xref: /linux/kernel/pid.c (revision a58130ddc896e5a15e4de2bf50a1d89247118c23)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 
40 #define pid_hashfn(nr, ns)	\
41 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head *pid_hash;
43 static unsigned int pidhash_shift = 4;
44 struct pid init_struct_pid = INIT_STRUCT_PID;
45 
46 int pid_max = PID_MAX_DEFAULT;
47 
48 #define RESERVED_PIDS		300
49 
50 int pid_max_min = RESERVED_PIDS + 1;
51 int pid_max_max = PID_MAX_LIMIT;
52 
53 #define BITS_PER_PAGE		(PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
55 
56 static inline int mk_pid(struct pid_namespace *pid_ns,
57 		struct pidmap *map, int off)
58 {
59 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
60 }
61 
62 #define find_next_offset(map, off)					\
63 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64 
65 /*
66  * PID-map pages start out as NULL, they get allocated upon
67  * first use and are never deallocated. This way a low pid_max
68  * value does not cause lots of bitmaps to be allocated, but
69  * the scheme scales to up to 4 million PIDs, runtime.
70  */
71 struct pid_namespace init_pid_ns = {
72 	.kref = {
73 		.refcount       = ATOMIC_INIT(2),
74 	},
75 	.pidmap = {
76 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 	},
78 	.last_pid = 0,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 };
82 EXPORT_SYMBOL_GPL(init_pid_ns);
83 
84 /*
85  * Note: disable interrupts while the pidmap_lock is held as an
86  * interrupt might come in and do read_lock(&tasklist_lock).
87  *
88  * If we don't disable interrupts there is a nasty deadlock between
89  * detach_pid()->free_pid() and another cpu that does
90  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
91  * read_lock(&tasklist_lock);
92  *
93  * After we clean up the tasklist_lock and know there are no
94  * irq handlers that take it we can leave the interrupts enabled.
95  * For now it is easier to be safe than to prove it can't happen.
96  */
97 
98 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
99 
100 static void free_pidmap(struct upid *upid)
101 {
102 	int nr = upid->nr;
103 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
104 	int offset = nr & BITS_PER_PAGE_MASK;
105 
106 	clear_bit(offset, map->page);
107 	atomic_inc(&map->nr_free);
108 }
109 
110 /*
111  * If we started walking pids at 'base', is 'a' seen before 'b'?
112  */
113 static int pid_before(int base, int a, int b)
114 {
115 	/*
116 	 * This is the same as saying
117 	 *
118 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
119 	 * and that mapping orders 'a' and 'b' with respect to 'base'.
120 	 */
121 	return (unsigned)(a - base) < (unsigned)(b - base);
122 }
123 
124 /*
125  * We might be racing with someone else trying to set pid_ns->last_pid
126  * at the pid allocation time (there's also a sysctl for this, but racing
127  * with this one is OK, see comment in kernel/pid_namespace.c about it).
128  * We want the winner to have the "later" value, because if the
129  * "earlier" value prevails, then a pid may get reused immediately.
130  *
131  * Since pids rollover, it is not sufficient to just pick the bigger
132  * value.  We have to consider where we started counting from.
133  *
134  * 'base' is the value of pid_ns->last_pid that we observed when
135  * we started looking for a pid.
136  *
137  * 'pid' is the pid that we eventually found.
138  */
139 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
140 {
141 	int prev;
142 	int last_write = base;
143 	do {
144 		prev = last_write;
145 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
146 	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
147 }
148 
149 static int alloc_pidmap(struct pid_namespace *pid_ns)
150 {
151 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
152 	struct pidmap *map;
153 
154 	pid = last + 1;
155 	if (pid >= pid_max)
156 		pid = RESERVED_PIDS;
157 	offset = pid & BITS_PER_PAGE_MASK;
158 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
159 	/*
160 	 * If last_pid points into the middle of the map->page we
161 	 * want to scan this bitmap block twice, the second time
162 	 * we start with offset == 0 (or RESERVED_PIDS).
