xref: /linux/kernel/pid.c (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Generic pidhash and scalable, time-bounded PID allocator
4   *
5   * (C) 2002-2003 Nadia Yvette Chambers, IBM
6   * (C) 2004 Nadia Yvette Chambers, Oracle
7   * (C) 2002-2004 Ingo Molnar, Red Hat
8   *
9   * pid-structures are backing objects for tasks sharing a given ID to chain
10   * against. There is very little to them aside from hashing them and
11   * parking tasks using given ID's on a list.
12   *
13   * The hash is always changed with the tasklist_lock write-acquired,
14   * and the hash is only accessed with the tasklist_lock at least
15   * read-acquired, so there's no additional SMP locking needed here.
16   *
17   * We have a list of bitmap pages, which bitmaps represent the PID space.
18   * Allocating and freeing PIDs is completely lockless. The worst-case
19   * allocation scenario when all but one out of 1 million PIDs possible are
20   * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21   * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22   *
23   * Pid namespaces:
24   *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25   *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26   *     Many thanks to Oleg Nesterov for comments and help
27   *
28   */
29  
30  #include <linux/mm.h>
31  #include <linux/export.h>
32  #include <linux/slab.h>
33  #include <linux/init.h>
34  #include <linux/rculist.h>
35  #include <linux/memblock.h>
36  #include <linux/pid_namespace.h>
37  #include <linux/init_task.h>
38  #include <linux/syscalls.h>
39  #include <linux/proc_ns.h>
40  #include <linux/refcount.h>
41  #include <linux/anon_inodes.h>
42  #include <linux/sched/signal.h>
43  #include <linux/sched/task.h>
44  #include <linux/idr.h>
45  
46  struct pid init_struct_pid = {
47  	.count		= REFCOUNT_INIT(1),
48  	.tasks		= {
49  		{ .first = NULL },
50  		{ .first = NULL },
51  		{ .first = NULL },
52  	},
53  	.level		= 0,
54  	.numbers	= { {
55  		.nr		= 0,
56  		.ns		= &init_pid_ns,
57  	}, }
58  };
59  
60  int pid_max = PID_MAX_DEFAULT;
61  
62  #define RESERVED_PIDS		300
63  
64  int pid_max_min = RESERVED_PIDS + 1;
65  int pid_max_max = PID_MAX_LIMIT;
66  
67  /*
68   * PID-map pages start out as NULL, they get allocated upon
69   * first use and are never deallocated. This way a low pid_max
70   * value does not cause lots of bitmaps to be allocated, but
71   * the scheme scales to up to 4 million PIDs, runtime.
72   */
73  struct pid_namespace init_pid_ns = {
74  	.kref = KREF_INIT(2),
75  	.idr = IDR_INIT(init_pid_ns.idr),
76  	.pid_allocated = PIDNS_ADDING,
77  	.level = 0,
78  	.child_reaper = &init_task,
79  	.user_ns = &init_user_ns,
80  	.ns.inum = PROC_PID_INIT_INO,
81  #ifdef CONFIG_PID_NS
82  	.ns.ops = &pidns_operations,
83  #endif
84  };
85  EXPORT_SYMBOL_GPL(init_pid_ns);
86  
87  /*
88   * Note: disable interrupts while the pidmap_lock is held as an
89   * interrupt might come in and do read_lock(&tasklist_lock).
90   *
91   * If we don't disable interrupts there is a nasty deadlock between
92   * detach_pid()->free_pid() and another cpu that does
93   * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94   * read_lock(&tasklist_lock);
95   *
96   * After we clean up the tasklist_lock and know there are no
97   * irq handlers that take it we can leave the interrupts enabled.
98   * For now it is easier to be safe than to prove it can't happen.
99   */
100  
101  static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102  
103  void put_pid(struct pid *pid)
104  {
105  	struct pid_namespace *ns;
106  
107  	if (!pid)
108  		return;
109  
110  	ns = pid->numbers[pid->level].ns;
111  	if (refcount_dec_and_test(&pid->count)) {
112  		kmem_cache_free(ns->pid_cachep, pid);
113  		put_pid_ns(ns);
114  	}
115  }
116  EXPORT_SYMBOL_GPL(put_pid);
117  
118  static void delayed_put_pid(struct rcu_head *rhp)
119  {
120  	struct pid *pid = container_of(rhp, struct pid, rcu);
121  	put_pid(pid);
122  }
123  
124  void free_pid(struct pid *pid)
125  {
126  	/* We can be called with write_lock_irq(&tasklist_lock) held */
127  	int i;
128  	unsigned long flags;
129  
130  	spin_lock_irqsave(&pidmap_lock, flags);
131  	for (i = 0; i <= pid->level; i++) {
132  		struct upid *upid = pid->numbers + i;
133  		struct pid_namespace *ns = upid->ns;
134  		switch (--ns->pid_allocated) {
135  		case 2:
136  		case 1:
137  			/* When all that is left in the pid namespace
138  			 * is the reaper wake up the reaper.  The reaper
139  			 * may be sleeping in zap_pid_ns_processes().
