xref: /linux/kernel/pid.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 
42 #define pid_hashfn(nr, ns)	\
43 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
47 
48 int pid_max = PID_MAX_DEFAULT;
49 
50 #define RESERVED_PIDS		300
51 
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
54 
55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 		struct pidmap *map, int off)
57 {
58 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60 
61 #define find_next_offset(map, off)					\
62 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63 
64 /*
65  * PID-map pages start out as NULL, they get allocated upon
66  * first use and are never deallocated. This way a low pid_max
67  * value does not cause lots of bitmaps to be allocated, but
68  * the scheme scales to up to 4 million PIDs, runtime.
69  */
70 struct pid_namespace init_pid_ns = {
71 	.kref = {
72 		.refcount       = ATOMIC_INIT(2),
73 	},
74 	.pidmap = {
75 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 	},
77 	.last_pid = 0,
78 	.nr_hashed = PIDNS_HASH_ADDING,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 	.user_ns = &init_user_ns,
82 	.ns.inum = PROC_PID_INIT_INO,
83 #ifdef CONFIG_PID_NS
84 	.ns.ops = &pidns_operations,
85 #endif
86 };
87 EXPORT_SYMBOL_GPL(init_pid_ns);
88 
89 /*
90  * Note: disable interrupts while the pidmap_lock is held as an
91  * interrupt might come in and do read_lock(&tasklist_lock).
92  *
93  * If we don't disable interrupts there is a nasty deadlock between
94  * detach_pid()->free_pid() and another cpu that does
95  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
96  * read_lock(&tasklist_lock);
97  *
98  * After we clean up the tasklist_lock and know there are no
99  * irq handlers that take it we can leave the interrupts enabled.
100  * For now it is easier to be safe than to prove it can't happen.
101  */
102 
103 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
104 
105 static void free_pidmap(struct upid *upid)
106 {
107 	int nr = upid->nr;
108 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
109 	int offset = nr & BITS_PER_PAGE_MASK;
110 
111 	clear_bit(offset, map->page);
112 	atomic_inc(&map->nr_free);
113 }
114 
115 /*
116  * If we started walking pids at 'base', is 'a' seen before 'b'?
117  */
118 static int pid_before(int base, int a, int b)
119 {
120 	/*
121 	 * This is the same as saying
122 	 *
123 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
124 	 * and that mapping orders 'a' and 'b' with respect to 'base'.
125 	 */
126 	return (unsigned)(a - base) < (unsigned)(b - base);
127 }
128 
129 /*
130  * We might be racing with someone else trying to set pid_ns->last_pid
131  * at the pid allocation time (there's also a sysctl for this, but racing
132  * with this one is OK, see comment in kernel/pid_namespace.c about it).
133  * We want the winner to have the "later" value, because if the
134  * "earlier" value prevails, then a pid may get reused immediately.
135  *
136  * Since pids rollover, it is not sufficient to just pick the bigger
137  * value.  We have to consider where we started counting from.
138  *
139  * 'base' is the value of pid_ns->last_pid that we observed when
140  * we started looking for a pid.
141  *
142  * 'pid' is the pid that we eventually found.
143  */
144 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
145 {
146 	int prev;
147 	int last_write = base;
148 	do {
149 		prev = last_write;
150 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
151 	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
152 }
153 
154 static int alloc_pidmap(struct pid_namespace *pid_ns)
155 {
156 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
157 	struct pidmap *map;
158 
159 	pid = last + 1;
160 	if (pid >= pid_max)
161 		pid = RESERVED_PIDS;
162 	offset = pid & BITS_PER_PAGE_MASK;
163 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
164 	/*
165 	 * If last_pid points into the middle of the map->page we
166 	 * want to scan this bitmap block twice, the second time
167 	 * we start with offset == 0 (or RESERVED_PIDS).