163 	 */
164 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
165 	for (i = 0; i <= max_scan; ++i) {
166 		if (unlikely(!map->page)) {
167 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
168 			/*
169 			 * Free the page if someone raced with us
170 			 * installing it:
171 			 */
172 			spin_lock_irq(&pidmap_lock);
173 			if (!map->page) {
174 				map->page = page;
175 				page = NULL;
176 			}
177 			spin_unlock_irq(&pidmap_lock);
178 			kfree(page);
179 			if (unlikely(!map->page))
180 				break;
181 		}
182 		if (likely(atomic_read(&map->nr_free))) {
183 			do {
184 				if (!test_and_set_bit(offset, map->page)) {
185 					atomic_dec(&map->nr_free);
186 					set_last_pid(pid_ns, last, pid);
187 					return pid;
188 				}
189 				offset = find_next_offset(map, offset);
190 				pid = mk_pid(pid_ns, map, offset);
191 			} while (offset < BITS_PER_PAGE && pid < pid_max);
192 		}
193 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
194 			++map;
195 			offset = 0;
196 		} else {
197 			map = &pid_ns->pidmap[0];
198 			offset = RESERVED_PIDS;
199 			if (unlikely(last == offset))
200 				break;
201 		}
202 		pid = mk_pid(pid_ns, map, offset);
203 	}
204 	return -1;
205 }
206 
207 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
208 {
209 	int offset;
210 	struct pidmap *map, *end;
211 
212 	if (last >= PID_MAX_LIMIT)
213 		return -1;
214 
215 	offset = (last + 1) & BITS_PER_PAGE_MASK;
216 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
217 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
218 	for (; map < end; map++, offset = 0) {
219 		if (unlikely(!map->page))
220 			continue;
221 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
222 		if (offset < BITS_PER_PAGE)
223 			return mk_pid(pid_ns, map, offset);
224 	}
225 	return -1;
226 }
227 
228 void put_pid(struct pid *pid)
229 {
230 	struct pid_namespace *ns;
231 
232 	if (!pid)
233 		return;
234 
235 	ns = pid->numbers[pid->level].ns;
236 	if ((atomic_read(&pid->count) == 1) ||
237 	     atomic_dec_and_test(&pid->count)) {
238 		kmem_cache_free(ns->pid_cachep, pid);
239 		put_pid_ns(ns);
240 	}
241 }
242 EXPORT_SYMBOL_GPL(put_pid);
243 
244 static void delayed_put_pid(struct rcu_head *rhp)
245 {
246 	struct pid *pid = container_of(rhp, struct pid, rcu);
247 	put_pid(pid);
248 }
249 
250 void free_pid(struct pid *pid)
251 {
252 	/* We can be called with write_lock_irq(&tasklist_lock) held */
253 	int i;
254 	unsigned long flags;
255 
256 	spin_lock_irqsave(&pidmap_lock, flags);
257 	for (i = 0; i <= pid->level; i++)
258 		hlist_del_rcu(&pid->numbers[i].pid_chain);
259 	spin_unlock_irqrestore(&pidmap_lock, flags);
260 
261 	for (i = 0; i <= pid->level; i++)
262 		free_pidmap(pid->numbers + i);
263 
264 	call_rcu(&pid->rcu, delayed_put_pid);
265 }
266 
267 struct pid *alloc_pid(struct pid_namespace *ns)
268 {
269 	struct pid *pid;
270 	enum pid_type type;
271 	int i, nr;
272 	struct pid_namespace *tmp;
273 	struct upid *upid;
274 
275 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
276 	if (!pid)
277 		goto out;
278 
279 	tmp = ns;
280 	for (i = ns->level; i >= 0; i--) {
281 		nr = alloc_pidmap(tmp);