140  			 */
141  			wake_up_process(ns->child_reaper);
142  			break;
143  		case PIDNS_ADDING:
144  			/* Handle a fork failure of the first process */
145  			WARN_ON(ns->child_reaper);
146  			ns->pid_allocated = 0;
147  			/* fall through */
148  		case 0:
149  			schedule_work(&ns->proc_work);
150  			break;
151  		}
152  
153  		idr_remove(&ns->idr, upid->nr);
154  	}
155  	spin_unlock_irqrestore(&pidmap_lock, flags);
156  
157  	call_rcu(&pid->rcu, delayed_put_pid);
158  }
159  
160  struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
161  		      size_t set_tid_size)
162  {
163  	struct pid *pid;
164  	enum pid_type type;
165  	int i, nr;
166  	struct pid_namespace *tmp;
167  	struct upid *upid;
168  	int retval = -ENOMEM;
169  
170  	/*
171  	 * set_tid_size contains the size of the set_tid array. Starting at
172  	 * the most nested currently active PID namespace it tells alloc_pid()
173  	 * which PID to set for a process in that most nested PID namespace
174  	 * up to set_tid_size PID namespaces. It does not have to set the PID
175  	 * for a process in all nested PID namespaces but set_tid_size must
176  	 * never be greater than the current ns->level + 1.
177  	 */
178  	if (set_tid_size > ns->level + 1)
179  		return ERR_PTR(-EINVAL);
180  
181  	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
182  	if (!pid)
183  		return ERR_PTR(retval);
184  
185  	tmp = ns;
186  	pid->level = ns->level;
187  
188  	for (i = ns->level; i >= 0; i--) {
189  		int tid = 0;
190  
191  		if (set_tid_size) {
192  			tid = set_tid[ns->level - i];
193  
194  			retval = -EINVAL;
195  			if (tid < 1 || tid >= pid_max)
196  				goto out_free;
197  			/*
198  			 * Also fail if a PID != 1 is requested and
199  			 * no PID 1 exists.
200  			 */
201  			if (tid != 1 && !tmp->child_reaper)
202  				goto out_free;
203  			retval = -EPERM;
204  			if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
205  				goto out_free;
206  			set_tid_size--;
207  		}
208  
209  		idr_preload(GFP_KERNEL);
210  		spin_lock_irq(&pidmap_lock);
211  
212  		if (tid) {
213  			nr = idr_alloc(&tmp->idr, NULL, tid,
214  				       tid + 1, GFP_ATOMIC);
215  			/*
216  			 * If ENOSPC is returned it means that the PID is
217  			 * alreay in use. Return EEXIST in that case.
218  			 */
219  			if (nr == -ENOSPC)
220  				nr = -EEXIST;
221  		} else {
222  			int pid_min = 1;
223  			/*
224  			 * init really needs pid 1, but after reaching the
225  			 * maximum wrap back to RESERVED_PIDS
226  			 */
227  			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
228  				pid_min = RESERVED_PIDS;
229  
230  			/*
231  			 * Store a null pointer so find_pid_ns does not find
232  			 * a partially initialized PID (see below).
