1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 40 #define pid_hashfn(nr, ns) \ 41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 42 static struct hlist_head *pid_hash; 43 static unsigned int pidhash_shift = 4; 44 struct pid init_struct_pid = INIT_STRUCT_PID; 45 46 int pid_max = PID_MAX_DEFAULT; 47 48 #define RESERVED_PIDS 300 49 50 int pid_max_min = RESERVED_PIDS + 1; 51 int pid_max_max = PID_MAX_LIMIT; 52 53 #define BITS_PER_PAGE (PAGE_SIZE*8) 54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 55 56 static inline int mk_pid(struct pid_namespace *pid_ns, 57 struct pidmap *map, int off) 58 { 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 60 } 61 62 #define find_next_offset(map, off) \ 63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 64 65 /* 66 * PID-map pages start out as NULL, they get allocated upon 67 * first use and are never deallocated. This way a low pid_max 68 * value does not cause lots of bitmaps to be allocated, but 69 * the scheme scales to up to 4 million PIDs, runtime. 70 */ 71 struct pid_namespace init_pid_ns = { 72 .kref = { 73 .refcount = ATOMIC_INIT(2), 74 }, 75 .pidmap = { 76 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 77 }, 78 .last_pid = 0, 79 .level = 0, 80 .child_reaper = &init_task, 81 }; 82 EXPORT_SYMBOL_GPL(init_pid_ns); 83 84 /* 85 * Note: disable interrupts while the pidmap_lock is held as an 86 * interrupt might come in and do read_lock(&tasklist_lock). 87 * 88 * If we don't disable interrupts there is a nasty deadlock between 89 * detach_pid()->free_pid() and another cpu that does 90 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 91 * read_lock(&tasklist_lock); 92 * 93 * After we clean up the tasklist_lock and know there are no 94 * irq handlers that take it we can leave the interrupts enabled. 95 * For now it is easier to be safe than to prove it can't happen. 96 */ 97 98 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 99 100 static void free_pidmap(struct upid *upid) 101 { 102 int nr = upid->nr; 103 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 104 int offset = nr & BITS_PER_PAGE_MASK; 105 106 clear_bit(offset, map->page); 107 atomic_inc(&map->nr_free); 108 } 109 110 /* 111 * If we started walking pids at 'base', is 'a' seen before 'b'? 112 */ 113 static int pid_before(int base, int a, int b) 114 { 115 /* 116 * This is the same as saying 117 * 118 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 119 * and that mapping orders 'a' and 'b' with respect to 'base'. 120 */ 121 return (unsigned)(a - base) < (unsigned)(b - base); 122 } 123 124 /* 125 * We might be racing with someone else trying to set pid_ns->last_pid 126 * at the pid allocation time (there's also a sysctl for this, but racing 127 * with this one is OK, see comment in kernel/pid_namespace.c about it). 128 * We want the winner to have the "later" value, because if the 129 * "earlier" value prevails, then a pid may get reused immediately. 130 * 131 * Since pids rollover, it is not sufficient to just pick the bigger 132 * value. We have to consider where we started counting from. 133 * 134 * 'base' is the value of pid_ns->last_pid that we observed when 135 * we started looking for a pid. 136 * 137 * 'pid' is the pid that we eventually found. 138 */ 139 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 140 { 141 int prev; 142 int last_write = base; 143 do { 144 prev = last_write; 145 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 146 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 147 } 148 149 static int alloc_pidmap(struct pid_namespace *pid_ns) 150 { 151 int i, offset, max_scan, pid, last = pid_ns->last_pid; 152 struct pidmap *map; 153 154 pid = last + 1; 155 if (pid >= pid_max) 156 pid = RESERVED_PIDS; 157 offset = pid & BITS_PER_PAGE_MASK; 158 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 159 /* 160 * If last_pid points into the middle of the map->page we 161 * want to scan this bitmap block twice, the second time 162 * we start with offset == 0 (or RESERVED_PIDS). 