282 		if (nr < 0)
283 			goto out_free;
284 
285 		pid->numbers[i].nr = nr;
286 		pid->numbers[i].ns = tmp;
287 		tmp = tmp->parent;
288 	}
289 
290 	get_pid_ns(ns);
291 	pid->level = ns->level;
292 	atomic_set(&pid->count, 1);
293 	for (type = 0; type < PIDTYPE_MAX; ++type)
294 		INIT_HLIST_HEAD(&pid->tasks[type]);
295 
296 	upid = pid->numbers + ns->level;
297 	spin_lock_irq(&pidmap_lock);
298 	for ( ; upid >= pid->numbers; --upid)
299 		hlist_add_head_rcu(&upid->pid_chain,
300 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
301 	spin_unlock_irq(&pidmap_lock);
302 
303 out:
304 	return pid;
305 
306 out_free:
307 	while (++i <= ns->level)
308 		free_pidmap(pid->numbers + i);
309 
310 	kmem_cache_free(ns->pid_cachep, pid);
311 	pid = NULL;
312 	goto out;
313 }
314 
315 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
316 {
317 	struct hlist_node *elem;
318 	struct upid *pnr;
319 
320 	hlist_for_each_entry_rcu(pnr, elem,
321 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
322 		if (pnr->nr == nr && pnr->ns == ns)
323 			return container_of(pnr, struct pid,
324 					numbers[ns->level]);
325 
326 	return NULL;
327 }
328 EXPORT_SYMBOL_GPL(find_pid_ns);
329 
330 struct pid *find_vpid(int nr)
331 {
332 	return find_pid_ns(nr, current->nsproxy->pid_ns);
333 }
334 EXPORT_SYMBOL_GPL(find_vpid);
335 
336 /*
337  * attach_pid() must be called with the tasklist_lock write-held.
338  */
339 void attach_pid(struct task_struct *task, enum pid_type type,
340 		struct pid *pid)
341 {
342 	struct pid_link *link;
343 
344 	link = &task->pids[type];
345 	link->pid = pid;
346 	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
347 }
348 
349 static void __change_pid(struct task_struct *task, enum pid_type type,
350 			struct pid *new)
351 {
352 	struct pid_link *link;
353 	struct pid *pid;
354 	int tmp;
355 
356 	link = &task->pids[type];
357 	pid = link->pid;
358 
359 	hlist_del_rcu(&link->node);
360 	link->pid = new;
361 
362 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
363 		if (!hlist_empty(&pid->tasks[tmp]))
364 			return;
365 
366 	free_pid(pid);
367 }
368 
369 void detach_pid(struct task_struct *task, enum pid_type type)
370 {
371 	__change_pid(task, type, NULL);
372 }
373 
374 void change_pid(struct task_struct *task, enum pid_type type,
375 		struct pid *pid)
376 {
377 	__change_pid(task, type, pid);
378 	attach_pid(task, type, pid);
379 }
380 
381 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
382 void transfer_pid(struct task_struct *old, struct task_struct *new,
383 			   enum pid_type type)
384 {
385 	new->pids[type].pid = old->pids[type].pid;
386 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
387 }
388 
389 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
390 {
391 	struct task_struct *result = NULL;
392 	if (pid) {
393 		struct hlist_node *first;
394 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
395 					      lockdep_tasklist_lock_is_held());
396 		if (first)
397 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
398 	}
399 	return result;
400 }
401 EXPORT_SYMBOL(pid_task);
402 
403 /*
404  * Must be called under rcu_read_lock().