168 	 */
169 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
170 	for (i = 0; i <= max_scan; ++i) {
171 		if (unlikely(!map->page)) {
172 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
173 			/*
174 			 * Free the page if someone raced with us
175 			 * installing it:
176 			 */
177 			spin_lock_irq(&pidmap_lock);
178 			if (!map->page) {
179 				map->page = page;
180 				page = NULL;
181 			}
182 			spin_unlock_irq(&pidmap_lock);
183 			kfree(page);
184 			if (unlikely(!map->page))
185 				return -ENOMEM;
186 		}
187 		if (likely(atomic_read(&map->nr_free))) {
188 			for ( ; ; ) {
189 				if (!test_and_set_bit(offset, map->page)) {
190 					atomic_dec(&map->nr_free);
191 					set_last_pid(pid_ns, last, pid);
192 					return pid;
193 				}
194 				offset = find_next_offset(map, offset);
195 				if (offset >= BITS_PER_PAGE)
196 					break;
197 				pid = mk_pid(pid_ns, map, offset);
198 				if (pid >= pid_max)
199 					break;
200 			}
201 		}
202 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
203 			++map;
204 			offset = 0;
205 		} else {
206 			map = &pid_ns->pidmap[0];
207 			offset = RESERVED_PIDS;
208 			if (unlikely(last == offset))
209 				break;
210 		}
211 		pid = mk_pid(pid_ns, map, offset);
212 	}
213 	return -EAGAIN;
214 }
215 
216 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
217 {
218 	int offset;
219 	struct pidmap *map, *end;
220 
221 	if (last >= PID_MAX_LIMIT)
222 		return -1;
223 
224 	offset = (last + 1) & BITS_PER_PAGE_MASK;
225 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
226 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
227 	for (; map < end; map++, offset = 0) {
228 		if (unlikely(!map->page))
229 			continue;
230 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
231 		if (offset < BITS_PER_PAGE)
232 			return mk_pid(pid_ns, map, offset);
233 	}
234 	return -1;
235 }
236 
237 void put_pid(struct pid *pid)
238 {
239 	struct pid_namespace *ns;
240 
241 	if (!pid)
242 		return;
243 
244 	ns = pid->numbers[pid->level].ns;
245 	if ((atomic_read(&pid->count) == 1) ||
246 	     atomic_dec_and_test(&pid->count)) {
247 		kmem_cache_free(ns->pid_cachep, pid);
248 		put_pid_ns(ns);
249 	}
250 }
251 EXPORT_SYMBOL_GPL(put_pid);
252 
253 static void delayed_put_pid(struct rcu_head *rhp)
254 {
255 	struct pid *pid = container_of(rhp, struct pid, rcu);
256 	put_pid(pid);
257 }
258 
259 void free_pid(struct pid *pid)
260 {
261 	/* We can be called with write_lock_irq(&tasklist_lock) held */
262 	int i;
263 	unsigned long flags;
264 
265 	spin_lock_irqsave(&pidmap_lock, flags);
266 	for (i = 0; i <= pid->level; i++) {
267 		struct upid *upid = pid->numbers + i;
268 		struct pid_namespace *ns = upid->ns;
269 		hlist_del_rcu(&upid->pid_chain);
270 		switch(--ns->nr_hashed) {
271 		case 2:
272 		case 1:
273 			/* When all that is left in the pid namespace
274 			 * is the reaper wake up the reaper.  The reaper
275 			 * may be sleeping in zap_pid_ns_processes().
