || 252 atomic_dec_and_test(&pid->count)) { 253 kmem_cache_free(ns->pid_cachep, pid); 254 put_pid_ns(ns); 255 } 256 } 257 EXPORT_SYMBOL_GPL(put_pid); 258 259 static void delayed_put_pid(struct rcu_head *rhp) 260 { 261 struct pid *pid = container_of(rhp, struct pid, rcu); 262 put_pid(pid); 263 } 264 265 void free_pid(struct pid *pid) 266 { 267 /* We can be called with write_lock_irq(&tasklist_lock) held */ 268 int i; 269 unsigned long flags; 270 271 spin_lock_irqsave(&pidmap_lock, flags); 272 for (i = 0; i <= pid->level; i++) 273 hlist_del_rcu(&pid->numbers[i].pid_chain); 274 spin_unlock_irqrestore(&pidmap_lock, flags); 275 276 for (i = 0; i <= pid->level; i++) 277 free_pidmap(pid->numbers + i); 278 279 call_rcu(&pid->rcu, delayed_put_pid); 280 } 281 282 struct pid *alloc_pid(struct pid_namespace *ns) 283 { 284 struct pid *pid; 285 enum pid_type type; 286 int i, nr; 287 struct pid_namespace *tmp; 288 struct upid *upid; 289 290 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 291 if (!pid) 292 goto out; 293 294 tmp = ns; 295 for (i = ns->level; i >= 0; i--) { 296 nr = alloc_pidmap(tmp); 297 if (nr < 0) 298 goto out_free; 299 300 pid->numbers[i].nr = nr; 301 pid->numbers[i].ns = tmp; 302 tmp = tmp->parent; 303 } 304 305 get_pid_ns(ns); 306 pid->level = ns->level; 307 atomic_set(&pid->count, 1); 308 for (type = 0; type < PIDTYPE_MAX; ++type) 309 INIT_HLIST_HEAD(&pid->tasks[type]); 310 311 upid = pid->numbers + ns->level; 312 spin_lock_irq(&pidmap_lock); 313 for ( ; upid >= pid->numbers; --upid) 314 hlist_add_head_rcu(&upid->pid_chain, 315 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 316 spin_unlock_irq(&pidmap_lock); 317 318 out: 319 return pid; 320 321 out_free: 322 while (++i <= ns->level) 323 free_pidmap(pid->numbers + i); 324 325 kmem_cache_free(ns->pid_cachep, pid); 326 pid = NULL; 327 goto out; 328 } 329 330 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 331 { 332 struct hlist_node *elem; 333 struct upid *pnr; 334 335 hlist_for_each_entry_rcu(pnr, elem, 336 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 337 if (pnr->nr == nr && pnr->ns == ns) 338 return container_of(pnr, struct pid, 339 numbers[ns->level]); 340 341 return NULL; 342 } 343 EXPORT_SYMBOL_GPL(find_pid_ns); 344 345 struct pid *find_vpid(int nr) 346 { 347 return find_pid_ns(nr, current->nsproxy->pid_ns); 348 } 349 EXPORT_SYMBOL_GPL(find_vpid); 350 351 /* 352 * attach_pid() must be called with the tasklist_lock write-held. 353 */ 354 void attach_pid(struct task_struct *task, enum pid_type type, 355 struct pid *pid) 356 { 357 struct pid_link *link; 358 359 link = &task->pids[type]; 360 link->pid = pid; 361 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 362 } 363 364 static void __change_pid(struct task_struct *task, enum pid_type type, 365 struct pid *new) 366 { 367 struct pid_link *link; 368 struct pid *pid; 369 int tmp; 370 371 link = &task->pids[type]; 372 pid = link->pid; 373 374 hlist_del_rcu(&link->node); 375 link->pid = new; 376 377 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 378 if (!hlist_empty(&pid->tasks[tmp])) 379 return; 380 381 free_pid(pid); 382 } 383 384 void detach_pid(struct task_struct *task, enum pid_type type) 385 { 386 __change_pid(task, type, NULL); 387 } 388 389 void change_pid(struct task_struct *task, enum pid_type type, 390 struct pid *pid) 391 { 392 __change_pid(task, type, pid); 393 attach_pid(task, type, pid); 394 } 395 396 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 397 void transfer_pid(struct task_struct *old, struct task_struct *new, 398 enum pid_type type) 399 { 400 new->pids[type].pid = old->pids[type].pid; 401 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 402 } 403 404 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 405 { 406 struct task_struct *result = NULL; 407 if (pid) { 408 struct hlist_node *first; 409 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 410 lockdep_tasklist_lock_is_held()); 411 if (first) 412 result = hlist_entry(first, struct task_struct, pids[(type)].node); 413 } 414 return result; 415 } 416 EXPORT_SYMBOL(pid_task); 417 418 /* 419 * Must be called under rcu_read_lock(). 