405  */
406 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
407 {
408 	rcu_lockdep_assert(rcu_read_lock_held(),
409 			   "find_task_by_pid_ns() needs rcu_read_lock()"
410 			   " protection");
411 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
412 }
413 
414 struct task_struct *find_task_by_vpid(pid_t vnr)
415 {
416 	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
417 }
418 
419 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
420 {
421 	struct pid *pid;
422 	rcu_read_lock();
423 	if (type != PIDTYPE_PID)
424 		task = task->group_leader;
425 	pid = get_pid(task->pids[type].pid);
426 	rcu_read_unlock();
427 	return pid;
428 }
429 EXPORT_SYMBOL_GPL(get_task_pid);
430 
431 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
432 {
433 	struct task_struct *result;
434 	rcu_read_lock();
435 	result = pid_task(pid, type);
436 	if (result)
437 		get_task_struct(result);
438 	rcu_read_unlock();
439 	return result;
440 }
441 EXPORT_SYMBOL_GPL(get_pid_task);
442 
443 struct pid *find_get_pid(pid_t nr)
444 {
445 	struct pid *pid;
446 
447 	rcu_read_lock();
448 	pid = get_pid(find_vpid(nr));
449 	rcu_read_unlock();
450 
451 	return pid;
452 }
453 EXPORT_SYMBOL_GPL(find_get_pid);
454 
455 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
456 {
457 	struct upid *upid;
458 	pid_t nr = 0;
459 
460 	if (pid && ns->level <= pid->level) {
461 		upid = &pid->numbers[ns->level];
462 		if (upid->ns == ns)
463 			nr = upid->nr;
464 	}
465 	return nr;
466 }
467 EXPORT_SYMBOL_GPL(pid_nr_ns);
468 
469 pid_t pid_vnr(struct pid *pid)
470 {
471 	return pid_nr_ns(pid, current->nsproxy->pid_ns);
472 }
473 EXPORT_SYMBOL_GPL(pid_vnr);
474 
475 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
476 			struct pid_namespace *ns)
477 {
478 	pid_t nr = 0;
479 
480 	rcu_read_lock();
481 	if (!ns)
482 		ns = current->nsproxy->pid_ns;
483 	if (likely(pid_alive(task))) {
484 		if (type != PIDTYPE_PID)
485 			task = task->group_leader;
486 		nr = pid_nr_ns(task->pids[type].pid, ns);
487 	}
488 	rcu_read_unlock();
489 
490 	return nr;
491 }
492 EXPORT_SYMBOL(__task_pid_nr_ns);
493 
494 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
495 {
496 	return pid_nr_ns(task_tgid(tsk), ns);
497 }
498 EXPORT_SYMBOL(task_tgid_nr_ns);
499 
500 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
501 {
502 	return ns_of_pid(task_pid(tsk));
503 }
504 EXPORT_SYMBOL_GPL(task_active_pid_ns);
505 
506 /*
507  * Used by proc to find the first pid that is greater than or equal to nr.
508  *
509  * If there is a pid at nr this function is exactly the same as find_pid_ns.
510  */
511 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
512 {
513 	struct pid *pid;
514 
515 	do {
516 		pid = find_pid_ns(nr, ns);
517 		if (pid)
518 			break;
519 		nr = next_pidmap(ns, nr);
520 	} while (nr > 0);
521 
522 	return pid;
523 }
524 
525 /*
526  * The pid hash table is scaled according to the amount of memory in the
527  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
528  * more.
529  */
530 void __init pidhash_init(void)
531 {
532 	unsigned int i, pidhash_size;
533 
534 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
535 					   HASH_EARLY | HASH_SMALL,
536 					   &pidhash_shift, NULL,
537 					   0, 4096);
538 	pidhash_size = 1U << pidhash_shift;
539 
540 	for (i = 0; i < pidhash_size; i++)
541 		INIT_HLIST_HEAD(&pid_hash[i]);
542 }
543 
544 void __init pidmap_init(void)
545 {
546 	/* bump default and minimum pid_max based on number of cpus */
547 	pid_max = min(pid_max_max, max_t(int, pid_max,
548 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
549 	pid_max_min = max_t(int, pid_max_min,
550 				PIDS_PER_CPU_MIN * num_possible_cpus());
551 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
552 
553 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
554 	/* Reserve PID 0. We never call free_pidmap(0) */
555 	set_bit(0, init_pid_ns.pidmap[0].page);
556 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
557 
558 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
559 			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
560 }
561