276 			 */
277 			wake_up_process(ns->child_reaper);
278 			break;
279 		case PIDNS_HASH_ADDING:
280 			/* Handle a fork failure of the first process */
281 			WARN_ON(ns->child_reaper);
282 			ns->nr_hashed = 0;
283 			/* fall through */
284 		case 0:
285 			schedule_work(&ns->proc_work);
286 			break;
287 		}
288 	}
289 	spin_unlock_irqrestore(&pidmap_lock, flags);
290 
291 	for (i = 0; i <= pid->level; i++)
292 		free_pidmap(pid->numbers + i);
293 
294 	call_rcu(&pid->rcu, delayed_put_pid);
295 }
296 
297 struct pid *alloc_pid(struct pid_namespace *ns)
298 {
299 	struct pid *pid;
300 	enum pid_type type;
301 	int i, nr;
302 	struct pid_namespace *tmp;
303 	struct upid *upid;
304 	int retval = -ENOMEM;
305 
306 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
307 	if (!pid)
308 		return ERR_PTR(retval);
309 
310 	tmp = ns;
311 	pid->level = ns->level;
312 	for (i = ns->level; i >= 0; i--) {
313 		nr = alloc_pidmap(tmp);
314 		if (IS_ERR_VALUE(nr)) {
315 			retval = nr;
316 			goto out_free;
317 		}
318 
319 		pid->numbers[i].nr = nr;
320 		pid->numbers[i].ns = tmp;
321 		tmp = tmp->parent;
322 	}
323 
324 	if (unlikely(is_child_reaper(pid))) {
325 		if (pid_ns_prepare_proc(ns))
326 			goto out_free;
327 	}
328 
329 	get_pid_ns(ns);
330 	atomic_set(&pid->count, 1);
331 	for (type = 0; type < PIDTYPE_MAX; ++type)
332 		INIT_HLIST_HEAD(&pid->tasks[type]);
333 
334 	upid = pid->numbers + ns->level;
335 	spin_lock_irq(&pidmap_lock);
336 	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
337 		goto out_unlock;
338 	for ( ; upid >= pid->numbers; --upid) {
339 		hlist_add_head_rcu(&upid->pid_chain,
340 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
341 		upid->ns->nr_hashed++;
342 	}
343 	spin_unlock_irq(&pidmap_lock);
344 
345 	return pid;
346 
347 out_unlock:
348 	spin_unlock_irq(&pidmap_lock);
349 	put_pid_ns(ns);
350 
351 out_free:
352 	while (++i <= ns->level)
353 		free_pidmap(pid->numbers + i);
354 
355 	kmem_cache_free(ns->pid_cachep, pid);
356 	return ERR_PTR(retval);
357 }
358 
359 void disable_pid_allocation(struct pid_namespace *ns)
360 {
361 	spin_lock_irq(&pidmap_lock);
362 	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
363 	spin_unlock_irq(&pidmap_lock);
364 }
365 
366 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
367 {
368 	struct upid *pnr;
369 
370 	hlist_for_each_entry_rcu(pnr,
371 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
372 		if (pnr->nr == nr && pnr->ns == ns)
373 			return container_of(pnr, struct pid,
374 					numbers[ns->level]);
375 
376 	return NULL;
377 }
378 EXPORT_SYMBOL_GPL(find_pid_ns);
379 
380 struct pid *find_vpid(int nr)
381 {
382 	return find_pid_ns(nr, task_active_pid_ns(current));
383 }
384 EXPORT_SYMBOL_GPL(find_vpid);
385 
386 /*
387  * attach_pid() must be called with the tasklist_lock write-held.
388  */
389 void attach_pid(struct task_struct *task, enum pid_type type)
390 {
391 	struct pid_link *link = &task->pids[type];
392 	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
393 }
394 
395 static void __change_pid(struct task_struct *task, enum pid_type type,
396 			struct pid *new)
397 {
398 	struct pid_link *link;
399 	struct pid *pid;
400 	int tmp;
401 
402 	link = &task->pids[type];
403 	pid = link->pid;
404 
405 	hlist_del_rcu(&link->node);
406 	link->pid = new;
407 
408 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
409 		if (!hlist_empty(&pid->tasks[tmp]))
410 			return;
411 
412 	free_pid(pid);
413 }
414 
415 void detach_pid(struct task_struct *task, enum pid_type type)
416 {
417 	__change_pid(task, type, NULL);
418 }
419 
420 void change_pid(struct task_struct *task, enum pid_type type,
421 		struct pid *pid)
422 {
423 	__change_pid(task, type, pid);
424 	attach_pid(task, type);
425 }
426 
427 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
428 void transfer_pid(struct task_struct *old, struct task_struct *new,
429 			   enum pid_type type)
430 {
431 	new->pids[type].pid = old->pids[type].pid;
432 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
433 }
434 
435 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
436 {
437 	struct task_struct *result = NULL;
438 	if (pid) {
439 		struct hlist_node *first;
440 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
441 					      lockdep_tasklist_lock_is_held());
442 		if (first)
443 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
444 	}
445 	return result;
446 }
447 EXPORT_SYMBOL(pid_task);
448 
449 /*
450  * Must be called under rcu_read_lock().