420 */ 421 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 422 { 423 rcu_lockdep_assert(rcu_read_lock_held(), 424 "find_task_by_pid_ns() needs rcu_read_lock()" 425 " protection"); 426 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 427 } 428 429 struct task_struct *find_task_by_vpid(pid_t vnr) 430 { 431 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns); 432 } 433 434 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 435 { 436 struct pid *pid; 437 rcu_read_lock(); 438 if (type != PIDTYPE_PID) 439 task = task->group_leader; 440 pid = get_pid(task->pids[type].pid); 441 rcu_read_unlock(); 442 return pid; 443 } 444 EXPORT_SYMBOL_GPL(get_task_pid); 445 446 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 447 { 448 struct task_struct *result; 449 rcu_read_lock(); 450 result = pid_task(pid, type); 451 if (result) 452 get_task_struct(result); 453 rcu_read_unlock(); 454 return result; 455 } 456 EXPORT_SYMBOL_GPL(get_pid_task); 457 458 struct pid *find_get_pid(pid_t nr) 459 { 460 struct pid *pid; 461 462 rcu_read_lock(); 463 pid = get_pid(find_vpid(nr)); 464 rcu_read_unlock(); 465 466 return pid; 467 } 468 EXPORT_SYMBOL_GPL(find_get_pid); 469 470 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 471 { 472 struct upid *upid; 473 pid_t nr = 0; 474 475 if (pid && ns->level <= pid->level) { 476 upid = &pid->numbers[ns->level]; 477 if (upid->ns == ns) 478 nr = upid->nr; 479 } 480 return nr; 481 } 482 483 pid_t pid_vnr(struct pid *pid) 484 { 485 return pid_nr_ns(pid, current->nsproxy->pid_ns); 486 } 487 EXPORT_SYMBOL_GPL(pid_vnr); 488 489 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 490 struct pid_namespace *ns) 491 { 492 pid_t nr = 0; 493 494 rcu_read_lock(); 495 if (!ns) 496 ns = current->nsproxy->pid_ns; 497 if (likely(pid_alive(task))) { 498 if (type != PIDTYPE_PID) 499 task = task->group_leader; 500 nr = pid_nr_ns(task->pids[type].pid, ns); 501 } 502 rcu_read_unlock(); 503 504 return nr; 505 } 506 EXPORT_SYMBOL(__task_pid_nr_ns); 507 508 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 509 { 510 return pid_nr_ns(task_tgid(tsk), ns); 511 } 512 EXPORT_SYMBOL(task_tgid_nr_ns); 513 514 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 515 { 516 return ns_of_pid(task_pid(tsk)); 517 } 518 EXPORT_SYMBOL_GPL(task_active_pid_ns); 519 520 /* 521 * Used by proc to find the first pid that is greater than or equal to nr. 522 * 523 * If there is a pid at nr this function is exactly the same as find_pid_ns. 524 */ 525 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 526 { 527 struct pid *pid; 528 529 do { 530 pid = find_pid_ns(nr, ns); 531 if (pid) 532 break; 533 nr = next_pidmap(ns, nr); 534 } while (nr > 0); 535 536 return pid; 537 } 538 539 /* 540 * The pid hash table is scaled according to the amount of memory in the 541 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 542 * more. 543 */ 544 void __init pidhash_init(void) 545 { 546 int i, pidhash_size; 547 548 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 549 HASH_EARLY | HASH_SMALL, 550 &pidhash_shift, NULL, 4096); 551 pidhash_size = 1 << pidhash_shift; 552 553 for (i = 0; i < pidhash_size; i++) 554 INIT_HLIST_HEAD(&pid_hash[i]); 555 } 556 557 void __init pidmap_init(void) 558 { 559 /* bump default and minimum pid_max based on number of cpus */ 560 pid_max = min(pid_max_max, max_t(int, pid_max, 561 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 562 pid_max_min = max_t(int, pid_max_min, 563 PIDS_PER_CPU_MIN * num_possible_cpus()); 564 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 565 566 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 567 /* Reserve PID 0. We never call free_pidmap(0) */ 568 set_bit(0, init_pid_ns.pidmap[0].page); 569 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 570 571 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 572 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 573 } 574