163 */ 164 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 165 for (i = 0; i <= max_scan; ++i) { 166 if (unlikely(!map->page)) { 167 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 168 /* 169 * Free the page if someone raced with us 170 * installing it: 171 */ 172 spin_lock_irq(&pidmap_lock); 173 if (!map->page) { 174 map->page = page; 175 page = NULL; 176 } 177 spin_unlock_irq(&pidmap_lock); 178 kfree(page); 179 if (unlikely(!map->page)) 180 break; 181 } 182 if (likely(atomic_read(&map->nr_free))) { 183 do { 184 if (!test_and_set_bit(offset, map->page)) { 185 atomic_dec(&map->nr_free); 186 set_last_pid(pid_ns, last, pid); 187 return pid; 188 } 189 offset = find_next_offset(map, offset); 190 pid = mk_pid(pid_ns, map, offset); 191 } while (offset < BITS_PER_PAGE && pid < pid_max); 192 } 193 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 194 ++map; 195 offset = 0; 196 } else { 197 map = &pid_ns->pidmap[0]; 198 offset = RESERVED_PIDS; 199 if (unlikely(last == offset)) 200 break; 201 } 202 pid = mk_pid(pid_ns, map, offset); 203 } 204 return -1; 205 } 206 207 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 208 { 209 int offset; 210 struct pidmap *map, *end; 211 212 if (last >= PID_MAX_LIMIT) 213 return -1; 214 215 offset = (last + 1) & BITS_PER_PAGE_MASK; 216 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 217 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 218 for (; map < end; map++, offset = 0) { 219 if (unlikely(!map->page)) 220 continue; 221 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 222 if (offset < BITS_PER_PAGE) 223 return mk_pid(pid_ns, map, offset); 224 } 225 return -1; 226 } 227 228 void put_pid(struct pid *pid) 229 { 230 struct pid_namespace *ns; 231 232 if (!pid) 233 return; 234 235 ns = pid->numbers[pid->level].ns; 236 if ((atomic_read(&pid->count) == 1) || 237 atomic_dec_and_test(&pid->count)) { 238 kmem_cache_free(ns->pid_cachep, pid); 239 put_pid_ns(ns); 240 } 241 } 242 EXPORT_SYMBOL_GPL(put_pid); 243 244 static void delayed_put_pid(struct rcu_head *rhp) 245 { 246 struct pid *pid = container_of(rhp, struct pid, rcu); 247 put_pid(pid); 248 } 249 250 void free_pid(struct pid *pid) 251 { 252 /* We can be called with write_lock_irq(&tasklist_lock) held */ 253 int i; 254 unsigned long flags; 255 256 spin_lock_irqsave(&pidmap_lock, flags); 257 for (i = 0; i <= pid->level; i++) 258 hlist_del_rcu(&pid->numbers[i].pid_chain); 259 spin_unlock_irqrestore(&pidmap_lock, flags); 260 261 for (i = 0; i <= pid->level; i++) 262 free_pidmap(pid->numbers + i); 263 264 call_rcu(&pid->rcu, delayed_put_pid); 265 } 266 267 struct pid *alloc_pid(struct pid_namespace *ns) 268 { 269 struct pid *pid; 270 enum pid_type type; 271 int i, nr; 272 struct pid_namespace *tmp; 273 struct upid *upid; 274 275 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 276 if (!pid) 277 goto out; 278 279 tmp = ns; 280 for (i = ns->level; i >= 0; i--) { 281 nr = alloc_pidmap(tmp); 282 if (nr < 0) 283 goto out_free; 284 285 pid->numbers[i].nr = nr; 286 pid->numbers[i].ns = tmp; 287 tmp = tmp->parent; 288 } 289 290 get_pid_ns(ns); 291 pid->level = ns->level; 292 atomic_set(&pid->count, 1); 293 for (type = 0; type < PIDTYPE_MAX; ++type) 294 INIT_HLIST_HEAD(&pid->tasks[type]); 295 296 upid = pid->numbers + ns->level; 297 spin_lock_irq(&pidmap_lock); 298 for ( ; upid >= pid->numbers; --upid) 299 hlist_add_head_rcu(&upid->pid_chain, 300 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 301 spin_unlock_irq(&pidmap_lock); 302 303 out: 304 return pid; 305 306 out_free: 307 while (++i <= ns->level) 308 free_pidmap(pid->numbers + i); 309 310 kmem_cache_free(ns->pid_cachep, pid); 311 pid = NULL; 312 goto out; 313 } 314 315 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 316 { 317 struct hlist_node *elem; 318 struct upid *pnr; 319 320 hlist_for_each_entry_rcu(pnr, elem, 321 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 322 if (pnr->nr == nr && pnr->ns == ns) 323 return container_of(pnr, struct pid, 324 numbers[ns->level]); 325 326 return NULL; 327 } 328 EXPORT_SYMBOL_GPL(find_pid_ns); 329 330 struct pid *find_vpid(int nr) 331 { 332 return find_pid_ns(nr, current->nsproxy->pid_ns); 333 } 334 EXPORT_SYMBOL_GPL(find_vpid); 335 336 /* 337 * attach_pid() must be called with the tasklist_lock write-held. 338 */ 339 void attach_pid(struct task_struct *task, enum pid_type type, 340 struct pid *pid) 341 { 342 struct pid_link *link; 343 344 link = &task->pids[type]; 345 link->pid = pid; 346 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 347 } 348 349 static void __change_pid(struct task_struct *task, enum pid_type type, 350 struct pid *new) 351 { 352 struct pid_link *link; 353 struct pid *pid; 354 int tmp; 355 356 link = &task->pids[type]; 357 pid = link->pid; 358 359 hlist_del_rcu(&link->node); 360 link->pid = new; 361 362 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 363 if (!hlist_empty(&pid->tasks[tmp])) 364 return; 365 366 free_pid(pid); 367 } 368 369 void detach_pid(struct task_struct *task, enum pid_type type) 370 { 371 __change_pid(task, type, NULL); 372 } 373 374 void change_pid(struct task_struct *task, enum pid_type type, 375 struct pid *pid) 376 { 377 __change_pid(task, type, pid); 378 attach_pid(task, type, pid); 379 } 380 381 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 382 void transfer_pid(struct task_struct *old, struct task_struct *new, 383 enum pid_type type) 384 { 385 new->pids[type].pid = old->pids[type].pid; 386 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 387 } 388 389 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 390 { 391 struct task_struct *result = NULL; 392 if (pid) { 393 struct hlist_node *first; 394 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 395 lockdep_tasklist_lock_is_held()); 396 if (first) 397 result = hlist_entry(first, struct task_struct, pids[(type)].node); 398 } 399 return result; 400 } 401 EXPORT_SYMBOL(pid_task); 402 403 /* 404 * Must be called under rcu_read_lock(). 