233  			 */
234  			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
235  					      pid_max, GFP_ATOMIC);
236  		}
237  		spin_unlock_irq(&pidmap_lock);
238  		idr_preload_end();
239  
240  		if (nr < 0) {
241  			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
242  			goto out_free;
243  		}
244  
245  		pid->numbers[i].nr = nr;
246  		pid->numbers[i].ns = tmp;
247  		tmp = tmp->parent;
248  	}
249  
250  	if (unlikely(is_child_reaper(pid))) {
251  		if (pid_ns_prepare_proc(ns))
252  			goto out_free;
253  	}
254  
255  	get_pid_ns(ns);
256  	refcount_set(&pid->count, 1);
257  	for (type = 0; type < PIDTYPE_MAX; ++type)
258  		INIT_HLIST_HEAD(&pid->tasks[type]);
259  
260  	init_waitqueue_head(&pid->wait_pidfd);
261  
262  	upid = pid->numbers + ns->level;
263  	spin_lock_irq(&pidmap_lock);
264  	if (!(ns->pid_allocated & PIDNS_ADDING))
265  		goto out_unlock;
266  	for ( ; upid >= pid->numbers; --upid) {
267  		/* Make the PID visible to find_pid_ns. */
268  		idr_replace(&upid->ns->idr, pid, upid->nr);
269  		upid->ns->pid_allocated++;
270  	}
271  	spin_unlock_irq(&pidmap_lock);
272  
273  	return pid;
274  
275  out_unlock:
276  	spin_unlock_irq(&pidmap_lock);
277  	put_pid_ns(ns);
278  
279  out_free:
280  	spin_lock_irq(&pidmap_lock);
281  	while (++i <= ns->level) {
282  		upid = pid->numbers + i;
283  		idr_remove(&upid->ns->idr, upid->nr);
284  	}
285  
286  	/* On failure to allocate the first pid, reset the state */
287  	if (ns->pid_allocated == PIDNS_ADDING)
288  		idr_set_cursor(&ns->idr, 0);
289  
290  	spin_unlock_irq(&pidmap_lock);
291  
292  	kmem_cache_free(ns->pid_cachep, pid);
293  	return ERR_PTR(retval);
294  }
295  
296  void disable_pid_allocation(struct pid_namespace *ns)
297  {
298  	spin_lock_irq(&pidmap_lock);
299  	ns->pid_allocated &= ~PIDNS_ADDING;
300  	spin_unlock_irq(&pidmap_lock);
301  }
302  
303  struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
304  {
305  	return idr_find(&ns->idr, nr);
306  }
307  EXPORT_SYMBOL_GPL(find_pid_ns);
308  
309  struct pid *find_vpid(int nr)
310  {
311  	return find_pid_ns(nr, task_active_pid_ns(current));
312  }
313  EXPORT_SYMBOL_GPL(find_vpid);
314  
315  static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
316  {
317  	return (type == PIDTYPE_PID) ?
318  		&task->thread_pid :
319  		&task->signal->pids[type];
320  }
321  
322  /*
323   * attach_pid() must be called with the tasklist_lock write-held.
324   */
325  void attach_pid(struct task_struct *task, enum pid_type type)
326  {
327  	struct pid *pid = *task_pid_ptr(task, type);
328  	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
329  }
330  
331  static void __change_pid(struct task_struct *task, enum pid_type type,
332  			struct pid *new)
333  {
334  	struct pid **pid_ptr = task_pid_ptr(task, type);
335  	struct pid *pid;
336  	int tmp;
337  
338  	pid = *pid_ptr;
339  
340  	hlist_del_rcu(&task->pid_links[type]);
341  	*pid_ptr = new;
342  
343  	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
344  		if (pid_has_task(pid, tmp))
345  			return;
346  
347  	free_pid(pid);
348  }
349  
350  void detach_pid(struct task_struct *task, enum pid_type type)
351  {
352  	__change_pid(task, type, NULL);
353  }
354  
355  void change_pid(struct task_struct *task, enum pid_type type,
356  		struct pid *pid)
357  {
358  	__change_pid(task, type, pid);
359  	attach_pid(task, type);
360  }
361  
362  /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
363  void transfer_pid(struct task_struct *old, struct task_struct *new,
364  			   enum pid_type type)
365  {
366  	if (type == PIDTYPE_PID)
367  		new->thread_pid = old->thread_pid;
368  	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
369  }
370  
371  struct task_struct *pid_task(struct pid *pid, enum pid_type type)
372  {
373  	struct task_struct *result = NULL;
374  	if (pid) {
375  		struct hlist_node *first;
376  		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
377  					      lockdep_tasklist_lock_is_held());
378  		if (first)
379  			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
380  	}
381  	return result;
382  }
383  EXPORT_SYMBOL(pid_task);
384  
385  /*
386   * Must be called under rcu_read_lock().