451  */
452 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
453 {
454 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
455 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
456 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
457 }
458 
459 struct task_struct *find_task_by_vpid(pid_t vnr)
460 {
461 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
462 }
463 
464 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
465 {
466 	struct pid *pid;
467 	rcu_read_lock();
468 	if (type != PIDTYPE_PID)
469 		task = task->group_leader;
470 	pid = get_pid(rcu_dereference(task->pids[type].pid));
471 	rcu_read_unlock();
472 	return pid;
473 }
474 EXPORT_SYMBOL_GPL(get_task_pid);
475 
476 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
477 {
478 	struct task_struct *result;
479 	rcu_read_lock();
480 	result = pid_task(pid, type);
481 	if (result)
482 		get_task_struct(result);
483 	rcu_read_unlock();
484 	return result;
485 }
486 EXPORT_SYMBOL_GPL(get_pid_task);
487 
488 struct pid *find_get_pid(pid_t nr)
489 {
490 	struct pid *pid;
491 
492 	rcu_read_lock();
493 	pid = get_pid(find_vpid(nr));
494 	rcu_read_unlock();
495 
496 	return pid;
497 }
498 EXPORT_SYMBOL_GPL(find_get_pid);
499 
500 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
501 {
502 	struct upid *upid;
503 	pid_t nr = 0;
504 
505 	if (pid && ns->level <= pid->level) {
506 		upid = &pid->numbers[ns->level];
507 		if (upid->ns == ns)
508 			nr = upid->nr;
509 	}
510 	return nr;
511 }
512 EXPORT_SYMBOL_GPL(pid_nr_ns);
513 
514 pid_t pid_vnr(struct pid *pid)
515 {
516 	return pid_nr_ns(pid, task_active_pid_ns(current));
517 }
518 EXPORT_SYMBOL_GPL(pid_vnr);
519 
520 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
521 			struct pid_namespace *ns)
522 {
523 	pid_t nr = 0;
524 
525 	rcu_read_lock();
526 	if (!ns)
527 		ns = task_active_pid_ns(current);
528 	if (likely(pid_alive(task))) {
529 		if (type != PIDTYPE_PID)
530 			task = task->group_leader;
531 		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
532 	}
533 	rcu_read_unlock();
534 
535 	return nr;
536 }
537 EXPORT_SYMBOL(__task_pid_nr_ns);
538 
539 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
540 {
541 	return pid_nr_ns(task_tgid(tsk), ns);
542 }
543 EXPORT_SYMBOL(task_tgid_nr_ns);
544 
545 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
546 {
547 	return ns_of_pid(task_pid(tsk));
548 }
549 EXPORT_SYMBOL_GPL(task_active_pid_ns);
550 
551 /*
552  * Used by proc to find the first pid that is greater than or equal to nr.
553  *
554  * If there is a pid at nr this function is exactly the same as find_pid_ns.
555  */
556 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
557 {
558 	struct pid *pid;
559 
560 	do {
561 		pid = find_pid_ns(nr, ns);
562 		if (pid)
563 			break;
564 		nr = next_pidmap(ns, nr);
565 	} while (nr > 0);
566 
567 	return pid;
568 }
569 
570 /*
571  * The pid hash table is scaled according to the amount of memory in the
572  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
573  * more.
574  */
575 void __init pidhash_init(void)
576 {
577 	unsigned int i, pidhash_size;
578 
579 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
580 					   HASH_EARLY | HASH_SMALL,
581 					   &pidhash_shift, NULL,
582 					   0, 4096);
583 	pidhash_size = 1U << pidhash_shift;
584 
585 	for (i = 0; i < pidhash_size; i++)
586 		INIT_HLIST_HEAD(&pid_hash[i]);
587 }
588 
589 void __init pidmap_init(void)
590 {
591 	/* Verify no one has done anything silly: */
592 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
593 
594 	/* bump default and minimum pid_max based on number of cpus */
595 	pid_max = min(pid_max_max, max_t(int, pid_max,
596 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
597 	pid_max_min = max_t(int, pid_max_min,
598 				PIDS_PER_CPU_MIN * num_possible_cpus());
599 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
600 
601 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
602 	/* Reserve PID 0. We never call free_pidmap(0) */
603 	set_bit(0, init_pid_ns.pidmap[0].page);
604 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
605 
606 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
607 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
608 }
609