405 */ 406 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 407 { 408 rcu_lockdep_assert(rcu_read_lock_held(), 409 "find_task_by_pid_ns() needs rcu_read_lock()" 410 " protection"); 411 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 412 } 413 414 struct task_struct *find_task_by_vpid(pid_t vnr) 415 { 416 return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns); 417 } 418 419 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 420 { 421 struct pid *pid; 422 rcu_read_lock(); 423 if (type != PIDTYPE_PID) 424 task = task->group_leader; 425 pid = get_pid(task->pids[type].pid); 426 rcu_read_unlock(); 427 return pid; 428 } 429 EXPORT_SYMBOL_GPL(get_task_pid); 430 431 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 432 { 433 struct task_struct *result; 434 rcu_read_lock(); 435 result = pid_task(pid, type); 436 if (result) 437 get_task_struct(result); 438 rcu_read_unlock(); 439 return result; 440 } 441 EXPORT_SYMBOL_GPL(get_pid_task); 442 443 struct pid *find_get_pid(pid_t nr) 444 { 445 struct pid *pid; 446 447 rcu_read_lock(); 448 pid = get_pid(find_vpid(nr)); 449 rcu_read_unlock(); 450 451 return pid; 452 } 453 EXPORT_SYMBOL_GPL(find_get_pid); 454 455 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 456 { 457 struct upid *upid; 458 pid_t nr = 0; 459 460 if (pid && ns->level <= pid->level) { 461 upid = &pid->numbers[ns->level]; 462 if (upid->ns == ns) 463 nr = upid->nr; 464 } 465 return nr; 466 } 467 EXPORT_SYMBOL_GPL(pid_nr_ns); 468 469 pid_t pid_vnr(struct pid *pid) 470 { 471 return pid_nr_ns(pid, current->nsproxy->pid_ns); 472 } 473 EXPORT_SYMBOL_GPL(pid_vnr); 474 475 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 476 struct pid_namespace *ns) 477 { 478 pid_t nr = 0; 479 480 rcu_read_lock(); 481 if (!ns) 482 ns = current->nsproxy->pid_ns; 483 if (likely(pid_alive(task))) { 484 if (type != PIDTYPE_PID) 485 task = task->group_leader; 486 nr = pid_nr_ns(task->pids[type].pid, ns); 487 } 488 rcu_read_unlock(); 489 490 return nr; 491 } 492 EXPORT_SYMBOL(__task_pid_nr_ns); 493 494 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 495 { 496 return pid_nr_ns(task_tgid(tsk), ns); 497 } 498 EXPORT_SYMBOL(task_tgid_nr_ns); 499 500 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 501 { 502 return ns_of_pid(task_pid(tsk)); 503 } 504 EXPORT_SYMBOL_GPL(task_active_pid_ns); 505 506 /* 507 * Used by proc to find the first pid that is greater than or equal to nr. 508 * 509 * If there is a pid at nr this function is exactly the same as find_pid_ns. 510 */ 511 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 512 { 513 struct pid *pid; 514 515 do { 516 pid = find_pid_ns(nr, ns); 517 if (pid) 518 break; 519 nr = next_pidmap(ns, nr); 520 } while (nr > 0); 521 522 return pid; 523 } 524 525 /* 526 * The pid hash table is scaled according to the amount of memory in the 527 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 528 * more. 529 */ 530 void __init pidhash_init(void) 531 { 532 unsigned int i, pidhash_size; 533 534 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 535 HASH_EARLY | HASH_SMALL, 536 &pidhash_shift, NULL, 537 0, 4096); 538 pidhash_size = 1U << pidhash_shift; 539 540 for (i = 0; i < pidhash_size; i++) 541 INIT_HLIST_HEAD(&pid_hash[i]); 542 } 543 544 void __init pidmap_init(void) 545 { 546 /* bump default and minimum pid_max based on number of cpus */ 547 pid_max = min(pid_max_max, max_t(int, pid_max, 548 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 549 pid_max_min = max_t(int, pid_max_min, 550 PIDS_PER_CPU_MIN * num_possible_cpus()); 551 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 552 553 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 554 /* Reserve PID 0. We never call free_pidmap(0) */ 555 set_bit(0, init_pid_ns.pidmap[0].page); 556 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 557 558 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 559 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 560 } 561