387   */
388  struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
389  {
390  	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
391  			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
392  	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
393  }
394  
395  struct task_struct *find_task_by_vpid(pid_t vnr)
396  {
397  	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
398  }
399  
400  struct task_struct *find_get_task_by_vpid(pid_t nr)
401  {
402  	struct task_struct *task;
403  
404  	rcu_read_lock();
405  	task = find_task_by_vpid(nr);
406  	if (task)
407  		get_task_struct(task);
408  	rcu_read_unlock();
409  
410  	return task;
411  }
412  
413  struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
414  {
415  	struct pid *pid;
416  	rcu_read_lock();
417  	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
418  	rcu_read_unlock();
419  	return pid;
420  }
421  EXPORT_SYMBOL_GPL(get_task_pid);
422  
423  struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
424  {
425  	struct task_struct *result;
426  	rcu_read_lock();
427  	result = pid_task(pid, type);
428  	if (result)
429  		get_task_struct(result);
430  	rcu_read_unlock();
431  	return result;
432  }
433  EXPORT_SYMBOL_GPL(get_pid_task);
434  
435  struct pid *find_get_pid(pid_t nr)
436  {
437  	struct pid *pid;
438  
439  	rcu_read_lock();
440  	pid = get_pid(find_vpid(nr));
441  	rcu_read_unlock();
442  
443  	return pid;
444  }
445  EXPORT_SYMBOL_GPL(find_get_pid);
446  
447  pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
448  {
449  	struct upid *upid;
450  	pid_t nr = 0;
451  
452  	if (pid && ns->level <= pid->level) {
453  		upid = &pid->numbers[ns->level];
454  		if (upid->ns == ns)
455  			nr = upid->nr;
456  	}
457  	return nr;
458  }
459  EXPORT_SYMBOL_GPL(pid_nr_ns);
460  
461  pid_t pid_vnr(struct pid *pid)
462  {
463  	return pid_nr_ns(pid, task_active_pid_ns(current));
464  }
465  EXPORT_SYMBOL_GPL(pid_vnr);
466  
467  pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
468  			struct pid_namespace *ns)
469  {
470  	pid_t nr = 0;
471  
472  	rcu_read_lock();
473  	if (!ns)
474  		ns = task_active_pid_ns(current);
475  	if (likely(pid_alive(task)))
476  		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
477  	rcu_read_unlock();
478  
479  	return nr;
480  }
481  EXPORT_SYMBOL(__task_pid_nr_ns);
482  
483  struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
484  {
485  	return ns_of_pid(task_pid(tsk));
486  }
487  EXPORT_SYMBOL_GPL(task_active_pid_ns);
488  
489  /*
490   * Used by proc to find the first pid that is greater than or equal to nr.
491   *
492   * If there is a pid at nr this function is exactly the same as find_pid_ns.
493   */
494  struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
495  {
496  	return idr_get_next(&ns->idr, &nr);
497  }
498  
499  /**
500   * pidfd_create() - Create a new pid file descriptor.
501   *
502   * @pid:  struct pid that the pidfd will reference
503   *
504   * This creates a new pid file descriptor with the O_CLOEXEC flag set.
505   *
506   * Note, that this function can only be called after the fd table has
507   * been unshared to avoid leaking the pidfd to the new process.
508   *
509   * Return: On success, a cloexec pidfd is returned.
510   *         On error, a negative errno number will be returned.
511   */
512  static int pidfd_create(struct pid *pid)
513  {
514  	int fd;
515  
516  	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
517  			      O_RDWR | O_CLOEXEC);
518  	if (fd < 0)
519  		put_pid(pid);
520  
521  	return fd;
522  }
523  
524  /**
525   * pidfd_open() - Open new pid file descriptor.
526   *
527   * @pid:   pid for which to retrieve a pidfd
528   * @flags: flags to pass
529   *
530   * This creates a new pid file descriptor with the O_CLOEXEC flag set for
531   * the process identified by @pid. Currently, the process identified by
532   * @pid must be a thread-group leader. This restriction currently exists
533   * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
534   * be used with CLONE_THREAD) and pidfd polling (only supports thread group
535   * leaders).
536   *
537   * Return: On success, a cloexec pidfd is returned.
538   *         On error, a negative errno number will be returned.
539   */
540  SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
541  {
542  	int fd;
543  	struct pid *p;
544  
545  	if (flags)
546  		return -EINVAL;
547  
548  	if (pid <= 0)
549  		return -EINVAL;
550  
551  	p = find_get_pid(pid);
552  	if (!p)
553  		return -ESRCH;
554  
555  	if (pid_has_task(p, PIDTYPE_TGID))
556  		fd = pidfd_create(p);
557  	else
558  		fd = -EINVAL;
559  
560  	put_pid(p);
561  	return fd;
562  }
563  
564  void __init pid_idr_init(void)
565  {
566  	/* Verify no one has done anything silly: */
567  	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
568  
569  	/* bump default and minimum pid_max based on number of cpus */
570  	pid_max = min(pid_max_max, max_t(int, pid_max,
571  				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
572  	pid_max_min = max_t(int, pid_max_min,
573  				PIDS_PER_CPU_MIN * num_possible_cpus());
574  	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
575  
576  	idr_init(&init_pid_ns.idr);
577  
578  	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
579  			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
580  }
581